
Simulating the gravitational field
of a non-rotating neutron star

on GPUs

Student: Gkratsia Tantilian
Supervisors: Prof. K. Kokkotas, Prof. N. Stergioulas, Dr. B. Zink

Postgraduate program: Computational Physics
Department: Physics
Institute:
Aristotle University of Thessaloniki
and
Eberhard Karls Universität Tübingen

Thessaloniki
July 2011

.

Abstract

The main subject of this project is how can we simulate the gravita-
tional field of a neutron star on GPUs. First we need to solve the Einstein’s
equations for a non-rotating neutron star. We adopt the ADM 3+1 for-
malism and we use the spatial conformal flatness approximation - CFC,
where we have to solve only elliptic equations. To calculate the internal
parameters of the star, we use the equations of equilibrium. For faster
results, we choose parallel programming on GPUs, in CUDA programming
language, while we use a multigrid numerical technique. After some op-
timizations we achieved important speed ups in CUDA, compared to an
initial implementation.

i

Aknowledgements

I would like to express my appreciation to Prof. Kostas Kokkotas
and Prof. Nikolaos Stergioulas for giving me the opportunity to study
and understand all the subjects of this project and for supporting me
during these studies.

Special thanks to Dr. Burkhard Zink who guided me in a unique
way through the knowledge, made everything simpler to understand
and inspired me to move on.

How can I forget the kindest person who made me feel welcome
during my studies in Tübingen and supported when I was in need,
miss Heike Fricke.

Finally, I would like to thank my family, my friends and all the
professors who supported me during all my way from my school years
until today.

Gkratsia Tantilian,
July 2011

ii

Contents

1 Introduction 1

2 Theory 2
2.1 CFC - Approximation 3
2.2 TOV . 4
2.3 The model . 5

3 Numerical methods 7
3.1 The Gauss - Seidel method 7
3.2 Red - Black . 10
3.3 Multigrid . 11

4 GPU computing 16
4.1 GPUs . 17
4.2 CUDA . 20

5 The simulation 30
5.1 Code description . 32

6 Optimization 43
6.1 Basic optimization . 43
6.2 Changes in our code 44

7 Final results 47

iii

1 Introduction

In Einstein’s theory of general relativity, gravity is not an ordinary
force, but rather a property of spacetime geometry. This is currently
the most accepted theory of gravity.

Using General Relativity, we expect that high density stellar ob-
jects, such as neutron stars, will produce gravitational waves while
rotating, due to instabilities. In the case of a binary system, the waves
will be even stronger and it will be easier detect them.

The main purpose of this thesis, is to perform a simulation that
would show us the behavior of these gravitational waves. But that is
the final step. First of all we have to simulate the gravitational field of
a non-rotating neutron star. Of course, there are already many simu-
lations for that. What is interesting in our simulation is the numerical
techniques and the way it is working. It is important for us to make
a simulation as fast as possible, so we can generalize it for the case of
rotating neutron stars.

The programming language we choose to work with is CUDA. Since
it is possible to use parallel computing to solve our equations, we prefer
to do it on GPUs, using CUDA.

Let’s see step by step the theoretical approximations, the numerical
methods and the way the simulation is implemented.

1 Simulating the gravitational field on GPUs

2 Theory

As mentioned before, the theory that we use is Einstein’s General
Relativity. General relativity (GR) is a theory of gravitation that was
developed by Albert Einstein between 1907 and 1915. According to
general relativity, the observed gravitational attraction between masses
results from their warping of space and time.That turns the theory of
gravity into a theory of spacetime geometry.

By the beginning of the 20th century, Newton’s law of universal
gravitation had been accepted for more than two hundred years as a
valid description of the gravitational force between masses. In New-
ton’s model, gravity is the result of an attractive force between massive
objects. Although even Newton was bothered by the unknown nature
of that force, the basic framework was extremely successful at describ-
ing motion.

Experiments and observations show that Einstein’s description of
gravitation accounts for several effects that are unexplained by New-
ton’s law, such as minute anomalies in the orbits of Mercury and other
planets. General relativity also predicts novel effects of gravity, such
as gravitational waves, gravitational lensing and an effect of gravity on
time known as gravitational time dilation. Many of these predictions
have been confirmed by experiment, while others are the subject of
ongoing research.

The Einstein’s equations that describe the geometry of spacetime
is:

Rµν −
1

2
gµνR =

8πG

c4
Tµν (1)

The solution of the above equations, is the metric tensor gµν. For a
flat spacetime, in Cartesian coordinates we get:

gµν =









−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









(2)

So, our purpose is to solve the Einstein’s equations for the spacetime

Simulating the gravitational field on GPUs 2

2.1 CFC - Approximation

of a neutron star.

2.1 CFC - Approximation

The approximation that we use, is based on the description of the
paper: Dimmelmeier et al. (2002).

We adopt the ADM (Arnowitt-Deser-Misner) 3+1 formalism to
split the 4D spacetime into 3D space + time coordinate. In this case,
the line element takes the following form:

ds2 = −N2dt2 + γij(dx
i + βidt)(dxj + βjdt), (3)

where N is the lapse function, which describes the rate of advance of
time along a timelike unit vector normal to a spacelike hyper-surface,
βi is the spacelike shift three-vector, which describes the motion of
coordinates within a hyper-surface and γij is the spatial three-metric.

Within the spatial conformal flatness condition (CFC), we approx-
imate the general metric gµν by replacing the spatial three-metric γij
with the conformally flat three-metric:

γij = φ4γ̂ij, (4)

where γ̂ij is the flat metric. In Cartesian coordinates:

γ̂ij =





1 0 0
0 1 0
0 0 1



 (5)

That means, we approximate the three-metric with the flat three-
metric multiplied by a function φ4 (the conformal factor). With the
CFC approximation and the ADM 3+1 formalism, the Einstein’s equa-
tions take the form of the following five coupled elliptic (Poisson-like)

3 Simulating the gravitational field on GPUs

2.2 TOV

equations:

∇̂2φ = −2πφ5
(

ρhW 2 − P +
KijK

ij

16π

)

,

∇̂2(Nφ) = −2πNφ5
(

ρh(3W 2 − 2) + 5P +
7KijK

ij

16π

)

,

∇̂2βi = 16πNφ4Si + 2K̂ ij∇̂

(

N

φ6

)

−
1

3
∇̂i∇̂kβ

k,

(6)

where φ: conformal factor, ρ: rest mass density, h = 1+εP/ρ: specific
relativistic enthalpy (ε: internal energy density), P : pressure, W =
Nut: Lorentz factor, Kij = Lnγij: extrinsic curvature, K = Ki

i: the
trace of the extrinsic curvature, Si: the momenta.

2.2 TOV

As we can see above, to solve our equations we need some initial
data about the neutron star, such as its density and pressure. We can
obtain this information from a TOV solver.

The TOV (Tolman-Ophenheimer-Volkoff) equations for a spheri-
cal star, are three coupled differential equations that relate the mass
function, the density and the pressure of the star:

dm

dr
= 4πr2ρ(r),

dP

dr
= −

ρm

r2

(

1 +
P

ρ

)(

1 +
4πPr3

m

)(

1−
2m

r

)−1

,

dΦ

dr
= −

1

ρ

dP

dr

(

1 +
P

ρ

)−1

,

(7)

where m(r): mass, P (r): pressure, ρ(r): rest mass density, Φ(r) =

Simulating the gravitational field on GPUs 4

2.3 The model

lnN(r). The line element is in the form of:

ds2 = −e2Φdt2 + e2λdr2 + r2dΩ2 (8)

where e2λ =
(

1− 2m
r

)−1
.

Using the equation of state: P = KρΓ (Γ: polytropic index, K: a
constant), we solve the TOV equations using a Runge-Kutta method
of 4th order. For a neutron star we choose: Γ = 2 and K = 100.

From these equations we obtain the pressure, the density, the mass
and the radius of the star (from the center to the point where there is
no pressure). Also, from these data we have the boundary conditions
of our problem.

2.3 The model

Now that we have the theoretical basis and we know the physical
problem we have to face, we need to set up the model that we will
simulate.

As we mentioned before, we want to simulate the gravitational field
of a non-rotating neutron star. So, having in mind the equations we
have to solve and the fact that our star is not rotating, we can make
a proper gauge choice, where the spacelike shift three vector is zero:
βi = 0. Also, since our system is static, there is no motion, we can set
the extrinsic curvature Kij = 0.

With these conditions, our equations take the following form:

∇̂2φ = −2πφ5
(

ρhW 2 − P
)

,

∇̂2(Nφ) = −2πNφ5
(

ρh(3W 2 − 2) + 5P
)

,

(9)

which are two non-linear elliptic (Poisson-like) differential equations.
The pressure and the density functions, are given from the TOV equa-
tions and the equation of state.

The unknown quantities are φ (conformal factor) and N (lapse
function). What we need to do is to solve iteratively the first equation

5 Simulating the gravitational field on GPUs

2.3 The model

for φ and the second for ψ = Nφ. Then, we obtain:

N =
ψ

φ
. (10)

Knowing these functions we obtain g̃µν :

g̃µν =









−N2 0 0 0
0
0 γij
0









, (11)

where

γij = φ4γ̂ij = φ4





1 0 0
0 1 0
0 0 1



 . (12)

In conclusion, we only need to find the functionsN(x, y, z) and φ(x, y, z).
In the next chapters we will discuss about the numerical methods and
computational techniques we will use, to achieve that.

Notice that the CFC condition is exact for spherical spacetimes.
Nevertheless, we mention it here in preparation for future extensions
to non-spherical spacetimes. Also, from the solution of the TOV equa-
tions, we can also obtain N(r) and φ(r) - obviously, we are not using
this result, but only P (r) in order to initiate our elliptic solver. A
complete simulation would also evolve the hydrodynamics equations,
in order to achieve a time-evolution of the full system.

Simulating the gravitational field on GPUs 6

3 Numerical methods

Continuous problems must sometimes be replaced by a discrete prob-
lem whose solution is known to approximate that of the continuous
problem; this process is called discretization. For example, the solu-
tion of a differential equation is a function. This function must be
represented by a finite amount of data, for instance by its value at a
finite number of points in its domain, even though this domain is a
continuum.

There are two main categories of methods of solving a problem
numerically: Direct methods and Iterative methods. Direct methods
compute the solution to a problem in a finite number of computations.
These methods would give the precise answer if they were performed in
infinite precision arithmetic. Examples include Gaussian elimination,
the QR factorization method for solving systems of linear equations,
and the simplex method of linear programming.

In contrast to direct methods, iterative methods are not expected
to terminate in a number of steps. Starting from an initial guess,
iterative methods form successive approximations that converge to the
exact solution only in the limit of an infinite number of iterations. A
threshold is specified in order to decide when a sufficiently accurate
solution has been found. Even using infinite precision arithmetic these
methods would not reach the solution within a finite number of steps, in
general. Examples include Newton’s method, the bisection method and
the Gauss-Seidel method. In computational matrix algebra, iterative
methods are generally needed for large problems.

In our simulation we use an iterative method, called Gauss-Seidel
method. Next we will describe this method and see how we can im-
plement it numerically.

3.1 The Gauss - Seidel method

In this section, we will describe how we can solve an elliptic differ-
ential equation (Poisson-like) using the Gauss-Seidel method.

Suppose we have the Poisson equation: ∇2φ = f , which can also

7 Simulating the gravitational field on GPUs

3.1 The Gauss - Seidel method

be written as:

∂2φ

∂x
+
∂2φ

∂y
+
∂2φ

∂z
= f. (13)

Let u be the numerical solution of the equation. Then, we can
replace the partial differential operators with the following schemes:

∂2φ

∂x

∣

∣

∣

∣

i,j,k

=
ui−1,j,k − 2ui,j,k + ui+1,j,k

h2x
,

∂2φ

∂y

∣

∣

∣

∣

i,j,k

=
ui,j−1,k − 2ui,j,k + ui,j+1,k

h2y
,

∂2φ

∂z

∣

∣

∣

∣

i,j,k

=
ui,j,k−1 − 2ui,j,k + ui,j,k+1

h2z
,

(14)

where hi is the grid size of the i-direction. By representing our solution
in a 3D grid, (i,j,k) are the coordinates of the solution in our grid.

If we replace the operators with the respective numerical form and
set hx = hy = hz = h, our equation takes the following form:

ui−1,j,k−2·ui,j,k+ui+1,j,k

h2 +
ui,j−1,k−2·ui,j,k+ui,j+1,k

h2 +
ui,j,k−1−2·ui,j,k+ui,j,k+1

h2 = f.
(15)

Finally, we solve this equation with respect to ui,j,k and get the relation:

ui,j,k = Ai(ui+1,j,k + ui−1,j,k) + Aj(ui,j+1,k + ui,j−1,k)
+Ak(ui,j,k+1 + ui,j,k−1)− Aff

(16)

Simulating the gravitational field on GPUs 8

3.1 The Gauss - Seidel method

where

Ai =
h2
yh

2
z

2D
,

Aj =
h2
xh

2
z

2D
,

Ak =
h2
xh

2
y

2D
,

Af =
h2
xh

2
yh

2
z

2D
,

D = h2xh
2
y + h2xh

2
z + h2yh

2
z.

(17)

Using the above equation we can calculate the value of the solution at
the point (i,j,k) if we know the the surrounding values. In the figure 1
we represent the scheme in two dimensional problem.

Figure 1:
The Gauss-Seidel method for 2-D grid

Gauss-Seidel is an iterative method. These methods are also called
relaxation methods since we have an initial guess of the solution and
through the iterations we let it to relax to the real solution, reducing
the error. To solve the Poisson equation with the Gauss-Seidel method,
we have to set the boundary conditions, make an initial guess of the
solution and relax (start the iterations) until we reach the desired ac-
curacy.

9 Simulating the gravitational field on GPUs

3.2 Red - Black

3.2 Red - Black

As one can notice from the representation of the method, to find the
solution in a point of the grid, we need the values of the upper, lower,
left and right points. But what if at the same time we are renewing
the value of one of these points? In few cases that could cause some
problems. Especially if we have parallel computations, it is possible to
try to read and write at the same time, the value of a point. For that,
the relaxation can be split into two phases.

Imagine the grid as a chess board. Having the Gauss-Seidel method
in mind, we can see that the white squares are independent. Their
value depends only on the surrounding black squares.

Figure 2:
The chess board as an analog of Red-Black relaxation

To avoid conflicts we relax first for the points at the black squares,
and then for the points at the white squares. This technique is called
Red-Black Relaxation and it is well represented in the figure 3.

Figure 3:
A representation of the Red-Black relaxation

Simulating the gravitational field on GPUs 10

3.3 Multigrid

3.3 Multigrid

Although the method we described in the previous chapters, is effec-
tive and converges to the desired solution, it is quite slow, especially
when we have to make calculations for a high resolution grid. Imagine
a 100x100x100 grid. That means we have to calculate the solution for 1
000 000 points for each full-grid iteration. Before implementing it and
use it as our solver, we can make some improvements of the algorithm.

A very good technique that will speed up our iterative method,
is what we will present on this chapter and it is called multigrid. In
multigrid we reduce the calculations by changing the grid resolution.
Let’s see the whole idea, step by step.

Let Au = f be our numerical equation in matrix form. Where
A is the left hand side operator of the differential equation, u is our
numerical solution and f is the source function.

Now we can define the residual

r = f − Au, (18)

obviously if u is the exact solution, then the residual is zero (r =
0). Otherwise, the residual is related to the accuracy of the solution.
To be more specific, the norm ‖ r ‖∞ is what defines our accuracy.
Numerically, if we have a matrix with the values of the residual for
each grid point, then ‖ r ‖∞= max(ri).

Now, lets assume that v is the exact solution of the problem. We
can relate the exact solution with the numerical solution with the re-
lation:

v = u+ e, (19)

where e is the error of the solution. This means that we have the
equation Av = f . Now we can get:

Av = f
v = u+ e

}

⇒ A(u+ e) = f ⇒

Au+ Ae = f ⇒ Ae = f − Au.
(20)

But, we know that f − Au = r so we obtain the equation:

Ae = r, (21)

11 Simulating the gravitational field on GPUs

3.3 Multigrid

which means that we can use the residual of our equation and consider
it as the source function of the equation for the error, and solve for the
error. After finding the error we can go back and correct our numerical
solution. But what is the reason to do that, since the number of
iterations will be the same?

If we examine carefully our iterative method, we can realize that it
is a method where each value of the solution is affected by the neigh-
borhood. So, the solver does not see further, to converge to the exact
solution faster. This means that if there are high frequency errors,
they will vanish fast enough, but for low frequency errors, it needs too
many iterations and it converges very slowly.

Figure 4:
Low frequency errors appear as high frequency errors in a low

resolution grid

A good way to face this problem is to change the grid resolution.
That’s because a low frequency error in a high resolution grid, appears
as high frequency error in a lower resolution grid, as we can see in the
figure 4.

So, what we do in the multigrid method is to set the initial prob-
lem, with the necessary boundary conditions and source function and
perform a few relaxations steps. Afterwards we take the residual and
turn it into the source function of the error, in a grid of half resolution.

Simulating the gravitational field on GPUs 12

3.3 Multigrid

The boundary conditions for the error are set to zero, since that is the
desired solution. After a couple of iterations we do the same for the
error, so we solve for the error of the error. After reaching the highest
level with the lowest resolution, we go back and correct the errors and
in the end we correct the solution.

Figure 5:
The levels of the multigrid method

The operator that turns a grid (for example the residual) into a
half-resolution grid, is called Restriction and it is an interpolation op-
eration. The restriction transports the residual of the fine grid to the
coarser grid. The typical process (for a 2D grid) averages the neigh-
boring values according to a stencil, that can be represented as:

IHh =
1

16





1 2 1
2 4 2
1 2 1



 . (22)

This is the so called full weighting restriction.
On the other hand, the operator that turns a grid (for example

the error) into a double-resolution grid, is called Prolongation and it
is also an interpolating operation. The prolongation injects the error
of the coarser grid to the finer grid, so we can correct the solution.
The typical process (for a 2D grid) averages the neighboring values
according to a stencil, as

IhH =
1

4





0 1 0
1 0 1
0 1 0



 . (23)

13 Simulating the gravitational field on GPUs

3.3 Multigrid

The multigrid method starts from the finest level where we solve for
the solution, and goes to a coarser level where we solve for the error.
Afterwards it goes back to the finest level by correcting the errors and
in the end the solution. This full cycle is called V-cycle.

Figure 6:
A representation of the full V-cycle

To see the speed up of this method, we solve the Poisson equation with
and without multigrid, using the Gauss-Seidel method. In the graphs
below we can see the residual for each case as a function of the number
of iterations.

Simulating the gravitational field on GPUs 14

3.3 Multigrid

Figure 7:
Gauss-Seidel without multigrid

Figure 8: Gauss-Seidel with multigrid

As we can see, without the multigrid we need around 35000 itera-
tions for a relative accuracy of 10−12, while for the same accuracy with
multigrid, we need around 90 iterations.

15 Simulating the gravitational field on GPUs

4 GPU computing

Now that we have seen the physical problem we have to solve, the
numerical method and the algorithms that we will use, we need to
choose a fast and effective programming language. But, before choos-
ing the language, it would be a good idea to consider the hardware we
will use.

As our models become more complicated we need faster compu-
tational performance. On the other hand, the more the technology
evolves and we get faster computers, the more complicated problems
we can deal with.

According to Moore’s law the number of transistors that can be
placed inexpensively on an integrated circuit doubles approximately
every one and a half to two years. So, we expect to see an improvement
in CPU performance. But, what is happening is that CPU computa-
tional performance is growing at a smaller rate.

Figure 9:
Moore’s law

There are many reasons why we see that the CPU clock speed grows
slower. One of them is the design limits. To make CPUs faster we need
more transistors, so we need smaller transistors so we can keep the
CPU design in a small size. But, we are approaching a limit of our
capabilities of designing small circuits.

Another way to speed up a CPU clock is to supply it with more
power. Nowadays CPUs are supplied with over 200 A current. The

Simulating the gravitational field on GPUs 16

4.1 GPUs

problem that could appear is overheating and even the melting of
the circuits, if there is no sufficient cooling.

These problems can be faced and are not as important compared
to the limitations of the atomic scale. There are physical restrictions
that will not allow us to make smaller circuits, because below a specific
size quantum effects appear, such as quantum tunnelling.

Another problem that appears using a single CPU is that even if
the CPU was fast enough, the bus speed of the CPU slot and the
memory slot adds a limitation to the performance.

The solution to these problems is to turn to parallel computing.
By making parallel computations on many CPUs, we reduce the needs
of the performance for each CPU, but we need many computational
units. Either many computers in a cluster or many CPU cores in
a computer. Nowadays the CPU industry realized the problem and
turned in producing multi-core CPUs.

With parallel computing we increase the computation performance.
But still, we need to set up computer clusters to get enough perfor-
mance for our needs. Do we have any other choice? Is it possible to
set up a single computer to get the performance we need? The answer
is that we can do that, if we turn from CPUs to GPUs.

4.1 GPUs

The computer game industry is one of the biggest and most demand-
ing industries in the world. The games become more realistic with
higher image quality. Which means more vertexes have to be rendered
and at the same time there must be simulations of the light diffusion in
the rendering stage. All these calculations to give a good performance
and desired frame-rate in the games, need high performance parallel
computations.

These demands of the computer industry lead graphic card compa-
nies to design the needed hardware. NVIDIA GPUs are highly parallel,
multi-threaded, many-core processors with very high processing per-
formance and memory bandwidth.

17 Simulating the gravitational field on GPUs

4.1 GPUs

Figure 10:
GPU and CPU peak performance

In the figure 10, we see the CPU and GPU peak performance in Gi-
gaflops (flops: floating point operations per second), comparing single
and double precision devices. In the figure 11 we see the CPU and
GPU memory bandwidth in Gigabytes per second.

Figure 11:
GPU and CPU memory speed

Simulating the gravitational field on GPUs 18

4.1 GPUs

The reason behind the discrepancy in floating-point capability be-
tween the CPU and the GPU is that the GPU is specialized for compute-
intensive, highly parallel computation - exactly what graphics render-
ing is about - and therefore designed such that more transistors are
devoted to data processing rather than data caching and flow control.
This can be schematically represented in the figure 12.

Figure 12:
CPU and GPU architecture

More specifically, the GPU is especially well-suited to address prob-
lems that can be expressed as data-parallel computations - the same
program is executed on many data elements in parallel - with high
arithmetic intensity - the ratio of arithmetic operations to memory op-
erations. Because the same program is executed for each data element,
there is a lower requirement for sophisticated flow control, and because
it is executed on many data elements and has high arithmetic intensity,
the memory access latency can be hidden with calculations instead of
big data caches.

Data-parallel processing maps data elements to parallel process-
ing threads. Many applications that process large data sets can use
a data-parallel programming model to speed up the computations. In
3D rendering, large sets of pixels and vertices are mapped to paral-
lel threads. Similarly, image and media processing applications such
as post-processing of rendered images, video encoding and decoding,
image scaling, stereo vision, and pattern recognition can map image
blocks and pixels to parallel processing threads. In fact, many algo-
rithms outside the field of image rendering and processing are accel-

19 Simulating the gravitational field on GPUs

4.2 CUDA

erated by data-parallel processing, from general signal processing or
physics simulation to computational finance or computational biology.

One of the biggest advantages of GPU Computing, is that we can
have this computational power in a small device, even in a personal
computer.

Now that we met GPUs and saw why it is preferable to set our
simulation calculations on GPUs instead of CPUs, lets see how we can
manage that.

4.2 CUDA

In November 2006, NVIDIA introduced CUDA, a general purpose
parallel computing architecture - with a new parallel programming
model and instruction set architecture - that leverages the parallel
compute engine in NVIDIA GPUs to solve many complex computa-
tional problems in a more efficient way than on a CPU.

The CUDA parallel programming model is designed to overcome
this challenge while maintaining a low learning curve for programmers
familiar with standard programming languages such as C.

At its core are three key abstractions - a hierarchy of thread groups,
shared memories, and barrier synchronization - that are simply exposed
to the programmer as a minimal set of language extensions.

Figure 13:
Thread scalability for different GPUs

Simulating the gravitational field on GPUs 20

4.2 CUDA

A multi-threaded program is partitioned into blocks of threads that
execute independently from each other, so that a GPU with more cores
will automatically execute the program in less time than a GPU with
fewer cores. That makes the program auto-scalable.

As mentioned before, programming in CUDA-C is not difficult,
for a C-programmer, since it is in the same environment with some
extensions and extra keywords.

The most important thing in CUDA programming is to understand
the thread hierarchy and the way we order them on GPUs. The threads
in CUDA are grouped in blocks of threads. The blocks are organized
on a grid. For optimization reasons we should define the dimensions
of the grid and of the blocks. In the figure 14 we can see a good
illustration of that.

Figure 14:
The threads are organized into blocks which are aligned in a grid

CUDA C extends C by allowing the programmer to define C func-
tions, called kernels, that, when called, are executed N times in parallel
by N different CUDA threads, as opposed to only once like regular C
functions. A kernel is defined using the global declaration spec-
ifier and the number of CUDA threads that execute that kernel for
a given kernel call is specified using a new <<< ... >>> execution
configuration syntax. Each thread that executes the kernel is given
a unique thread ID that is accessible within the kernel through the

21 Simulating the gravitational field on GPUs

4.2 CUDA

built-in threadIdx variable.
Lets see an example, to see how it works. In the following example

we will make a program in CUDA for vector addition. Lets assume
that we have the N-dimensional vectors A and B and we want to ob-
tain the vector C=A+B. In this case we have to add all the elements
of each vector one-by-one. So first we create a kernel that does that:

global void VAdd(float *A, float *B, float *C){

int i = threadIDx.x;

C[i] = A[i] + B[i];

}

Then, we should call this kernel from the main function, with the
necessary parameters to define the grid and block dimensions. Since
in the above function we defined i as the x-coordinate of threads, if we
want to get valid results we have to call it in a one-dimensional block
with x-dimension equal to the vector size. And since we have only one
block, our grid is also 1 by 1. So, the main function will be as below:

Simulating the gravitational field on GPUs 22

4.2 CUDA

void main(){

// Vector dimension

int N=100;

// Define vectors A, B and C

float *A,*B,*C;

// Initializing vectors A and B

for(int i=0;i<N;i++){
A[i]=1;

B[i]=2;

}
// Calling the kernel

VAdd<<< 1, N >>>(A,B,C);

}

Now, if we run this program and export the values of vector C, we will
see that all it’s components are equal to 3.

This was a very simple application on CUDA programming just
to see how it works. The parameters that define the grid and block
dimensions are variables of the type dim3. Each component of these
variables is not defined, it is set to 1. For example:

dim3 blockD;

blockD.x=100;

If we leave it like that, it assumes that:

blockD.y=1;

blockD.z=1;

The block dimensions can be from one to three (1D to 3D block),
when the grid dimensions can be from one to two (1D or 2D grid). As
we can see in the representation of the next picture, each block has its

23 Simulating the gravitational field on GPUs

4.2 CUDA

coordinates - indexes on the grid, and each thread has its coordinates in
the block. That makes a unique index for each thread which is defined
by the block and thread indexes. For a three-dimensional block of size
(Dx, Dy, Dz), the thread ID of a thread of index (x, y, z) is (x + y Dx
+ z Dx Dy).

Figure 15:
Thread indexes in the 3D blocks in a 2D grid

Now, lets discuss some built-in variable that are useful for our simu-
lation. These variables are predefined, built-in variables and we cannot
define variables with these names:

gridDim: This variable is of type dim3 and contains the di-
mensions of the grid.

blockDim: This variable is of type dim3 and contains the
dimensions of the block.

blockIdx: This variable is of type uint3 and contains the block
index within the grid.

threadIdx: This variable is of type uint3 and contains the
thread index within the block.

Simulating the gravitational field on GPUs 24

4.2 CUDA

Threads within a block can cooperate by sharing data through
some shared memory and by synchronizing their execution to coor-
dinate memory accesses. More precisely, one can specify synchroniza-
tion points in the kernel by calling the syncthreads() intrinsic
function; syncthreads() acts as a barrier at which all threads in the
block must wait before any is allowed to proceed. syncthreads() is a
function that synchronizes the threads in a specific kernel when they
share data in a shared memory.

Sometimes it is possible to start executing a kernel while another
one is not finished yet, since the threads are executed asynchronously.
This can cause some data conflicts and lead to false results. In this
case we use the built-in function cudaThreadSynchronize() after
a kernel and before calling another kernel.

CUDA threads may access data from multiple memory spaces dur-
ing their execution. Each thread has private local memory. Each
thread block has shared memory visible to all threads of the block and
with the same lifetime as the block. All threads have access to the
same global memory. There are also two additional read-only mem-
ory spaces accessible by all threads: the constant and texture memory
spaces. The global, constant, and texture memory spaces are optimized
for different memory usages. Texture memory also offers different ad-
dressing modes, as well as data filtering, for some specific data formats.
The global, constant, and texture memory spaces are persistent across
kernel launches by the same application. The memory structure can
be illustrated as in the following figure.

25 Simulating the gravitational field on GPUs

4.2 CUDA

Figure 16:
The memory structure on GPUs

The CUDA programming model also assumes that both the host
and the device maintain their own separate memory spaces in DRAM,
referred to as host memory and device memory, respectively. There-
fore, a program manages the global, constant, and texture memory
spaces visible to kernels through calls to the CUDA runtime. This
includes device memory allocation and deallocation as well as data
transfer between host and device memory.

Simulating the gravitational field on GPUs 26

4.2 CUDA

Figure 17:
Heterogeneous programming on the Host and Device

If we want to exchange data from host to device or the other way
around, we need to allocate memory and copy the respective pointers.
Memory allocation on the device can be done using the command:

cudaMalloc((void)&d A, Nsizeof(type));

just as the usual malloc in C. Copying from device to host or host to
device can be done done with the command:

27 Simulating the gravitational field on GPUs

4.2 CUDA

// Copying from Host to Device

cudaMemcpy(d A,A,Nsizeof(type),cudaMemcpyHostToDevice);

// Copying from Device to Host

cudaMemcpy(d A,A,Nsizeof(type),cudaMemcpyDeviceToHost);

In conclusion we can say that in CUDA programming we have to set
up the problem on the host, set the needed parameters and call the
kernels to make our calculations on the device. The data flow can be
described from the picture below.

Figure 18:
Processing flow on CUDA

According to this illustration, first we initialize our data to the host
memory (RAM), then we transfer it to the device memory (memory of
GPU) and we execute parallel in each core. After obtaining the final
results , we copy back the solution to the host memory, for output.

Now that we understood the physical problem, we saw the numeri-
cal methods and techniques that we will use to solve the problem, and
we choose the fast and effective way of implementation on GPUs, it is
time to combine all this knowledge for setting up our simulation.

Simulating the gravitational field on GPUs 28

4.2 CUDA

In the following chapters we will see how we implemented our sim-
ulation, the description of the code and some optimization of the code
for better performance. Finally, we will present and discuss the final
results.

29 Simulating the gravitational field on GPUs

5 The simulation

Now that we have all the tools we need, we can set up our numerical
solver and get to the results. As mentioned before, our program will
be written in CUDA-C. Also we saw that CUDA-C is an extension
of C/C++. So the way we implement our solver is to define some
functions first and then use them as we need.

Although we implemented a TOV solver, what we will do, is to read
the initial data from another solver (RNS - Rapidly Rotating Neutron
Star - by Nikolaos Stergioulas, Stergioulas & Friedman - 1995).

The main functions that we will use are:

• A function to read the data from the output files of the RNS solver

• A function to calculate the grid and lock dimensions according to
the problem size

• A function to calculate the multigrid levels according to the grids
dimensions

• A function to allocate memory for all the functions

• A function to copy data from Host to Devise and another for doing
the opposite

• A function to calculate the residual r from the solution u

• A function to free all the allocated memory

• A function to initialize the functions

• A function for Restriction and another for Prolongation

After setting these functions, we create the main function where the
algorithm can be described from the following scheme:

Simulating the gravitational field on GPUs 30

Read initial parameters from a file
⇓

Calculate the number of levels in Multigrid
⇓

Calculate grid-size for each level
⇓

Memory allocation (Host & Device)
⇓

Initialization of the arrays
⇓

Copy to device
⇓

Read TOV data and copy to device
⇓

∗The full V-Cycle∗
⇓

export the solution

What is happening in the full V-cycle is:

Relax
⇓

Restrict
...for all levels...

⇓
Prolongate

⇓
correct

In our first version of the program (without optimization) the initial-
ization of the source (for facing the non-linearity) was being done on
the host side. So each time we had to copy data to the host and then
back to the device.

In the following section we will see the code description, to see how
was the simulation implemented.

31 Simulating the gravitational field on GPUs

5.1 Code description

5.1 Code description

In this section we describe some essential parts of the code, so it
becomes clear how we implemented the model. First of all, lets see the
main function:

// Reading the parameters from file (prameters.txt) and

displaying them in the screen

...

pFile = fopen("parameters.txt","r");

skip(2,pFile,str); // skips 2 lines wile reading a file

fscanf(pFile, "%s\t%d",str,&Nx);// gets the value of Nx

...(scan all the other parameters)...

In the first part of main function we read the file parameters.txt

and get the values for the grid dimensions etc. Next we calculate the
number of steps we have to do in multigrid, using the function lcalc:
// Calculate the number of steps in multigrid

real el,elx,ely,elz;

elx = lcalc(Nx);

ely = lcalc(Ny);

elz = lcalc(Nz);

where we have:

real lcalc(int N)
{
real l;
l = log10(N-1)/log10(2);
return l;
}

After that we use malloc to allocate memory for the host side pointers:

Simulating the gravitational field on GPUs 32

5.1 Code description

// calculating the dimensions for each level

int ∗nx, ∗ny, ∗nz;
nx = (int∗)malloc(el∗sizeof(int));
ny = (int∗)malloc(el∗sizeof(int));
nz = (int∗)malloc(el∗sizeof(int));
nx[0] = Nx;

ny[0] = Ny;

nz[0] = Nz;

for (int i=1;i<el;i++)

{
nx[i] = ((nx[i-1]-1)/2)+1;

ny[i] = ((ny[i-1]-1)/2)+1;

nz[i] = ((nz[i-1]-1)/2)+1;

}
...

When we finish with memory allocation on the host and on the device,
using cudaMalloc, we initialize the source on the host and copy it to
the device, using the function cudaMemCpy:

cudaMalloc((void∗∗) &d u[i],

nx[i]*ny[i]*nz[i]*sizeof(real));

...

cudaMemcpy(d u[i],u[i],

nx[i]*ny[i]*nz[i]*sizeof(real),cudaMemcpyHostToDevice);

...

After allocating and initializing all the functions we will use and
before starting the solution procedure, we read the data from the TOV
solver:

33 Simulating the gravitational field on GPUs

5.1 Code description

...

fscanf(fP, "%lf\t%lf\t%lf\t%lf",&x,&y,&z,
&P[i+Nx*(j+Ny*k)]);

fscanf(frho, "%lf\t%lf\t%lf\t%lf",&x,&y,&z,
&rho[i+Nx*(j+Ny*k)]);

fscanf(fN, "%lf\t%lf\t%lf\t%lf",&x,&y,&z,
&N[i+Nx*(j+Ny*k)]);

...

After copying these data to the device, we are ready to start solving
the equations. In the next part of the solver, there are three main loops.
The outer loop is for facing the non-linearity. So inside the loop we
have an initial guess for φ and we use it to define the right hand side
of the equations. Then, we solve the equations and we have a better
approximation for φ. So, we use the new solution to define the source
of the elliptic equation, and then repeat this until we obtain the desired
accuracy.

The next loop is the loop for V-cycles. In our case we choose one V-
cycle per loop. In each V-cycle we have a relaxation loop for each level
of Multigrid and the Restriction and Prolongation operators. Also,
for each level, since the grid dimensions are not the same, we use the
dim calc function to calculate each time the grid and block dimen-
sions for each kernel.

// outer loop

for(int o loop = 0; o loop<outer loop; o loop++){
dim calc(Dg,Db,nx[0],ny[0],nz[0],devProp);

// Initializing with new solution

src initd<<< Dg,Db >>>(K, gamma, Nx, Ny, Nz,d rho,d P,

d u[0], d s[0], d ns[0],d N);

Now the V-cycle starts. During the ascending branch we restrict,
relax and calculate the function ri for all the points of the grid.

Simulating the gravitational field on GPUs 34

5.1 Code description

// loop over V-cycles

for(int cycle=0;cycle<vcycles;cycle++){
// ascending

dim calc(Dg,Db,nx[di],ny[di],nz[di],devProp);

// Restriction

for(int bz=0;bz<nz[di];bz++) {
IH<<< Dg,Db >>>(d s[di], d r[di-1],

nx[di], ny[di], nz[di], nx[di-1],ny[di-1],nz[di-1],bz);

cudaThreadSynchronize(); // *** wait for kernel to complete ***

IH<<<Dg,Db>>>(d ns[di], d nr[di-1],

nx[di], ny[di], nz[di], nx[di-1],ny[di-1],nz[di-1],bz);

cudaThreadSynchronize(); // *** wait for kernel to complete ***

}

// relax for u

relax(...);

// calculate the residual

r calc(...);

// relax for Nu

relax(...);

// calculate the residual

r calc(...);

// descending

dim calc(Dg,Db,nx[di],ny[di],nz[di],devProp);

// Prolongation

for(int bz=0;bz<nz[di];bz++) {
Ih<<< Dg,Db >>>(d s[di], d r[di-1],

nx[di], ny[di], nz[di], nx[di-1],ny[di-1],nz[di-1],bz);

cudaThreadSynchronize(); // *** wait for kernel to complete ***

Ih<<<Dg,Db>>>(d ns[di], d nr[di-1],

nx[di], ny[di], nz[di], nx[di-1],ny[di-1],nz[di-1],bz);

cudaThreadSynchronize(); // *** wait for kernel to complete ***

}

35 Simulating the gravitational field on GPUs

5.1 Code description

After completing the full V-cycle and the outer loop, we copy back
the results to the host and export them to external files, using the func-
tion export data. And finally, before ending the program, we free all
the allocated memory using:

free(x);

for the main memory, and

cudaFree(x);

for the device memory.

Simulating the gravitational field on GPUs 36

5.1 Code description

Now, lets see the functions we used above. First, lets see the func-
tion that calculates the grid and block dimensions:

// Calculating block and grid dimensions (Kernel parameters)

void dim calc(dim3 &Dg, dim3 &Db, int Nx, int Ny, int Nz){
int tx, ty, tz; // block dimensions

tx = 8;

ty = 8;

tz = 4;

Db.x = tx;

Db.y = ty;

Db.z = tz;

if((Nx-2)%tx==0)

{
Dg.x = (Nx-2)/tx;

}
else

{
Dg.x = (Nx-2)/tx+1;

}
if((Ny-2)%ty==0)

{
Dg.y = (Ny-2)/ty;

}
else

{
Dg.y = (Ny-2)/ty+1;

}
}

In the optimized version, tx, ty and tz, are defined by the device pa-
rameters. Nextstarts, we will discuss the initialization function.

37 Simulating the gravitational field on GPUs

5.1 Code description

global void src initd(real K, real gamma, int Nx, int Ny,

int Nz, real *rho, real *P, real *u, real *s,

real *ns, real *N){
... defining constants epsilon and W ...

// leave the first column

int i = threadIdx.x+blockDim.x*blockIdx.x+1;

// Leave the first line

int j = threadIdx.y+blockDim.y*blockIdx.y+1;

int k = threadIdx.z+blockDim.z*bz+1;

// i = even or odd depending on j+init (red - black)

int i = 2*ii+(j+init)%2;

if(i>(Nx-2)||j>(Ny-2)||k>(Nz-2)){return;}
s[i+Nx*(j+Ny*k)] = - 2.0*pi*pow(u[i+Nx*(j+Ny*k)],5)*

(rho[i+Nx*(j+Ny*k)]*(1.0+epsilon)*pow(W,2)+P[i+Nx*(j+Ny*k)]*

pow(W,2)-P[i+Nx*(j+Ny*k)]);

ns[i+Nx*(j+Ny*k)] = 2.0*pi*N[i+Nx*(j+Ny*k)]*

pow(u[i+Nx*(j+Ny*k)],5)*((rho[i+Nx*(j+Ny*k)]*(1+epsilon)+

P[i+Nx*(j+Ny*k)])*(3.0*pow(W,2)-2)-5.0*P[i+Nx*(j+Ny*k)]);

}
}

Now, lets discuss how we implement the restriction and prolongation
functions on GPUs.

Simulating the gravitational field on GPUs 38

5.1 Code description

// I h∧H (restriction)

global void IH(real *un, real *uo, int nxn,

int nyn,int nzn, int nx, int ny, int nz, int bz)

{
int i = threadIdx.x+blockDim.x*blockIdx.x;

int j = threadIdx.y+blockDim.y*blockIdx.y;

int k = threadIdx.z+blockDim.z*bz;

// check if i,j or k are out of desired space

if(i>(nxn-1)||j>(nyn-1)||k>(nzn-1))

{
return;

}
if(i==0||i==(nxn-1)||j==0||j==(nyn-1)||k==0||k==(nzn-1))

{
un[i+nxn*(j+nyn*k)] = uo[2*i+nx*(2*j+ny*2*k)];

}
else

{
un[i+nxn*(j+nyn*k)] = ((uo[(2*i-1)+nx*((2*j-1)+ny*(2*k-1))]+

uo[(2*i+1)+nx*((2*j-1)+ny*(2*k-1))] + uo[(2*i+1)+nx*((2*j+1)+ny*(2*k-1))] +

uo[(2*i-1)+nx*((2*j+1)+ny*(2*k-1))] + uo[(2*i-1)+nx*((2*j-1)+ny*(2*k+1))] +

uo[(2*i+1)+nx*((2*j-1)+ny*(2*k+1))] + uo[(2*i+1)+nx*((2*j+1)+ny*(2*k+1))] +

uo[(2*i-1)+nx*((2*j+1)+ny*(2*k+1))]) + 2.0*(uo[(2*i)+nx*((2*j-1)+ny*(2*k-1))] +

uo[(2*i)+nx*((2*j+1)+ny*(2*k-1))] + uo[(2*i-1)+nx*((2*j)+ny*(2*k-1))] +

uo[(2*i+1)+nx*((2*j)+ny*(2*k-1))] + uo[(2*i-1)+nx*((2*j-1)+ny*(2*k))] +

uo[(2*i-1)+nx*((2*j+1)+ny*(2*k))] + uo[(2*i+1)+nx*((2*j+1)+ny*(2*k))] +

uo[(2*i+1)+nx*((2*j-1)+ny*(2*k))] + uo[(2*i)+nx*((2*j-1)+ny*(2*k+1))] +

uo[(2*i)+nx*((2*j+1)+ny*(2*k+1))] +uo[(2*i-1)+nx*((2*j)+ny*(2*k+1))] +

uo[(2*i+1)+nx*((2*j)+ny*(2*k+1))]) + 4.0*(uo[(2*i)+nx*((2*j)+ny*(2*k-1))] +

uo[(2*i-1)+nx*((2*j)+ny*(2*k))] + uo[(2*i+1)+nx*((2*j)+ny*(2*k))] +

uo[(2*i)+nx*((2*j-1)+ny*(2*k))] + uo[(2*i)+nx*((2*j+1)+ny*(2*k))] +

uo[(2*i)+nx*((2*j)+ny*(2*k+1))]) + 8.0*uo[(2*i)+nx*((2*j)+ny*(2*k))])/64.0; }
}

39 Simulating the gravitational field on GPUs

5.1 Code description

// I H∧h (prolongation)

global void Ih(real *un, real *uo, int nxn,

int nyn, int nzn, int nx, int ny, int nz, int bz)

{
int i = threadIdx.x+blockDim.x*blockIdx.x+1;

int j = threadIdx.y+blockDim.y*blockIdx.y+1;

int k = threadIdx.z+blockDim.z*bz+1;

// check if i,j or k are out of range

if(i>(nxn-2)||j>(nyn-2)||k>(nzn-2))

{
return;

}
int ic = i/2;

int jc = j/2;

int kc = k/2;

if(i%2==0&&j%2==0&&k%2==0)

{
un[i+nxn*(j+nyn*k)] = uo[ic+nx*(jc+ny*kc)] + un[i+nxn*(j+nyn*k)];

}
if(i%2==0&&j%2==0&&k%2!=0)

{
un[i+nxn*(j+nyn*k)] = (uo[ic+nx*(jc+ny*kc)]+uo[ic+nx*(jc+ny*(kc+1))])/2.0

+ un[i+nxn*(j+nyn*k)];

}
if(i%2==0&&j%2!=0&&k%2==0)

{
un[i+nxn*(j+nyn*k)] = (uo[ic+nx*(jc+ny*kc)]+uo[ic+nx*(jc+1+ny*kc)])/2.0

+ un[i+nxn*(j+nyn*k)];

}
if(i%2!=0&&j%2==0&&k%2==0)

{
un[i+nxn*(j+nyn*k)] = (uo[ic+nx*(jc+ny*kc)]+uo[ic+1+nx*(jc+ny*kc)])/2.0

+ un[i+nxn*(j+nyn*k)];

}
if(i%2!=0&&j%2==0&&k%2!=0)

{
un[i+nxn*(j+nyn*k)] = (uo[ic+nx*(jc+ny*kc)]+uo[ic+1+nx*(jc+ny*kc)]+

uo[ic+nx*(jc+ny*(kc+1))]+uo[ic+1+nx*(jc+ny*(kc+1))])/4.0 +

un[i+nxn*(j+nyn*k)];

}

Simulating the gravitational field on GPUs 40

5.1 Code description

if(i%2!=0&&j%2!=0&&k%2==0)

{
un[i+nxn*(j+nyn*k)] = (uo[ic+nx*(jc+ny*kc)]+uo[ic+1+nx*(jc+ny*kc)]+

uo[ic+nx*(jc+1+ny*kc)]+uo[ic+1+nx*(jc+1+ny*kc)])/4.0 +

un[i+nxn*(j+nyn*k)];

}
if(i%2!=0&&j%2!=0&&k%2!=0)

{
un[i+nxn*(j+nyn*k)] = (uo[ic+nx*(jc+ny*kc)]+uo[ic+1+nx*(jc+ny*kc)]+

uo[ic+nx*(jc+1+ny*kc)]+uo[ic+nx*(jc+ny*(kc+1))]+

uo[ic+1+nx*(jc+1+ny*kc)]+uo[ic+1+nx*(jc+ny*(kc+1))]+

uo[ic+nx*(jc+1+ny*(kc+1))]+uo[ic+1+nx*(jc+1+ny*(kc+1))])/8.0

+ un[i+nxn*(j+nyn*k)];

}
if(i%2==0&&j%2!=0&&k%2!=0)

{
un[i+nxn*(j+nyn*k)] = (uo[ic+nx*(jc+ny*kc)]+uo[ic+nx*(jc+1+ny*kc)]+

uo[ic+nx*(jc+ny*(kc+1))]+uo[ic+nx*(jc+1+ny*(kc+1))])/4.0 +

un[i+nxn*(j+nyn*k)];

}
}

The last function that we will discuss, is the most important. This is
the Gauss-Seidel solver, including the Red-Black relaxation.

41 Simulating the gravitational field on GPUs

5.1 Code description

// Relaxation function

void relax(real nx, real ny, real nz, real xmin, real xmax, real ymin,

real ymax, real zmin, real zmax, real *u, real *s,

real *r,dim3 Dg, dim3 Db, int in)

{
for(int inter=0;inter<in;inter++)

{
// dx, dy, dz

real dx = (xmax - xmin)/((real)nx-1);

real dy = (ymax - ymin)/((real)ny-1);

real dz = (zmax - zmin)/((real)nz-1);

// dx∧2, dy∧2, dz∧2
real dx2 = dx*dx;

real dy2 = dy*dy;

real dz2 = dz*dz;

// D....

real D = dx2*dy2 + dx2*dz2 + dy2*dz2;

real Di = (dy2*dz2)/((real)2.0*D);

real Dj = (dx2*dz2)/((real)2.0*D);

real Dk = (dx2*dy2)/((real)2.0*D);

real Ds = (dx2*dy2*dz2)/((real)2.0*D);

for (int bz=0; bz<nz-1; bz++)

{
EDESolve<<< Dg,Db >>>(u,nx,ny,nz,Di,Dj,Dk,Ds,s,bz,0);// Red

cudaThreadSynchronize();// *** wait for kernel to complete ***

EDESolve<<< Dg,Db >>>(u,nx,ny,nz,Di,Dj,Dk,Ds,s,bz,1); // black

cudaThreadSynchronize();// *** wait for kernel to complete ***

}
}
}

This function is a host side function which calls the device solver
with some parameters. For example, the last input of the solver, defines
if it is the red or the black relaxation. Next is the devise function
(kernel) which solves the equation using Gauss-Seidel method.

Simulating the gravitational field on GPUs 42

// Kernel definition - Gauss-Seidel solver function

global void EDESolve(real *u, int Nx, int Ny, int Nz,

real Di, real Dj, real Dk, real Ds, real *s, int bz, int init)

{
// i,j,k....

int i = threadIdx.x+blockDim.x*blockIdx.x+1; // leave the first column

int j = threadIdx.y+blockDim.y*blockIdx.y+1; // Leave the first line

int k = threadIdx.z+blockDim.z*bz+1;

if(i>(Nx-2)||j>(Ny-2)||k>(Nz-2)){return;}
if((i+j+k)%2==init) // implementing Red - Black

{
u[i+Nx*(j+Ny*k)] = (Di*(u[(i+1)+Nx*(j+Ny*k)]+

u[(i-1)+Nx*(j+Ny*k)]) + Dj*(u[i+Nx*((j+1)+Ny*k)]+

u[i+Nx*((j-1)+Ny*k)]) + Dk*(u[i+Nx*(j+Ny*(k+1))]+

u[i+Nx*(j+Ny*(k-1))])) - Ds*s[i+Nx*(j+Ny*k)];

}
}

All these kernels have a parameter bz which defines the z-coordination
in the domain grid.

6 Optimization

After finishing our first version of the solver, we tried to improve its
performance. To optimize the solver we need to discuss some technical
issues about the data flow in CUDA and which configurations are the
most optimized.

6.1 Basic optimization

There are some basic rules about the optimization in CUDA.
First of all, we need to optimize our algorithms. This means we

need to maximize the independent parallelism and minimize latencies
among calculations.

Also, as we mentioned in the respective section, GPUs are made
for computations and not for caching. This means, that sometimes it
is better to recalculate something, than to cache it.

43 Simulating the gravitational field on GPUs

6.2 Changes in our code

The most common procedure that slows down a CUDA program,
is the data exchange between host and device. We have to be careful
because, no matter how fast our GPUs are, if we exchange data with
the host, then the port-bus speed is what counts. In some cases there
is no choice and we have to do it, but generally we try to avoid it.

Another optimization issue is the memory control. On GPUs there
are thee kind of memories. The one is per thread, the local memory, the
other is per block the shared memory and there is the global memory
which is the main memory of GPUs. One has to be careful about
how to manage the threads so they will be more optimized. Generally,
shared memory is a lot faster so we try to have in each block data that
are related, so we don’t need to access the global memory.

Maximizing multiprocessor usage is another optimization technique.
To do this we need to know what is the maximum allowed block size
on the device. This is possible with the command:

cudaGetDeviceProperties(&devProp,0);

Where devProp is a variable of type: cudaDeviceProp. This variable
is a structure with a lot of information about our device. What we
need are the maximum threads per each dimension of a block, which
we can obtain in this way:
int mtbx = devProp.maxThreadsDim[0];

int mtby = devProp.maxThreadsDim[1];

int mtbz = devProp.maxThreadsDim[2];

6.2 Changes in our code

With some little changes in our code we achieved great speed up.
First of all, we replaced the initialization function on the part where
we face the non-linearity, with another one which is on GPU. So now
we don’t need to copy data between the host and the device, at that
point. Of course, there is still a place, where we need to do that, and

Simulating the gravitational field on GPUs 44

6.2 Changes in our code

it is at the part where we calculate the residual ‖r‖∞. To deal with
this part we need to make a sorting function in CUDA and this is not
easy to be implemented.

Next, we got our device properties using:
cudaDeviceProp devProp;

cudaGetDeviceProperties(&devProp,0);

and used

int mtbx = devProp.maxThreadsDim[0];

int mtby = devProp.maxThreadsDim[1];

int mtbz = devProp.maxThreadsDim[2];

to define our block dimensions. We used these values in the dim calc

function where we calculate the block and grid dimensions:

45 Simulating the gravitational field on GPUs

6.2 Changes in our code

void dim calc(dim3 &Dg, dim3 &Db,

int Nx, int Ny, int Nz, cudaDeviceProp devProp)

{
// get number of multiprocessors

int mpc=devProp.multiProcessorCount;

// get maximum threads per block dimensions

int mtbx = devProp.maxThreadsDim[0];

int mtby = devProp.maxThreadsDim[1];

int mtbz = devProp.maxThreadsDim[2];

// get maximum grid dimensions

int mgx = devProp.maxGridSize[0];

int mgy = devProp.maxGridSize[1];

int tx, ty, tz; // block dimensions

tx = mtbx;

ty = mtby;

tz = mtbz;

Db.x = tx;

Db.y = ty;

Db.z = tz;

if((Nx-2)%tx==0)

{
Dg.x = (Nx-2)tx;

}
else

{
Dg.x = (Nx-2)tx+1;

}
if((Ny-2)%ty==0)

{
Dg.y = (Ny-2)ty;

}
else

{
Dg.y = (Ny-2)ty+1;

}
}

Simulating the gravitational field on GPUs 46

By making these changes we achieved a speed up around 5.85x .

7 Final results

Using the theory described in the first chapter, we solved the elliptic
Poisson-like differential equations (9) with respect to the conformal
factor φ and the lapse function N . In the following figures we can see
the solutions in the equatorial plane (z=0).

Figure 19:
Numerical solution for φ

In the solution above (Figure 19) we see the conformal factor which is
around 1.2 in the center of the star, and the further we go from the
star, the more it tends smoothly to become one, which is the case of
flat spacetime.

47 Simulating the gravitational field on GPUs

Figure 20:
The numerical solution for the lapse function N

In this solution (Figure 20) we see the lapse function which is around
0.72 in the center of the star and the further we go from it, the more
it tends smoothly to become one, which is the case of flat spacetime.
These solutions are with a relative accuracy of 10−5 and they are as
expected. Now, using this solution of the conformal factor, we calculate
the source function of the first differential equation (the right hand
side). In the figure 21 we see a graphical representation of this source.

Figure 21:
The source function, using the solution φ

Simulating the gravitational field on GPUs 48

Our first attempt of solving a simple 3D Poisson equation numerically
was in C without multigrid. For 3000 iterations it took 374.96 seconds,
while we need 35 000 iterations to find the solution with accuracy
10−12. When in the same problem we applied the Multigrid technique,
the speed up was impressive. For 120 iterations (it needed around
90 iterations to reach the solution with accuracy 10−12) it took 8.91
seconds (42 times faster).

Afterwards we solved the same simple 3D Poisson equation, but
this time on GPUs. Without Multigrid and for 3000 iterations it took
57.48 seconds (6.52 times faster than CPU). When we applied the
Multigrid technique on GPUs we got the solution with 120 iterations
and accuracy 10−12 in 1.18 seconds. This was a speed up around 7.55
times, but still without any optimization.

CPU GPU

no MG 374.96s 57.48s

MG 8.91s 1.186s

Table 1:
Comparing numerical solution durations

Now, going back to our specific equations, and for a grid size of
653, our solver on GPUs using Multigrid gave us the results in table
1. In the figure 22, we see how is the evolution of the residual ‖r‖∞
during the 30 V-cycles of Multigrid.

49 Simulating the gravitational field on GPUs

Figure 22:
The residual ‖r‖∞

As we can see, in the beginning there are some instabilities. This is
because of the non-linearity of the equations. Since our initial source
was not the proper one, because of the rough guess for φ, the solution
was not correct either. After a few V-cycles, when we obtain a good
approximation of φ, the residual reduces monotonously.

These solutions were from a computer with GPU with 480 CUDA
cores in double precision. After the optimization, the test continued on
a different machine (GTX 460 with 336 CUDA cores, single precision).
According to NVIDIA, single precision GPUs are ∼ 4.2× faster than
GPUs in double precision. The same solver, on the new machine gave
us the same results in 2.75 seconds which is 3.26 times faster than
double precision. It is less than 4.2 times because there are less CUDA
cores.

After the optimizations we described in the previous section, our
solver gave us the same results in 0.47 seconds which is 5.85 times
faster.

So we can say that since the solver is 7.55× faster on a GPU than
on a CPU, without optimization, and after the optimization we get a
5.85× speed up, in the end we have the solver 44.16× faster on GPUs
than on CPU. And probably there can be more optimizations, related
to memory management.

Simulating the gravitational field on GPUs 50

There is one more step that could be done for a better optimiza-
tion, and this is making a device-side norm calculation function for
the residual. After that (or even without that), we would be ready to
proceed to the simulation of a rotating neutron star.

51 Simulating the gravitational field on GPUs

References

1. Relativistic simulations of rotational core collapse I. Methods, ini-
tial models, and code tests H. Dimmelmeier, J.A. Font, and E.
Müller, A&A 388, 917 - 935 (2002)

2. Black Holes, White Dwarfs and Neutron stars: THE PHYSICS
OF COMPACT OBJECTS - Stuart L. Shapiro, Saul A. Teukolsky,
Wiley-Interscience, 1983

3. A Multigrid Tutorial, Second Edition - William L. Briggs, Van
Emden Henson, Steve F. McCormic, SIAM - 2000

4. Wikipedia (http://www.wikipedia.org/)

5. NVIDIA CUDA C Programming Guide v3.1 - NVIDIA, www.nvidia.com

Simulating the gravitational field on GPUs 52

http://www.wikipedia.org/

.

	Introduction
	Theory
	CFC - Approximation
	TOV
	The model

	Numerical methods
	The Gauss - Seidel method
	Red - Black
	Multigrid

	GPU computing
	GPUs
	CUDA

	The simulation
	Code description

	Optimization
	Basic optimization
	Changes in our code

	Final results

