Master Thesis Presentation

Simulating the gravitational field of a non-rotating neutron star on GPUs

Tantilian Gkratsia

Aristotle University of Thessaloniki
&
Eberhard Karls Univeristat Tübingen

Supervisors: K. Kokkotas, N. Stergioulas, B. Zink
Contents

- Theoretical Introduction
 - The physical problem
 - CFC - approximation
- Computational Physics
 - Elliptic problems and multigrid
 - GPU programming
 - Optimization
- Results
Simulating the dynamics of a relativistic rotating neutron star (on GPUs)

- ADM 3+1 formalism, Cartesian coordinates:
 \[ds^2 = -(N^2 - \beta_i \beta^i) dt^2 + 2\beta_i dx^i dt + \gamma_{ij} dx^i dx^j \]

- \(N \): lapse function, \(\beta \): spacelike shift three-vector, \(\gamma \): three-metric

- In our gauge choice: \(\beta_i = 0 \)

- \[ds^2 = -N^2 dt^2 + \gamma_{ij} dx^i dx^j \]

\[
g_{\mu\nu} = \begin{pmatrix}
-N^2 & 0 & 0 & 0 \\
0 & \gamma_{11} & \gamma_{12} & \gamma_{13} \\
0 & \gamma_{21} & \gamma_{22} & \gamma_{33} \\
0 & \gamma_{31} & \gamma_{22} & \gamma_{33}
\end{pmatrix}
\]
The physical problem

- Simulating the dynamics of a relativistic rotating neutron star (on GPUs)
- ADM 3+1 formalism, Cartesian coordinates:
 \[ds^2 = -(N^2 - \beta_i \beta^i) dt^2 + 2\beta_i dx^i dt + \gamma_{ij} dx^i dx^j \]
- N: lapse function, β: spacelike shift three-vector, γ: three-metric
- In our gauge choice: $\beta_i = 0$
- \[ds^2 = -N^2 dt^2 + \gamma_{ij} dx^i dx^j \]

\[
g_{\mu\nu} = \begin{pmatrix}
-N^2 & 0 & 0 & 0 \\
0 & \gamma_{11} & \gamma_{12} & \gamma_{13} \\
0 & \gamma_{21} & \gamma_{22} & \gamma_{33} \\
0 & \gamma_{31} & \gamma_{22} & \gamma_{33}
\end{pmatrix}
\]
The physical problem

- Simulating the dynamics of a relativistic rotating neutron star (on GPUs)
- ADM 3+1 formalism, Cartesian coordinates:
 \[ds^2 = -(N^2 - \beta_i \beta^i) dt^2 + 2\beta_i dx^i dt + \gamma_{ij} dx^i dx^j \]
- \(N \): lapse function, \(\beta \): spacelike shift three-vector, \(\gamma \): three-metric
- In our gauge choice: \(\beta_i = 0 \)
- \[ds^2 = -N^2 dt^2 + \gamma_{ij} dx^i dx^j \]

\[
g_{\mu\nu} = \begin{pmatrix}
-N^2 & 0 & 0 & 0 \\
0 & \gamma_{11} & \gamma_{12} & \gamma_{13} \\
0 & \gamma_{21} & \gamma_{22} & \gamma_{33} \\
0 & \gamma_{31} & \gamma_{22} & \gamma_{33}
\end{pmatrix}
\]
The physical problem

- Simulating the dynamics of a relativistic rotating neutron star (on GPUs)
- ADM 3+1 formalism, Cartesian coordinates:
 \[ds^2 = -(N^2 - \beta_i \beta^i) dt^2 + 2\beta_i dx^i dt + \gamma_{ij} dx^i dx^j \]
- N: lapse function, \(\beta \): spacelike shift three-vector, \(\gamma \): three-metric
- In our gauge choice: \(\beta_i = 0 \)
- \(ds^2 = -N^2 dt^2 + \gamma_{ij} dx^i dx^j \)

\[
g_{\mu\nu} = \begin{pmatrix}
-N^2 & 0 & 0 & 0 \\
0 & \gamma_{11} & \gamma_{12} & \gamma_{13} \\
0 & \gamma_{21} & \gamma_{22} & \gamma_{33} \\
0 & \gamma_{31} & \gamma_{22} & \gamma_{33}
\end{pmatrix}
\]
The physical problem

- Simulating the dynamics of a relativistic rotating neutron star (on GPUs)
- ADM 3+1 formalism, Cartesian coordinates:
 \[ds^2 = -(N^2 - \beta_i\beta^i)dt^2 + 2\beta_i dx^i dt + \gamma_{ij} dx^i dx^j \]
- \(N \): lapse function, \(\beta \): spacelike shift three-vector, \(\gamma \): three-metric
- In our gauge choice: \(\beta_i = 0 \)
- \(ds^2 = -N^2 dt^2 + \gamma_{ij} dx^i dx^j \)

\[
\mathbf{g}_{\mu\nu} = \begin{pmatrix}
-N^2 & 0 & 0 & 0 \\
0 & \gamma_{11} & \gamma_{12} & \gamma_{13} \\
0 & \gamma_{21} & \gamma_{22} & \gamma_{33} \\
0 & \gamma_{31} & \gamma_{22} & \gamma_{33}
\end{pmatrix}
\]
CFC - approximation

- Conformal Flatness Condition: $\gamma_{ij} = \phi^4 \eta_{ij}$, ϕ: conformal factor, η_{ij}: flat space metric.
- With ADM 3+1 formalism and CFC, we get the Einstein equation in the form:\[1]\:
 \[\nabla^2 \phi = -2\pi \phi^5 \left(\rho h W^2 - P + \frac{K_{ij}K_{ij}}{16\pi} \right) \]
 \[\nabla^2 (N\phi) = 2\pi N\phi^5 \left(\rho h (3W^2 - 2) + 5P + \frac{7K_{ij}K_{ij}}{16\pi} \right) \]
 \[\nabla^2 \beta^i = 16\pi N\phi^4 S^i + 2\hat{K}^{ij}\nabla_j \left(\frac{N}{\phi^6} \right) - \frac{1}{3} \nabla^i \nabla_k \beta^k \]

CFC - approximation

- Conformal Flatness Condition: $\gamma_{ij} = \phi^4 \eta_{ij}$, ϕ: conformal factor, η_{ij}: flat space metric.
- With ADM $3+1$ formalism and CFC, we get the Einstein equation in the form$^{[1]}$:
 - $\nabla^2 \phi = -2\pi \phi^5 \left(\rho h W^2 - P + \frac{K_{ij} K^{ij}}{16\pi} \right)$
 - $\nabla^2 (N \phi) = 2\pi N \phi^5 \left(\rho h (3W^2 - 2) + 5P + \frac{7K_{ij} K^{ij}}{16\pi} \right)$
 - $\nabla^2 \beta^i = 16\pi N \phi^4 S^i + 2\hat{K}^{ij} \hat{\nabla}_j \left(\frac{N}{\phi^6} \right) - \frac{1}{3} \hat{\nabla}^i \hat{\nabla}_k \beta^k$

$^{[1]}$Relativistic simulations of rotational core collapse I. Methods, initial models, and code tests H. Dimmelmeier,
CFC ⇒ Elliptic equations

Where:
\(\phi \): conformal factor, \(\rho \): rest mass density, \(h = 1 + \epsilon P/\rho \):
specific relativistic enthalpy, \(P \): pressure, \(W = N u^t \) (Lorentz factor)

For a non-rotating star: \(K_{ij} = \mathcal{L}_n \gamma_{ij} = 0, \beta_i = 0, w = 1 \)
So our problem is to solve the non-linear elliptic (Poisson-like) equations:

\[
\nabla^2 \phi = -2\pi \phi^5 (\rho h W^2 - P)
\]
\[
\nabla^2 (N \phi) = 2\pi N \phi^5 (\rho h (3W^2 - 2) + 5P)
\]
CFC ⇒ Elliptic equations

Where:

φ: conformal factor, \(\rho \): rest mass density, \(h = 1 + \varepsilon P/\rho \): specific relativistic enthalpy, \(P \): pressure, \(W = Nu^t \) (Lorentz factor)

For a non-rotating star: \(K_{ij} = \mathcal{L}_n \gamma_{ij} = 0, \beta_i = 0, w = 1 \)

So our problem is to solve the non-linear elliptic (Poisson-like) equations:

\[
\nabla^2 \phi = -2\pi \phi^5 (\rho h W^2 - P)
\]

\[
\nabla^2 (N\phi) = 2\pi N\phi^5 (\rho h (3W^2 - 2) + 5P)
\]
CFC \Rightarrow Elliptic equations

Where:
\(\phi \): conformal factor, \(\rho \): rest mass density, \(h = 1 + \varepsilon P/\rho \): specific relativistic enthalpy, \(P \): pressure, \(W = N u^t \) (Lorentz factor)

For a non-rotating star: \(K_{ij} = L_n \gamma_{ij} = 0, \beta_i = 0, w = 1 \)

So our problem is to solve the non-linear elliptic (Poisson-like) equations:

\[
\nabla^2 \phi = -2\pi \phi^5 \left(\rho h W^2 - P \right)
\]

\[
\nabla^2(N\phi) = 2\pi N\phi^5 \left(\rho h(3W^2 - 2) + 5P \right)
\]
Elliptic Solvers

Methods of solving elliptic equations:

- **Iterative (Gauss-Seidel, Jacobi):**

\[
\nabla^2 u = s
\]
\[
\nabla^2 u \approx \frac{u_{i+1} + u_{i-1} - 2u_i}{\Delta x^2}
\]
\[
\Rightarrow \frac{u_{i+1} + u_{i-1} - 2u_i}{\Delta x^2} = s
\]
\[
\Rightarrow u_i = \frac{1}{2} \left(u_{i-1} + u_{i+1} - s \cdot \Delta x^2 \right)
\]

- Conjugate Gradient
- Other methods (Spectral, ...)

Tantilian Gkratsia Master Thesis Presentation
Elliptic Solvers

Methods of solving elliptic equations:

- **Iterative** (Gauss-Seidel, Jacobi):

\[
\begin{align*}
\nabla^2 u &= s \\
\nabla^2 u &\approx \frac{u_{i+1}+u_{i-1}-2u_i}{\Delta x^2} \\
\Rightarrow u_i &= \frac{1}{2} \left(u_{i-1} + u_{i+1} - s \cdot \Delta x^2 \right)
\end{align*}
\]

- Conjugate Gradient
- Other methods (Spectral,...)
Elliptic Solvers

Methods of solving elliptic equations:

- **Iterative (Gauss-Seidel, Jacobi):**

 \[
 \nabla^2 u = s \\
 \nabla^2 u \approx \frac{u_{i+1} + u_{i-1} - 2u_i}{\Delta x^2} \\
 \Rightarrow \frac{u_{i+1} + u_{i-1} - 2u_i}{\Delta x^2} = s \\
 \Rightarrow u_i = \frac{1}{2} \left(u_{i-1} + u_{i+1} - s \cdot \Delta x^2 \right)
 \]

- **Conjugate Gradient**

- **Other methods (Spectral,...)**
Elliptic Solvers

Methods of solving elliptic equations:

- **Iterative (Gauss-Seidel, Jacobi):**

\[
\nabla^2 u = s \\
\nabla^2 u \approx \frac{u_{i+1} + u_{i-1} - 2u_i}{\Delta x^2} \\
\Rightarrow \frac{u_{i+1} + u_{i-1} - 2u_i}{\Delta x^2} = s
\]

\[
\Rightarrow u_i = \frac{1}{2} (u_{i-1} + u_{i+1} - s \cdot \Delta x^2)
\]

- Conjugate Gradient
- Other methods (Spectral,...)
Multigrid

A technique to speed up an iterative solver

- The equation: $Au = f$
- The residual: $r = f - Au$
- The exact solution $v = u + e$, e: the error
- Using Gauss-Seidel method, high frequency errors are eliminated faster than low frequency errors
- If the error is distributed in a low frequency mode, the convergence rate is slow

Multigrid

A technique to speed up an iterative solver

- The equation: \(Au = f \)
- The residual: \(r = f - Au \)
- The exact solution \(v = u + e \), \(e \): the error

- Using Gauss-Seidel method, high frequency errors are eliminated faster than low frequency errors
- If the error is distributed in a low frequency mode, the convergence rate is slow

Multigrid

A technique to speed up an iterative solver

- The equation: $Au = f$
- The residual: $r = f - Au$
- The exact solution $v = u + e$, e: the error
- Using Gauss-Seidel method, high frequency errors are eliminated faster than low frequency errors
- If the error is distributed in a low frequency mode, the convergence rate is slow

Multigrid

A technique to speed up an iterative solver

- The equation: $Au = f$
- The residual: $r = f - Au$
- The exact solution $v = u + e, e$: the error
- Using Gauss-Seidel method, high frequency errors are eliminated faster than low frequency errors
- If the error is distributed in a low frequency mode, the convergence rate is slow

Tantilian Gkratsia
Master Thesis Presentation
Multigrid

A technique to speed up an iterative solver

- The equation: \(Au = f \)
- The residual: \(r = f - Au \)
- The exact solution \(v = u + e \), \(e \): the error
- Using Gauss-Seidel method, high frequency errors are eliminated faster than low frequency errors
- If the error is distributed in a low frequency mode, the convergence rate is slow

Multigrid - grid resolution

- By reducing the grid resolution, low frequency errors appear as high frequency errors
- On the coarser level we solve for the error, using Gauss-Seidel method
- After finding the error, we go to the finer level and correct the solution
Multigrid - grid resolution

- By reducing the grid resolution, low frequency errors appear as high frequency errors.
- On the coarser level we solve for the error, using Gauss-Seidel method.
- After finding the error, we go to the finer level and correct the solution.
Multigrid - grid resolution

- By reducing the grid resolution, low frequency errors appear as high frequency errors.
- On the coarser level we solve for the error, using Gauss-Seidel method.
- After finding the error, we go to the finer level and correct the solution.
Multigrid - the idea

- If \(v = u + e \) is the exact solution, then:

\[
Av = f \Rightarrow A(u + e) = f \Rightarrow Au + Ae = f \Rightarrow Ae = f - Au \Rightarrow Ae = r
\]

- We solve for the error on the coarser level using the residual as the source function.
- Restriction operation: interpolation method used to inject the residual from a fine grid to the source of the coarser grid.
- Correction operation: interpolation to the finer level and correction of the solution.
Multigrid - the idea

If \(v = u + e \) is the exact solution, then:

\[
Av = f \Rightarrow A(u + e) = f \Rightarrow \\
Au + Ae = f \Rightarrow Ae = f - Au \Rightarrow \\
Ae = r
\]

We solve for the error on the coarser level using the residual as the source function.

- Restriction operation: interpolation method used to inject the residual from a fine grid to the source of the coarser grid.
- Correction operation: interpolation to the finer level and correction of the solution.
Multigrid - the idea

- If $v = u + e$ is the exact solution, then:
 \[
 Av = f \Rightarrow A(u + e) = f \Rightarrow \\
 Au + Ae = f \Rightarrow Ae = f - Au \Rightarrow \\
 Ae = r
 \]

- We solve for the error on the coarser level using the residual as the source function.

- Restriction operation: interpolation method used to inject the residual from a fine grid to the source of the coarser grid.

- Correction operation: interpolation to the finer level and correction of the solution.
Multigrid - the V-cycle

Theoretical Introduction
Computational Physics
Simulation

Elliptic problems and multigrid
GPU programming
Optimization

Tantilian Gkratsia
Master Thesis Presentation
Multigrid - speed up

Convergence rate of Gauss-Seidel with and without Multigrid

\[\nabla^2 \Phi = 4\pi \rho \]

\begin{align*}
&\text{Convergence without Multigrid} \\
&\text{Convergence with Multigrid}
\end{align*}
We need faster computer systems

CPUs are close to the limit (overheating, quantum effects, ...)

Solution: Parallel computing

GPU: Graphics Processor Unit
- Designed for parallel processing 3D graphics
- Many processing cores on a device (e.g. 480)
- More transistors are devoted to computation than for control logic and caches
GPU - advantages

- We need faster computer systems
- CPUs are close to the limit (overheating, quantum effects,...)

Solution: Parallel computing

GPU: Graphics Processor Unit
- Designed for parallel processing 3D graphics
- Many processing cores on a device (e.g. 480)
- More transistors are devoted to computation than for control logic and caches
GPU - advantages

- We need faster computer systems
- CPUs are close to the limit (overheating, quantum effects, ...)
- Solution: Parallel computing
- GPU: Graphics Processor Unit
 - Designed for parallel processing 3D graphics
 - Many processing cores on a device (e.g. 480)
 - More transistors are devoted to computation than for control logic and caches
GPU - advantages

- We need faster computer systems
- CPUs are close to the limit (overheating, quantum effects,...)
- Solution: Parallel computing
- GPU: Graphics Processor Unit
 - Designed for parallel processing 3D graphics
 - Many processing cores on a device (e.g. 480)
 - More transistors are devoted to computation than for control logic and caches
GPU - peak performance

Peak performance of GPUs

Theoretical Introduction
Computational Physics
Simulation
Elliptic problems and multigrid
GPU programming
Optimization

Tantilian Gkratsia
Master Thesis Presentation
GPU - CUDA

- CUDA (Compute Unified Device Architecture) is a parallel computing language developed by NVIDIA
- Programming in C/C++ environment with additional keycodes

```cpp
// Kernel definition
__global__ void VecAdd(float* A, float* B, float* C)
{
    int i = threadIdx.x;
    C[i] = A[i] + B[i];
}

// Main function
int main()
{
    // Kernel invocation with N threads
    VecAdd<<<1, N>>>(A, B, C);
}
```
GPU - CUDA

Processing flow from computer to graphic card, in CUDA

- Copy Processing data from main memory to GPU memory
- Execute parallel in each core
- Copy data back to the main memory (for the outputs)
Processing flow from computer to graphic card, in CUDA

- Copy Processing data from main memory to GPU memory
- Execute parallel in each core
- Copy data back to the main memory (for the outputs)
GPU - CUDA

Processing flow from computer to graphic card, in CUDA

- Copy Processing data from main memory to GPU memory
- Execute parallel in each core
- Copy data back to the main memory (for the outputs)
GPU - CUDA

Processing flow from computer to graphic card, in CUDA

- Copy Processing data from main memory to GPU memory
- Execute parallel in each core
- Copy data back to the main memory (for the outputs)
GPU vs CPU

Solving 3D elliptic equation (Poisson) with Gauss - Seidel method

Without multigrid (3000 iter. - 35000 needed):
- Duration on CPU: 374.96 s
- Duration on GPU: 57.48 s

With multigrid (120 iter. - 90 needed):
- Duration on CPU: 8.91 s
- Duration on GPU: 1.18 s

Speed up: $\sim 7.55x$
(Without optimization)
GPU vs CPU

Solving 3D elliptic equation (Poisson) with Gauss-Seidel method

- Without multigrid (3000 iter. - 35000 needed):
 - Duration on CPU: 374.96 s
 - Duration on GPU: 57.48 s

- With multigrid (120 iter. - 90 needed):
 - Duration on CPU: 8.91 s
 - Duration on GPU: 1.18 s

Speed up: \(\sim 7.55 x \)
(Without optimization)
Solving 3D elliptic equation (Poisson) with Gauss - Seidel method

- Without multigrid (3000 iter. - 35000 needed):
 - Duration on CPU: 374.96 s
 - Duration on GPU: 57.48 s

- With multigrid (120 iter. - 90 needed):
 - Duration on CPU: 8.91 s
 - Duration on GPU: 1.18 s

Speed up: $\sim 7.55x$

(Without optimization)
Solving 3D elliptic equation (Poisson) with Gauss-Seidel method

- Without multigrid (3000 iter. - 35000 needed):
 - Duration on CPU: 374.96 s
 - Duration on GPU: 57.48 s

- With multigrid (120 iter. - 90 needed):
 - Duration on CPU: 8.91 s
 - Duration on GPU: 1.18 s

Speed up: $\sim 7.55x$
(Without optimization)
CUDA - optimization

Basic optimizations:

- Optimized algorithms:
 - Maximizing independent parallelism
 - Sometimes it’s better to recompute than to cache
 - More computations on GPU to avoid data transfers to the Host
- Memory optimization
 - Local and Shared memory
 - Using Shared memory
 - Bank conflicts
- Maximizing multiprocessor usage
CUDA - optimization

Basic optimizations:

- Optimized algorithms:
 - Maximizing independent parallelism
 - Sometimes it’s better to recompute than to cache
 - More computations on GPU to avoid data transfers to the Host

- Memory optimization
 - Local and Shared memory
 - Using Shared memory
 - Bank conflicts

- Maximizing multiprocessor usage
CUDA - optimization

Basic optimizations:

- Optimized algorithms:
 - Maximizing independent parallelism
 - Sometimes it’s better to recompute than to cache
 - More computations on GPU to avoid data transfers to the Host

- Memory optimization
 - Local and Shared memory
 - Using Shared memory
 - Bank conflicts

- Maximizing multiprocessor usage
CUDA - optimization

Basic optimizations:

- Optimized algorithms:
 - Maximizing independent parallelism
 - Sometimes it's better to recomputate than to cache
 - More computations on GPU to avoid data transfers to the Host

- Memory optimization:
 - Local and Shared memory
 - Using Shared memory
 - Bank conflicts

- Maximizing multiprocessor usage
Solving the (non-linear) equations:

\[\nabla^2 \phi = -2\pi \phi^5 (\rho h W^2 - P) \]

\[\nabla^2 (N\phi) = 2\pi N\phi^5 (\rho h (3W^2 - 2) + 5P) \]

- Using Gauss-Seidel method
- With multigrid technique
- Implemented in CUDA
Solving the (non-linear) equations:

\[\nabla^2 \phi = -2\pi \phi^5 (\rho h W^2 - P) \]

\[\nabla^2 (N \phi) = 2\pi N \phi^5 (\rho h (3W^2 - 2) + 5P) \]

- Using Gauss-Seidel method
- With multigrid technique
- Implemented in CUDA
Solving the (non-linear) equations:

\[\nabla^2 \phi = -2\pi \phi^5 (\rho h W^2 - P) \]

\[\nabla^2 (N \phi) = 2\pi N \phi^5 (\rho h (3W^2 - 2) + 5P) \]

- Using Gauss-Seidel method
- With multigrid technique
- Implemented in CUDA
Solving the (non-linear) equations:

\[\nabla^2 \phi = -2\pi \phi^5 (\rho h W^2 - P) \]

\[\nabla^2 (N \phi) = 2\pi N \phi^5 (\rho h (3W^2 - 2) + 5P) \]

- Using Gauss-Seidel method
- With multigrid technique
- Implemented in CUDA
Facing the non-linearity

\[\nabla^2 \phi = -2\pi \phi^5 \left(\rho h W^2 - P \right) \]

- Initial guess for \(\phi \) in the right hand side (rhs) of the equation
- Use the solution to replace the \(\phi \) in the rhs and then solve again
- Repeat until we reach the desired accuracy

```c
// Initialization
Init(phi,...);

// Outer loop
for(int i...){
    // initialize source with new phi
    Init(phi,...);
    // full V-cycle
    for(int...){
        ...
    }
}
```
Facing the non-linearity

\[\nabla^2 \phi = -2\pi \phi^5 (\rho h W^2 - P) \]

- Initial guess for \(\phi \) in the right hand side (rhs) of the equation
- Use the solution to replace the \(\phi \) in the rhs and then solve again
- Repeat until we reach the desired accuracy

```cpp
// Initialization
Init(phi,...);

// Outer loop
for (int i...)
{
    // initialize source with new phi
    Init(phi,...);
    // full V-cycle
    for (int...)
    {
        ...
    }
}
```
Facing the non-linearity

$$\nabla^2 \phi = -2\pi \phi^5 (\rho h W^2 - P)$$

- Initial guess for ϕ in the right hand side (rhs) of the equation
- Use the solution to replace the ϕ in the rhs and then solve again
- Repeat until we reach the desired accuracy

```c
// Initialization
Init(phi,...);
// Outer loop
for(int i...){
    // initialize source with new phi
    Init(phi,...);
    // full V-cycle
    for(int...){
        ...
    }
}
```
Facing the non-linearity

\[\nabla^2 \phi = -2\pi \phi^5 \left(\rho h W^2 - P \right) \]

- Initial guess for \(\phi \) in the right hand side (rhs) of the equation
- Use the solution to replace the \(\phi \) in the rhs and then solve again
- Repeat until we reach the desired accuracy

// Initialization
Init(phi,...);
// Outer loop
for(int i...){
 // initialize source with new phi
 Init(phi,...);
 // full V-cycle
 for(int...){
 . . .
 }
}

Tantilian Gkratsia Master Thesis Presentation
Equatorial plane of the solutions \((z=0)\)

- **Lapse function**
 - \[N\]
 - \[y\] vs. \[x\]

- **Conformal factor**
 - \[\phi\]
 - \[y\] vs. \[x\]

- **Source function**
 - \[-2m^2(\phi, \psi, \phi^2, \psi)\]
 - \[y\] vs. \[x\]
Residual $\left(\| r \|_\infty\right)$

- **Iterations**: 180
- **Duration** (for a grid size of 65^3 and on a double precision device with 480 CUDA-cores): 8.96 s
- **Duration** (for a grid size of 65^3 and on GTX 460 -single precision- with 336 CUDA-cores):
 - Without optimization: 2.75 s
 - With optimization: 0.47 s
Thank you for your time
Next step: rotating neutron star

References:
- NVIDIA (www.nvidia.com)
- CUDA BY EXAMPLE - J. Sanders and E. Kandrot
- Spacetime and Geometry - S.M. Carroll
- Special thanks to Dr. Burkhard Zink for his useful advices and for the inspiration.