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The physical problem
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The physical problem

Simulating the dynamics of a relativistic rotating neutron
star (on GPUs)

ADM 3+1 formalism, Cartesian coordinates:
ds2 = −(N2 − βiβ

i)dt2 + 2βidx
idt + γijdx

idx j

N: lapse function, β: spacelike shift three-vector,
γ: three-metric

In our gauge choice: βi = 0

ds2 = −N2dt2 + γijdx
idx j

gµν =









−N2 0 0 0
0 γ11 γ12 γ13
0 γ21 γ22 γ33
0 γ31 γ22 γ33








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CFC - approximation

Conformal Flatness Condition: γij = φ4ηij , φ: conformal
factor, ηij : flat space metric.

With ADM 3+1 formalism and CFC, we get the Einstein
equation in the form[1]:

∇2φ = −2πφ5
(

ρhW 2 − P +
KijK

ij

16π

)

∇2(Nφ) = 2πNφ5
(

ρh(3W 2 − 2) + 5P +
7KijK

ij

16π

)

∇2βi = 16πNφ4S i + 2K̂ ij∇̂j

(

N
φ6

)

− 1
3∇̂

i∇̂kβ
k

[1]Relativistic simulations of rotational core collapse I. Methods, initial models, and code tests H. Dimmelmeier,

J.A. Font, and E. Müller, A&A 388, 917 - 935 (2002)
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CFC ⇒ Elliptic equations

Where:
φ: conformal factor, ρ : rest mass density, h = 1 + εP/ρ:
specific relativistic enthalpy, P: pressure, W = Nut (Lorentz
factor)
For a non-rotating star: Kij = Lnγij = 0, βi = 0, w = 1
So our problem is to solve the non-linear elliptic (Poisson-like)
equations:

∇2φ = −2πφ5 (ρhW 2 − P)

∇2(Nφ) = 2πNφ5 (ρh(3W 2 − 2) + 5P)
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Elliptic Solvers

Methods of solving elliptic equations:

Iterative (Gauss-Seidel,Jacobi):

∇2u = s

∇2u ≈ ui+1+ui−1−2ui
∆x2

}

⇒ ui+1+ui−1−2ui
∆x2

= s

⇒ ui =
1
2
(ui−1 + ui+1 − s ·∆x2)

Conjugate Gradient

Other methods (Spectral,...)
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Multigrid

A technique to speed up an iterative solver

The equation: Au = f

The residual: r = f − Au

The exact solution v = u + e, e: the error

Using Gauss-Seidel method, high frequency errors are
eliminated faster than low frequency errors

If the error is distributed in a low frequency mode, the
convergence rate is slow

More about Multigrid: A Multigrid Tutorial, Second Edition
by William L. Briggs, Van Emden Henson, Steve F. McCormic
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Multigrid - grid resolution

By reducing the grid resolution, low
frequency errors appear as high
frequency errors

On the coarser level we solve for the
error, using Gauss-Seidel method

After finding the error, we go to the
finer level and correct the solution
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Multigrid - the idea

If v = u + e is the exact solution, then:

Av = f ⇒ A(u + e) = f ⇒
Au + Ae = f ⇒ Ae = f − Au ⇒

Ae = r

We solve for the error on the coarser level using the
residual as the source function

Restriction operation: interpolation method used to inject
the residual from a fine grid to the source of the coarser
grid

Correction operation: interpolation to the finer level and
correction of the solution
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Multigrid - the V-cycle
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Multigrid - speed up

Convergence rate of Gauss - Seidel with and without Multigrid

∇2Φ = 4πρ

Convergence without Multigrid Convergence with Multigrid
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GPU - advantages

We need faster computer systems

CPUs are close to the limit (overheating, quantum
effects,...)

Solution: Parallel computing

GPU: Graphics Processor Unit

Designed for parallel processing 3D graphics
Many processing cores on a device (e.g. 480)
More transistors are devoted to computation than for
control logic and caches
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GPU - peak performance

Peak performance of GPUs
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GPU - CUDA

CUDA (Compute Unified Device Architecture) is a
parallel computing language developed by NVIDIA

Programming in C/C++ environment with additional
keycodes
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GPU - CUDA

Processing flow from computer to graphic card, in CUDA

Copy Processing data
from main memory to
GPU memory

Execute parallel in each
core

Copy data back to the
main memory (for the
outputs)
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GPU vs CPU

Solving 3D elliptic equation (Poisson) with Gauss - Seidel
method

Without multigrid (3000 iter. - 35000 needed):

Duration on CPU: 374.96 s
Duration on GPU: 57.48 s

With multigrid (120 iter. - 90 needed):

Duration on CPU: 8.91 s
Duration on GPU: 1.18 s

Speed up: ∼ 7.55x
(Without optimization)
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CUDA - optimization

Basic optimizations:

Optimized algorithms:

Maximizing independent parallelism
Sometimes it’s better to recompute than to cache
More computations on GPU to avoid data transfers to
the Host

Memory optimization

Local and Shared memory
Using Shared memory
Bank conflicts

Maximizing multiprocessor usage
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Back to the simulation
Non-linearity
Final Results

Back to our simulation

Solving the (non-linear) equations:

∇2φ = −2πφ5 (ρhW 2 − P)

∇2(Nφ) = 2πNφ5 (ρh(3W 2 − 2) + 5P)

Using Gauss - Seidel method

With multigrid technique

Implemented in CUDA
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Back to the simulation
Non-linearity
Final Results

Facing the non-linearity

∇2φ = −2πφ5
(

ρhW 2 − P
)

Initial guess for φ in the right hand side (rhs) of the
equation
Use the solution to replace the φ in the rhs and then
solve again
Repeat until we reach the desired accuracy
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solve again
Repeat until we reach the desired accuracy
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∇2φ = −2πφ5
(

ρhW 2 − P
)

Initial guess for φ in the right hand side (rhs) of the
equation
Use the solution to replace the φ in the rhs and then
solve again
Repeat until we reach the desired accuracy
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Solution

Equatorial plane of the solutions (z=0)
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Residual (‖ r ‖∞)

Iterations: 180

Duration (for for a grid size of 653 and on a double precision device with 480 CUDA-cores) :
8.96 s

Duration (for a grid size of 653 and on GTX 460 -single precision- with 336 CUDA-cores) :

Without optimization: 2.75 s

With optimization: 0.47 s
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Thank you

Thank you for your time
Next step: rotating neutron star

References:
NVIDIA (www.nvidia.com)

CUDA BY EXAMPLE - J. Sanders and E. Kandrot

Spacetime and Geometry - S.M. Carroll

Relativistic simulations of rotational core collapse I. Methods, initial models, and code tests H.
Dimmelmeier, J.A. Font, and E. Müller, A&A 388, 917 - 935 (2002)

Special thanks to Dr. Burkhard Zink for his useful advices and for the inspiration.
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