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The reasonable man adapts himself to the world,

the unreasonable one persists in trying to adapt the world to himself.

Therefore, all progress depends on the unreasonable man.

George Bernard Shaw

Siméon Poisson (1781-1840) William Hamilton (1805-1865) James Maxwell (1831-1879)

Sophus Lie (1842-1899) Emmy Noether (1882-1935) Élie Cartan (1869-1951)

The progress of Mathematical Physics much depended on the above “unreasonable” men and woman,

whose names will be repeated now and then in the pages that follow.





Abstract

In this thesis, we investigate the three-dimensional Newtonian motion of

charged particles in electromagnetic fields both numerically and analyt-

ically.

On one hand, we explore the collective behavior of large numbers of

particles in toroidal geometry and the presence of magnetic islands un-

der the influence of wave-particle interaction. Focusing on applications in

tokamak plasma, this study is based on simulations of the particles orbits

including relativistic effects and collisions. For their need, an exact mag-

netic surface label for isolated perturbations is also derived in toroidal

coordinates, and from the results we determine the current drive and

wave absorption.

On the other hand, we carry out a symmetry group analysis for the

equations of charged particle motion in the autonomous case. Result-

ing from the Lorentz force for arbitrary stationary electromagnetic fields

that obey the homogeneous Maxwell’s equations, we tackle the general

autonomous system of three second-order ordinary differential equations

that comes from a Lagrangian of three degrees of freedom with velocity-

dependent potentials. Considering non-trivial cases of physical interest

and, in particular, three-dimensional inhomogeneous, curved magnetic

fields, we find the general group of Lie point symmetries when the system

is nonlinear. A comparison between these symmetries and the symme-

tries of the magnetic field lines is also made. Subsequently, the group of

augmented point equivalence transformations for this class of systems is

found too, taking into account the homogeneous Maxwell’s equations as

auxiliary conditions. Under the equivalence group, we classify members

of this class, that is, time-independent electromagnetic fields in terms of

symmetry groups. Symmetries of Noether type are determined as well

and the corresponding integrals of motion are constructed. Finally, based

on the latter, aspects of complete integrability are discussed.





Acknowledgements

If the path during my studies was governed by any dynamics at all, then the latter would

certainly be far from integrability. However, many people kept me away from chaotic regions. I

thank them deeply all. I can only hope I have not totally let them down. This scientific journey

did not start at the beginning of this thesis (and hopefully will not stop at the end of it), and

although not smooth it was probably continuous. Therefore, my gratitude cannot be limited

only to those who supported me during the phd years, but unavoidably extends to other people

who forged my research interests long before.

Starting chronologically, as a senior undergraduate student at the Department of Physics of

Aristotle University of Thessaloniki I was lucky to have a diversity of skillful and encouraging

teachers in the area of theoretical physics. Most of all and hopeless it may sound after many

years since he passed away, I still feel the need to thank my supervisor of my undergraduate

dissertation Professor Simos Ichtiaroglou, who showed me around the realm of Hamiltonian

mechanics and symplectic geometry. His teaching skills and ability to impart sophisticated

notions in the most simple way can only match his kindness and generosity. While his interest

for my studies and his believing in me at a time when I had none kept me going so many times

since then.

Next stop and a very important one for me was the Department of Mathematics at the

University of Patras, where I had the privilege to work my master thesis under the supervision

of Professor Dimitris Tsoubelis. He is the one who introduced me to the world of symmetries,

among other methods in the theory of differential equations, and for his guidance, his support

and the opportunities he opened up for me, which went on during my phd studies as well, I

cannot thank him enough. To this day his knowledge and way of working are a constant source

of inspiration to me. Together with Professors Vassilis Papageorgiou and Tassos Bountis, they

all taught me many concepts of mathematical physics and more importantly showed me how to

cope with the rest of them. Thank you all deeply.

vii



viii

Returning back to the Physics Department and my time there now as a phd student, I would

like to thank my supervisor Assistant Professor Efi Meletlidou most of all for giving me the

space to work on my own ideas and the freedom to take initiatives. I can only hope she enjoyed

it as much as I did. Offering me loose working conditions and always valuing my opinion, she

helped me grow as a scientist. I also want to thank her for proofreading the manuscript. I would

like to express my sincere gratitude and appreciation to my advisor Professor Loukas Vlahos

for welcoming me to the group of plasma physics from the beginning of my phd studies, and

for giving me the opportunity to participate in a research programme of international level. His

constant support and our collaboration proved several times the only motivation to complete

this thesis. I am also very thankful to my advisor Professor Harry Varvoglis for his interest in

my progress from the first to the last day, his valuable comments on parts of this thesis and for

being there when needed.

I am more than grateful to Dr Heinz Isliker for the countless hours he spent in front of a

computer trying to explain to me how things work inside one. Our endless discussions outside

the observatory for a smoke or two have been a continuous source of valuable help and advice to

me. Heinz, thank you for your patience, your persistence and a healthy collaboration all these

years.

It gives me great pleasure to acknowledge the significance of my scientific interaction with Dr

Stelios Dimas, who introduced me to the theory of equivalence transformations. Without his

contribution, chapter 6 and [60] accordingly would not even begun to exist. Stelio, thank you

for all the time and effort you put through from the other side of the world to get into my head

over skype how classifying equations should be treated. May the force be with you.

A special thanks to Professor Fani Petalidou for so willingly and promptly tracking down and

explaining Marle’s article [81] on embeddings of presymplectic manifolds. I am only sorry we

had not got the chance of more nonstop four-hour meetings.

Many thanks to my officemates Dr Jamal-Odysseas Maaita and Mariora Kavakioti for their

friendly and easygoing spirit on a daily basis. Mariora, those long breaks and relaxed chats will

surely be missed. Many wishes to both of you for a successful career.

Besides good teachers, I was also very lucky to have great fellow graduate students from

Patras, whom also soon became even greater friends. Over the years and even when far away,

they have helped me enhance my skills and knowledge in mathematics, computers, singing,

reciting, crossing bridges, walking through the jungle, surviving in the woods, etc. Starting

with Dr Sotiris Konstantinou-Rizos (aka sokor) who from wherever he is he would still manage



ix

to solve whatever technical or other problem I am faced with whenever I ask (or not) for

his assistance. The 2×Dr (for the time being) George Papamikos, who first showed me the

benefits of working together, has always been my partner in crime, i.e. mathematical physics.

Despite Nikitas Nikandros’ taste for pure mathematics (or perhaps because of that), he and I

have consistently shared plenty of laughs between tv series analyses, philosophical discussions

on mathematics and poetry readings among other things. We have tried many times with Dr

Stavros Anastassiou to collaborate, but repeatedly ended up for drinks and music performances

(unfortunately by us); hope we get it right next time. On the other hand, with Dr Thodoris

Kouloukas we completely skip the first part and go straight to the drinking part; our camping

exhibitions as well as his ways through the wilderness are memorable. Congratulations to his

wife Dr Helen Christodoulidi for putting up with him but also his friends including me. In this

gang Dr Dimitris Nomikos is the missing link between having fun and painting the town red;

too bad (or thank god) our studies in Patras did not overlap and we had to recover lost ground

only with few times a year. Never leaving my mind and constantly figuring me out, Dr Ilia

Roustemoglou is the little sister I never had. Finally, Dr Grigoris Protsonis has always been a

special friend and the voice of reason in good and bad times; his personality (and house) has

offered us all the calm and solicitude (if not childcare) when needed.

Other friends from Thessaloniki have been for so many years like family to me. Forever

believing in me, their love was, is and will be a compass in my life that points me into pleasure

and happiness at all times. Apologies to all for trading many gatherings for studying and working

especially in the last few years. I am only looking forward to the next one.

It goes without saying that without the love and support of my parents Babis and Nana as

well as my brother Christos and his lovely wife Betty my studies like most things would have

neither been fulfilled nor probably even begun. Always supporting me in all my choices, even

when they do not agree, and giving their best to see me happy, their help is more than I deserve.

Moreover, my two beloved nieces Athina and Eftixia have played perhaps the most difficult part,

that of clearing my head from unbreakable equations, impenetrable theorems and any frustration

whatsoever every time I see them.

Last but certainly not least, the person who suffered and enjoyed probably even more than

me the undertaking of this thesis is Natasha Theodorelou. The ways she filled my life and her

unconditional love I cannot even begin to describe them. All I can say is that her nonstop

patience, her nonnegiotable belief in me and her not-of-this-world kindness are more than I

could ever wish for. And that nothing could make me happier than to return the favor.



x

Part I of this thesis was supported by (a) the National Programme for the Controlled Ther-

monuclear Fusion, Hellenic Republic, (b) the EJP Cofund Action SEP-210130335 EUROfusion.

For the results of chapter 3, the author also gratefully acknowledges the access granted to the

supercomputer Helios-IFERC in Japan. The sponsors do not bear any responsibility for the

content of this work.



Contents

Introduction xv

0.1 What this thesis is about . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xviii

Notation xxiii

I Motion of Charged Particles : Theory and Applications 1

1 Basic Principles of Charged Particle Motion 3

1.1 Lagrangian and Hamiltonian formulation . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Magnetic field lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Geometrical aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.4 Parallel and perpendicular motion . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.5 Motion of a particle in simple electromagnetic fields . . . . . . . . . . . . . . . . 21

1.6 Guiding center motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

1.7 Relativistic motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2 Integrable Perturbed Magnetic Fields in Toroidal Geometry 41

2.1 Axisymmetric systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.2 Helical perturbations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.3 Magnetic islands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.4 Tokamak fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3 Magnetic Islands and Electromagnetic Waves in Plasma Physics 55

3.1 Magnetic perturbations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.2 Electromagnetic wave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

xi



xii CONTENTS

3.3 Particle dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.4 Current drive and wave absorption . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.5 Comparison with the linear theory . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

II Symmetry Analysis of Charged Particle Motion 77

4 Symmetry Methods and Group Theory of Differential Equations 79

4.1 Systems of differential equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.2 Groups of transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.3 Transformations of differential equations . . . . . . . . . . . . . . . . . . . . . . . 91

4.4 Symmetry groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.5 Integration of ODEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.6 Invariant solutions of PDEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.7 Noether’s theorem in Classical Mechanics . . . . . . . . . . . . . . . . . . . . . . 112

4.8 Equivalent differential equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5 Symmetries of Charged Particle Motion 135

5.1 Lie point symmetries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.2 The form of the electromagnetic field . . . . . . . . . . . . . . . . . . . . . . . . . 141

5.3 Noether point symmetries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

5.4 Integrals of motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

5.5 Magnetic field lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

6 Group Classification of Charged Particle Motion 157

6.1 Equivalence transformations in terms of fields . . . . . . . . . . . . . . . . . . . . 157

6.2 The homogeneous Maxwell’s equations as auxiliary conditions . . . . . . . . . . . 161

6.3 Equivalence transformations in terms of potentials . . . . . . . . . . . . . . . . . 162

6.4 Classifying equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

6.5 Classification of equivalence subalgebras . . . . . . . . . . . . . . . . . . . . . . . 166

6.6 Symmetry Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

6.7 Classification in terms of Noether symmetries . . . . . . . . . . . . . . . . . . . . 185

6.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187



CONTENTS xiii

7 Conclusions and future work 189

Appendix A Curvilinear Coordinates 193

Appendix B Differential Forms 201

Appendix C Hamiltonian Systems of ODEs 219

Bibliography 227





Introduction

Plasma is roughly speaking an ionised gas of charged particles (electrons and protons) and was

first described by Crookes in 1879. The term itself was introduced later by Langmuir in 1928,

borrowing the Greek word πλάσμα that basically means shapeless, of any form. In a sense of

energy ordering, it has also been called the fourth state of matter, the other three being solid,

liquid and gas. For under sufficient heating, as a solid transforms into a liquid and a liquid to

a gas, a gas transforms into a plasma. Unlike the earth’s surface, most of the visible universe is

in the plasma state. Typical examples are the earth’s ionosphere and magnetosphere, lightning,

the polar aurorae, the solar corona and outer layers of other stars as well, the solar wind, the

interplanetary space, the interstellar space, etc. Laboratory plasma on the other hand is of no

less importance, serving as a vehicle for controlled thermonuclear fusion in the course of taming

fusion energy. Plasma Physics is therefore very significant in understanding several phenomena

either in Astrophysics or in Fusion research.

In the Theory of Plasma Physics there have been developed four successive models to (try

to) describe the collective behavior of a very large number of charged particles. The first one

encountered in any related textbook is the single particle model, which, given away by its name,

simply focuses on the particles themselves and, in particular, the equations of motion that they

obey, and determine their orbits. To quote Radu Balescu [4], one of the pioneers in the field,

“The whole subject of Plasma Physics can be reduced, in last analysis, to the understanding of

the motion of a set of charged particles in an electromagnetic field.” Of course, as he immediately

stresses afterwards, however simple this statement may be, the complexity of the problem is quite

high and in more than one way. Still, this rather simplified picture is not without uncharted

territories. What is even more challenging is that charged particle dynamics really dates back

to a problem of Classical Mechanics, whenever relativistic effects can be neglected; quantum

effects are almost always negligible in plasma physics, which is mostly regarded as a classical

field theory.

xv
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In this approach, the motion of charged particles under the influence of electromagnetic fields

is governed by Newton’s second law, described via the Lorentz force and considered in three-

dimensional space. For a particle of mass m and charge q, the equations of motion are three

(coupled) second-order ordinary differential equations, which in vector form read

mẍ = q (ẋ×B +E) , (1)

where x is the position of the particle as a function of time t, B and E are the magnetic and

electric fields, respectively, which may depend on both x and t in general, while the dot stands

for derivation with respect to time t. Of course, system (1) goes hand in hand with the well-

known Maxwell’s equations that describe the source and time evolution of the electromagnetic

field. From the perspective of the single particle model, the electromagnetic field produced by

the motion of the particle in turn is fairly negligible compared to the solutions B and E of

Maxwell’s equations. When studying, however, collectively large numbers of particles this can

no longer be the case. (Ideally one would have to determine the total charge and current coming

from the particles, insert them into Maxwell’s equations, solve the latter all over again to find

the modified electromagnetic fields, then replace the new solutions in the equations of motion,

and so on.)

The motion of a particle under the action of the magnetic field alone along with its intriguing

structure is characterized by many features that are quite unusual for Newtonian mechanics. In

Griffiths’ words [39], “it leads to some truly bizarre particle trajectories”, which as Jackson [59]

points out, “arise because of the peculiarities of the magnetic-force term.” Unlike gravitational

or electric fields that accelerate a particle along their field lines regardless the particle’s velocity,

the magnetic field introduces a force (see (1)) that differs in both ways, for it is i) perpendicular

to the magnetic field lines, and more importantly ii) velocity-dependent. As a result, the particle

dynamics and the dynamics of the magnetic field itself are in principle two very distinct systems,

naturally raising the question of how these two systems relate. Moreover, in the typical case

of divergence-free magnetic fields, the notion of the vector potential enters the picture with all

its intrinsic geometrical aspects. Thus, due to the overall nature of the magnetic field, charged

particle dynamics occupies a special place among Dynamical Systems.

Solutions to system (1) are only known in very simple situations (see [70, 71, 16]), which do

not fall far from the simplest of all, i.e. when the electromagnetic field is homogeneous and

stationary. Even then, however, the particle dynamics are not simple at all (see section 1.5),

justifying Griffiths’ comment. Neither are there many cases, for which a second constant of

motion, besides the energy (i.e. the Hamiltonian) of the system, is known to exist, unless some
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geometrical symmetry of the fields is apparent. For instance, the motion in a magnetic dipole,

also known as the Störmer problem, involves a magnetic field having a rotational symmetry

that is also admitted by the system and gives rise to the invariance of the canonical angular

momentum (see Example 4.42). This problem has been extensively studied and proven to be

non-integrable; a third constant of motion does not exist. Roughly speaking, most responsible for

the highly complicated dynamics of charged particles with consequent integrability limitations

is the magnetic term of system (1), which to a first approximation forces the particle to wind

around the magnetic field. When we move on to more complicated systems, this motion is usually

averaged out as a last resort. In other words, the rotation of the particle around the magnetic

field lines is eliminated, providing the system with an adiabatic, instead of an exact, invariant

related to the magnetic moment (see section 1.6). Still in these cases numerical integration is

all the same often employed for further study.

The above scenery does not leave little room for questions, such as : Besides trivial cases,

are there any other integrable cases? Which types of constants of motion arise, apart from

energy conservation in the autonomous case? Are all the symmetries of the magnetic field lines

admitted by the equations of motion? Or, what role do magnetic surfaces (invariant surfaces

for the magnetic field) play on charged particle motion? Are there any other cases, besides

homogeneous stationary magnetic fields with zero electric field, for which the magnetic moment

is an integral of motion? Can we find analytical solutions for the guiding-center equations (the

equations of motion resulting from the above mentioned averaging)? Only partial answers or

answers in certain cases of interest to some of these questions have be given. For example,

Lewis [72] has directly searched and found a type of quadratic integrals of motion along with

the conditions on the (potentials of the) electromagnetic field. Balescu [5] describes the form of

solutions for the guiding-center system in the case of an axisymmetric (meaning of rotational

symmetry) magnetic field (in particular the standard magnetic field (2.19)). In the end, given

an electromagnetic field one is interested to know what can he or she say about the dynamics

of a charged particle and how should he or she treat it. Such a query requires exploring the

structure of equations (1) more methodically.

Symmetry methods are one of the few systematic tools for studying nonlinear differential

equations, either ordinary or partial, revealing, if any, their integrability properties. Note that

one way or another the notion of symmetry was also present in the aforementioned cases of the

magnetic dipole or the guiding center. In dynamical systems, continuous symmetries can be

used to reduce the order of the system and in some cases even completely integrate it. Along
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with Noether’s theorem for variational problems, they may also yield conservation laws, that

is constants of motion, which restrict solutions to an invariant manifold. Therefore, the direct

search for symmetries in certain systems has received a great deal of attention over the past few

decades. Another usage of symmetry analysis, which has been adopted more and more often,

is to classify all possible symmetry groups admitted by a wide family of differential equations.

Such results determine under which conditions a system of general form may possess one or more

symmetries. To this end, equivalence transformations which represent maps between different

members of a family are more proper to employ.

The role of symmetry and integrals of motion are of no less significance in applications.

Axisymmetric magnetic fields are often used to describe the plasma equilibrium in toroidal

configurations used in fusion research known as tokamaks. Starting with a system that admits

one or more symmetries or constants of motion, one can investigate any instabilities arising in

plasma as a perturbation and see how these symmetries or invariants break. Actually helical

magnetic perturbations are quite often considered for studying such experiments, which are also

related to a type of helical symmetry for the magnetic field lines. The existence of magnetic

surfaces under these perturbations and their effect on the dynamics of charged particles could

prove important. The interest of symmetry theory in Plasma Physics is in any case increasingly

growing, most often for the Magnetohydrodynamic equations or the Grad-Shafranov equation

[14, 22, 36, 105, 120, 23, 64].

0.1 What this thesis is about

In a word, equations (1) play the leading role in this thesis. In our study, we (mainly) focus

on the autonomous case, magnetic effects being our primary concern. In fact, time-independent

magnetic fields adopted throughout this thesis are often met in laboratory plasma covering a wide

variety of phenomena. And with an exception in chapter 3, we also assume stationary electric

fields. (Nevertheless, exploring time-dependent electromagnetic fields is within our future plans,

for which the present work is a first and most likely necessary step.) The thesis’ main target,

in brief, and its structure accordingly are actually divided in two parts : i) an investigation for

magnetic islands aiming towards applications, and ii) a more theoretical search for symmetries

and first integrals of motion.

Part I explores the role of magnetic perturbations in toroidal geometry, closely related to

problems in fusion experiments and especially tokamak devices.
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For this purpose, we give first in chapter 2 an analytical expression for the magnetic islands

formed when an axisymmetric magnetic field is helically perturbed in terms of the poloidal

and toroidal angles. Focusing on one dominant resonance mode, we exploit the well-known

integrability of such Hamiltonian perturbations, describing the magnetic field lines directly in

toroidal coordinates. In this way the previous toroidal magnetic surfaces of the unperturbed

system are now replaced by helical ones around the torus. This magnetic surface quantity can

then provide analytically any information required for the perturbed topology, such as position

of saddles or centers of the islands, construction of Poincaré sections or the magnetic surfaces

themselves, calculation of areas or volumes enclosed by magnetic surfaces, without the need of

approximations or the risk of numerical errors.

Then, in chapter 3, we investigate the effect of magnetic islands on the wave-particle inter-

action in terms of our basis, the single-particle model. Most approaches on this topic are either

linear or quasilinear approximations of the Vlasov equation. In order to explore the nonlinear

aspects, we perform particle simulations, for the needs of which a numerical code was devel-

oped. The latter integrates the equations of motion, using either the Lorentz force law or the

guiding-center equations. Relativistic effects for high energy particles as well as collisions are

taken into account too, while the magnetic surface quantity of the previous chapter is employed

for describing several features of the magnetic islands. The code also solves the plasma disper-

sion relation, providing the wavenumber and polarization of the wave. In addition, it has been

parallelized over the individual particles either for multiprocessors with shared memory or com-

puter systems with distributed memory. Thus, following large numbers of electrons, statistical

results can be obtained either directly or after postprocessing. More specifically we calculate

the current drive in the plasma, as well as the wave power absorption from the particles, along

with other macroscopic quantities, such as mean kinetic energy, velocity distributions, etc.

Part II presents a symmetry analysis of the autonomous system (1) for arbitrary electro-

magnetic fields. Aiming for nontrivial cases of physical interest, we search for Lie as well as

Noether point symmetries corresponding to first integrals of motion, besides the obvious time

translations.

In chapter 5, we put the system under the symmetry test for arbitrary, inhomogeneous

electromagnetic fields, focusing, in particular, on the nonlinear and genuinely three-dimensional

case. Starting with unprescribed fields, we investigate how the symmetry condition, apart from

the general form of the symmetry generator, places restrictions on the fields too. For consistency

with any real physical problem, the homogeneous Maxwell’s equations are also imposed. Thus,
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the previous conditions are expressed and then solved in terms of the vector and scalar potentials,

leading to five classes of solutions. In this way, we determine the general form of electromagnetic

fields, for which systems of class (1) describing the motion of charged particles admit point

symmetries, along with the general form of the symmetries themselves. The use of potentials is

also more appropriate in order to identify symmetries of Noether type (and to compare them

with Lie point ones), from which we construct first integrals of motion over and beyond the

well-known Hamiltonian. We particularly derive cases, where the integrals are functionally

independent of the Hamiltonian and in involution with it. In addition, a comparison in terms

of symmetries is made between the equations of charged particle motion and the magnetic field

lines. In the case of common symmetries, this in turn shows how magnetic surfaces and first

integrals of motion are related.

In chapter 6, a symmetry group classification is presented either in terms of Lie or Noether

point symmetries. The question for which electromagnetic fields does charged particle motion

admits point symmetries now is reversed. Rather than expressing electromagnetic fields in

terms of symmetries admitted, now symmetries are used to classify the electromagnetic fields,

i.e. system (1). For this purpose, we find first the group of equivalence transformations of class

(1), considering also the homogeneous Maxwell’s equations as restrictions. Then we separate the

system into equivalent subcases that are not connected through such transformations, and which

admit more symmetries than time translations. Under the action of the equivalence group, each

subcase is characterized by a representative electromagnetic potential as simple as possible. The

classification is made using the Lie algebra of the equivalence group, separating it in one-, two-

and three-dimensional equivalence subalgebras leaving aside the principal Lie algebra. In this

way, we deduce accordingly when the system admits one-, two- and three-parameter extended

symmetry groups, besides the well-known time translations, in the nonlinear and genuinely

three-dimensional case. Based on this classification, aspects of integrability are also examined.

Particular conclusions and more technical remarks are discussed more suitably at the end of

each chapter. An overall outline of the results of this thesis is given finally in chapter 7 based

on which plans for future work are also made.

Parts of this thesis, chapters 2 and 5, have been published in international scientific peer-

reviewed journals, namely [62] and [63], respectively. Others, chapters 3 and 6, which correspond

to [61] and [60] accordingly, will soon be submitted.

Part of the results presented here is a joint work with collaborators, as indicated in the

jointly-authored of the aforementioned publications.



0.1. WHAT THIS THESIS IS ABOUT xxi

Further remarks on the structure of the thesis

As probably guessed by now, chapters 1 and 4 describe the theory used in the rest of parts I

and II, respectively.

The first chapter provides the basic features of charged particle motion following a path

from physical variables, to cylindrical velocities, and from there to guiding-center variables,

given finally in relativistic form. In this short trip homogeneous electromagnetic fields are an

intermmediate stop serving as a link passage to guiding-center theory. Our presentation is

based on the Hamiltonian nature of the system and in particular the notion of Poisson brackets,

which lately have received great attention in Gyrokinetics [20, 18]. Among these features one

cannot overlook the relation of the particle’s motion with the system of the magnetic field lines.

Thus, the structure and geometrical aspects of the magnetic field are described as well and in

particular its well-known Hamiltonian nature. An interpetration of the latter is explored in

terms of presymplectic forms in section 1.3 based on subsections 1.2.1 and 1.2.2 and appendix

B, which also explain the relation with the charged particle motion.

The fourth chapter is an introduction to symmetry theory of differential equations, focusing

mostly on Lie point symmetries and their usage either in ordinary or partial differential equa-

tions. A few aspects of variational problems are also presented, within the context of classical

mechanics, in order to arrive at the celebrated Noether’s theorem providing a relation between

symmetries (of a certain type) and first integrals of motion. Finally, the less-often exhibited

theory of equivalence transformations is shortly described in an infinitesimal fashion much close

to the one from symmetry methods.

Appendices have also been included to further support here and there several tools needed

especially in the first chapter.

First, appendix A contains formulas from vector calculus that often come along with the struc-

ture of the magnetic field. Although elementary, they are quite necessary and were preferably

displayed here, rather than constantly interrupting and referencing the reader to other sources

with different notation as well.

The idea of appendix B is to serve as a vehicle for exploring the geometrical aspects of the

magnetic field and the corresponding vector potential from the point of view of differential

geometry. The ultimate goal is symplectic and in particular presymplectic forms used in section

1.3. For the needs of the latter and for connecting with the previous appendix, the particular

case of the three-dimensional Euclidean space is also presented with usual vector operations

expressed in the language of forms.
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Finally, appendix C is a short description of (finite-dimensional) Hamiltonian systems without

the need of canonical variables, often found unsuitable for either charged particle motion or

magnetic field lines. Preference here is given to the notion of Poisson brackets, repeatedly

employed in chapter 1, and its relation to the symplectic structure for consistency.

Let me close this section with some final remarks on the organization and writing style of

this thesis, which hopefully would make reading it easier. One goal of primary interest was

to have as much as possible a self-sufficient text. This probably turned into a necessity, when

elements from different areas of Physics or Mathematics entered the picture. Avoiding as much

as possible “leaving exercises to the reader”, several calculations or proofs are also included. In

an ideal scenario, these could help graduate students, who approach some of the thesis’ aspects

for the first time. In the same spirit, examples are given too for clarity as illustrations of the

theory used. Overall, from my understanding, chapters 1 and 4 (as well as the appendices) are

essential for connecting different parts of this thesis, and, in any case, I hope they will make an

interesting reading.

That being said, the reader who is familiar with the theory of charged particle motion can

skip chapter 1 and go directly to chapters 2 and 3, just as the one familiar with symmetry group

theory can skip chapter 4 and go straightaway to chapters 5 and 6.



Notation

For easy reference, below are listed the most frequently used symbols in this thesis. Borrowing

elements from different areas, the notation adopted here tries to keep up with the dominant

nomenclature of each scientific field and stay self-consistent at the same time. Even though

exhausting almost entirely the Greek and English alphabets, unavoiadably there is some over-

lapping, which should be of no confuse by the context used each time. In any case, further

notation comments are given at the beginning of each chapter. Some ground rules are : All

vectors in R3 are denoted by bold symbols, e.g. B, and their magnitude accordingly by |B|.

Einstein’s summation convention has been adopted in chapters 1, 4, 5 and 6, as well as in the

appendices, but not followed in chapters 2 and 3. And unless stated otherwise all indices in

chapters 1, 5 and 6 take values from 1 to 3. The same goes for the appendix A, while in ap-

pendices B and C indices range from 1 to the dimension of the relevant (sub)manifold. In the

thesis SI units have been used, but in most cases constants have been normalised to m = q = 1.

A vector potential of the magnetic field

b unit vector of the magnetic field

β binormal vector to the magnetic field

B magnetic 2-form, magnetic matrix

B magnetic field

c speed of light; constant of integration

γ Lorentz factor

Dx total derivative with respect to x

εijk Levi-Civita symbol

E Euler operator

E electric field

δ auxiliary system for a class of differential equations

δij Kronecker’s delta

xxiii
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δ curl of velocity

∆ system of differential equations

ζ gyrophase

g metric tensor

g Lie algebra of a Lie group

G Lie group

H Hamiltonian function

H Hamiltonian function for the magnetic field

h helical magnetic flux; value of the Hamiltonian function

θ poloidal angle

θin intrinsic poloidal angle

ϑ Liouville 1-form

I first integral of motion; identity matrix or operator

J Poisson matrix

J Jacobian matrix

J Poisson matrix for the magnetic field

J current density

k wavenumber

l natural parameter of magnetic field lines

L Lagrangian function

L Lagrangian function for the magnetic field

L functional of the Lagrangian function

µ magnetic moment

n principal normal vector to the magnetic field

n1 perpendicular unit vector to the magnetic field

n2 perpendicular unit vector both to the magnetic field and n1

p canonical momenta

P power

q safety factor

r minor radius in toroidal coordinates; radius in spherical coordinates

R0 major radius in toroidal coordinates

ρ gyroradius; radius in polar coordinates

u proper velocity



xxv

s parameter of magnetic field lines

t time

τ proper time

v velocity

v vector field

vn composition of v as an operator with itself n times

v(n) prolongation of v of order n

Φ scalar potential of the electric field

w point of a Poisson manifold

w winding number

φ toroidal angle; polar angle

ϕ flow of a vector field; Lie group action

x point of a manifold; coordinate in the x-axis

x point of R3

ψ toroidal magnetic flux

ω wavefrequency; differential form

ωg gyrofrequency

Ω symplectic matrix

∂x partial derivative with respect to x

‖ parallel component to the magnetic field

⊥ perpendicular component to the magnetic field
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Chapter 1

Basic Principles of Charged Particle

Motion

In this section we briefly go through key elements of the theory of charged particle motion that

will be used later on. We start off with a short restatement of the problem and basic notation

previously described in the Introduction.

In Classical Mechanics, a charged particle moving in an eletromagnetic field undergoes the

Lorentz force and obeys Newton’s second law. The space considered is the three-dimensional

Euclidean space R3 and, unless stated otherwise, we assume that both the electric and magnetic

field are stationary, i.e. time-independent. The equations of motion for the particle is expressed

by a system of three second order, autonomous differential equations, which in vector form are

ẍ = ẋ×B(x) +E(x), (1.1)

where B and E are smooth vector functions of the position x alone, representing the magnetic

and electric field, respectively. Using a Cartesian coordinate system, in which B = (B1, B2, B3)

and E = (E1, E2, E3), the system (1.1) can also be written as

ẍi = εijkẋjBk + Ei, (1.2)

where εijk is the Levi-Civita symbol. Einstein’s summation convention has been adopted, as-

suming unless stated otherwise that all indices from now on and throughout the rest of this

chapter take values from 1 to 3. By introducing the particle’s velocity v = ẋ, equations (1.1)

can be equivalently expressed as a first-order system,

ẋ = v,

v̇ = v ×B(x) +E(x).
(1.3)

3



4 1. Basic Principles of Charged Particle Motion

Coupled to the Lorentz force law is another set of physical laws that the electromagnetic field

must obey, and which altogether constitute a system of first-order partial differential equations,

known as Maxwell’s equations. For stationary fields these are

∇ ·B = 0, ∇×E = 0, (1.4a)

∇ ·E = σ, ∇×B = J , (1.4b)

where σ and J are the charge and current densities. The last two equations express Gauss’s

and Ampére’s laws, respectively, relating the fields with their sources. On the other hand, the

first two through their solutions lead to the notion of the electromagnetic potential. This means

that the magnetic field can be derived from a vector potential A(x) with Cartesian components

A = (A1, A2, A3), while the electric field from a scalar one Φ(x),

B = ∇×A, (1.5)

E = −∇Φ. (1.6)

The minus sign in (1.6) physically means that an increasement of Φ for a positive charge results

in an electric field E in the opposite direction.

Remark 1.1. Both the vector and the scalar potential are not real, measurable quantities and

they can be defined arbitrarily, because of the invariance of the electromagnetic field under gauge

transformations. In the stationary case considered here, the latter are separable in A and Φ

and, as we can see from (1.6) and (1.5), split to the trivial transformation Φ −→ Φ + c admitted

by the electric field, where c is an arbitrary constant, and more importantly to A −→ A+∇g

admitted by the magnetic field, where g is an arbitrary function of x.

1.1 Lagrangian and Hamiltonian formulation

Equations (1.4a) allow another viewpoint of charged particle motion, namely as an Euler-

Lagrange system. For, in light of the potentials, equations (1.1) admit the Lagrangian function

L (x, ẋ) =
1

2
ẋ2 + ẋ ·A(x)− Φ(x). (1.7)

In other words, the motion of a charged particle can be described by a variational principle

(namely the principle of least action), according to which the trajectory x(t) of the particle for

the time interval t2 − t1 is an extremum of the functional

t2∫
t1

L (x, ẋ) dt, (1.8)
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where the integrand L is given by (1.7). The extrema x(t) of the action integral (1.8) satisfy

the Euler-Lagrange equations (see section 4.7), which yield equations (1.1),

0 =
d

dt

(
∂L

∂ẋi

)
− ∂L

∂xi
=

d

dt
(ẋi +Ai)− ẋj

∂Aj
∂xi

+
∂Φ

∂xi
= ẍi +

(
∂Ai
∂xj
− ∂Aj
∂xi

)
ẋj +

∂Φ

∂xi

= ẍi − εijkẋjBk − Ei .

Remark 1.2. In terms of Analytical Mechanics, we easily see that the first term in (1.7)

corresponds to the kinetic energy of the system. If we were to identify the remaining last two

as the total “potential” of the system, then this would depend linearly on the velocities.

The typical route to the Hamiltonian description is to define the conjugate (to the variables

xi) momenta,

pi =
∂L

∂ẋi
= ẋi +Ai(x), (1.9)

which besides the velocity depend on the position of the particle, as well. Then, expressing

ẋ = p−A(x), the Hamiltonian function can be constructed through the relation

H(x,p) = p · ẋ− L (x, ẋ) =
1

2
(p−A(x))2 + Φ(x). (1.10)

It is worth noting that H is not separable in x and p, in fact if we expand the first term we

arrive again at a “potential” linear in the momenta, as in the Lagrangian case. Using (1.10),

system (1.3) can be recovered by the well-known canonical form of Hamilton’s equations,

dxi
dt

=
∂H

∂pi
⇒ dxi

dt
= pi −Ai ⇒ ẋi = vi ,

dpi
dt

= −∂H
∂xi

⇒ dpi
dt

= (pj −Aj)
∂Aj
∂xi
− ∂Φ

∂xi

⇒ dpi
dt

= vj
∂Aj
∂xi
− ∂Φ

∂xi
− dAi

dt
+
dAi
dt

⇒ dpi
dt
− dAi

dt
= vj

∂Aj
∂xi
− ∂Φ

∂xi
− ∂Ai
∂xj

dxj
dt

⇒ d (pi −Ai)
dt

=

(
∂Aj
∂xi
− ∂Ai
∂xj

)
vj −

∂Φ

∂xi

⇒ v̇i = εijkvjBk + Ei.

However, the disadvantage of the canonical momentum not having a physical meaning turns

our attention back to the velocity, raising the question of a Hamiltonian expression in terms of

the latter. To this end, we must move towards the more general notion of a (finite-dimensional)

Hamiltonian system, which is given in Definition C.1. In order not to get carried away by the
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Hamiltonian aspects at this point, we have included all the necessary tools and conclusions in

the appendix C, on which we would often rely at least in this section.

So, from the canonical case described there in general, first we recall the canonical Poisson

matrix (C.12), given here by the 6× 6 constant matrix

J(x,p) =

 O I

−I O

 , (1.11)

where O is the 3 × 3 zero matrix and I is the 3 × 3 unit matrix, as well as that the canonical

variables satisfy the relations {xi, xj} = {pi, pj} = 0 and {xi, pj} = δij . Now, we are ready to

move on to the physical variables w̃ = (x,v). To determine the Hamiltonian formulation (C.2)

in terms of w̃, we can rely on the canonical one in terms of the variables w = (x,p). We need

just to perform the transformation w −→ w̃, which even more conveniently involves only half of

the variables and simply reduces to (1.9), i.e. p = v+A(x). Starting with the Hamiltonian, we

easily get from (1.10)

H(x,v) =
1

2
v2 + Φ(x), (1.12)

which straightaway can now be identified with the particle’s energy. The absence of the magnetic

field in (1.12) is the well-known property that it does no work. The only thing left to find is the

Poisson matrix J(w̃), which can be determined through the relations (C.9), Jij(w̃) = {w̃i, w̃j},

considering both w̃ and the Poisson bracket in terms of w. We have

{xi, xj} = 0

{xi, vj} = {xi, pj −Aj(x)} = {xi, pj} − {xi, Aj(x)} = δij − 0 = δij

{vi, xj} = −{xj , vi} = −δji = −δij

{vi, vj} = {pi −Ai(x), pj −Aj(x)} = {pi, pj} − {pi, Aj(x)} − {Ai(x), pj}+ {Ai(x), Aj(x)}

= 0 +
∂Aj
∂xi
− ∂Ai
∂xj

+ 0 = εijkBk

where the last equation prevents w −→ w̃ from being a canonical transformation. Therefore,

the Poisson matrix in this case is a non-constant 6× 6 matrix that depends on x,

J(x,v) =

 O I

−I B(x)

 , (1.13)

in which, at the expense of having the physical velocity instead of the canonical momenta, the
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magnetic field appears through the matrix B with elements Bij = εijkBk,

B(x) =


0 B3 −B2

−B3 0 B1

B2 −B1 0

 . (1.14)

Thus, using (1.12) and (1.13) the equations of charged particle motion (1.3) can be expressed

as a Hamiltonian system (C.2), or in more detail

dxi
dt

=
∂H

∂vi
dvi
dt

= −∂H
∂xi

+ εijkBk
∂H

∂vj

(1.15)

According to (C.8) the Poisson bracket for this system is

{F,G} =
∂F

∂xi

∂G

∂vi
− ∂F

∂vi

∂G

∂xi
+ εijkBk

∂F

∂vi

∂G

∂vj
(1.16)

In conclusion, system (1.3) can be put in Hamiltonian form in two equivalent ways, either

the usual canonical form of Hamilton’s equations and the Hamiltonian function (1.10) or system

(1.15) and the Hamiltonian (1.12). In the first one the magnetic field enters the Hamiltonian

through the vector potential, leaving the Poisson matrix constant, while in the second one the

magnetic field has left the Hamiltonian, entering the Poisson matrix instead. The canonical

variables used in the first one although popular in Hamiltonian mechanics lack here physical

meaning, for the conjugate momenta cannot be identified with the physical ones, which is also

reflected in the corresponding Hamiltonian. On the other hand, the second description in terms

of the physical velocities, restoring the related Hamiltonian to the energy of the particle, seems

to be more suitable, despite its non-canonical character.

One final remark is that the variational principle (1.8) for (1.1), can be replaced by a more

general but in fact equivalent one (see [1], p. 243-245) for (1.3). The latter is expressed by the

Lagrangian function

L (x,v, ẋ) = p · ẋ−H(x,v) = (A (x) + v) · ẋ− 1

2
v2 − Φ(x) (1.17)

as opposed to (1.7), and can be regarded as the inversion of the relation (1.10). Notice that in

this treatment x and v are considered independent variables. The derivatives of the velocities

are absent from (1.17), yielding easily the first set of equations ∂L/∂vi = ẋi − vi = 0, and then

the second one can be recovered same as before with the substitution ẋi = vi previously found.

The above point of view of Lagrangian formulation would prove quite helpful in the forthcoming

sections.
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1.2 Magnetic field lines

Unlike the electric (or the gravitational) field, the magnetic field, as we have seen already,

does not act directly on the particle, but through the Lorentz force. Thus, the dynamics of

the magnetic field is in general quite different from the particle’s motion and deserves special

attention. So, in this section we consider another dynamical system consisting now of three

first-order, autonomous ordinary differential equations

dx

ds
= B(x), (1.18)

which describes the integral curves of the magnetic field (viewed as a vector field) commonly

known as magnetic field lines. The independent variable here, denoted by s, is related to the

line element of these curves. An alternative way to describe the tangency condition (1.18) of the

integral curves x(s) to the magnetic field B(x) is to require that x′(s) and B(x) are parallel,

x′(s)×B(x) = 0. (1.19)

Magnetic field lines are also equipped with a Lagrangian formulation, again due to the diver-

gence free condition from Maxwell’s equations (1.4a). Assuming the Lagrangian function

L
(
x,x′

)
= x′ ·A(x), (1.20)

and the corresponding action integral, the Euler-Lagrange equations yield system (1.19),

0 =
∂L
∂xi
− d

ds

(
∂L
∂x′i

)
= x′j

∂Aj
∂xi
− dAi

ds
=

(
∂Aj
∂xi
− ∂Ai
∂xj

)
x′j = εijkx

′
jBk .

If we try to construct a Hamiltonian formulation from the previously described Lagrangian,

as in the case of the particle’s motion, we quickly end up with a vanishing Hamiltonian (the

conjugate momentum would now be the vector potential itself and so H = A · x′ − L = 0).

Magnetic field lines do not have (globally) a Hamiltonian description in the sense of (C.2). They

do, however, satisfy one important characteristic of Hamiltonian systems, namely Liouville’s

theorem. The latter states that the flow of a Hamiltonian system is incompressible or equivalently

that Hamiltonian vector fields are divergence free, just like magnetic fields. Thus, system (1.18)

falls into the wider category of Liouville dynamics, which refers to dynamical systems described

by divergence free vector fields.

Nonetheless, from the above discussion it is evident that the divergence free condition is a

necessary condition for Hamiltonian systems, a sign of a pre-Hamiltonian structure if you will.

This point of view will be further explained in the next section based on a more theoretical
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ground of Hamiltonian mechanics. For now, we will restrict ourselves to a few general cases,

demonstrating, indeed, that the magnetic field lines can always be put in Hamiltonian form

depending on choice of variables. To cover a wide variety of applications we will switch to

curvilinear coordinates
(
x1, x2, x3

)
described in appendix A, which will be used many times as

reference in the following two subsections. From formula (A.35), system (1.18) can be expressed

in terms of the vector potential as

dx1

ds
=

1
√
g

(
∂A3

∂x2
− ∂A2

∂x3

)
dx2

ds
=

1
√
g

(
∂A1

∂x3
− ∂A3

∂x1

)
dx3

ds
=

1
√
g

(
∂A2

∂x1
− ∂A1

∂x2

) (1.21)

where Ai are the covariant components of the potential A and g is the determinant of the metric

tensor defined by
(
x1, x2, x3

)
, given in (A.21).

1.2.1 Magnetic surfaces

Firstly consider the case, where one of the components of the magnetic field vanishes, say B3 = 0,

which, as we can see from (A.28) and (A.31), can also be expressed as B · ∇x3 = 0. The latter

is often referred to as a homogeneous magnetic differential equation. Either way this condition

means that the field lines lie on the subset x3(x, y, z) = const. of R3, which is called a magnetic

surface, and that
∂A2

∂x1
− ∂A1

∂x2
= 0.

Then there exists a function f(x1, x2, x3) such that A1 = ∂f/∂x1 and A2 = ∂f/∂x2 and therefore

the vector potential is A = (0, 0, Ã3) + ∇f , where Ã3 = A3 − ∂f/∂x3. Under the gauge

transformation, dicussed earlier in Remark 1.1, admitted by the magnetic field lines, we can

equivalently consider A = (0, 0, Ã3). Thus, the magnetic field is

B = ∇Ã3 ×∇x3 (1.22)

using (A.34), and system (1.21) restricted to the surface x3 = const. can be expressed in this

case as

dx1

ds
=

1
√
g

∂Ã3

∂x2

dx2

ds
= − 1
√
g

∂Ã3

∂x1

(1.23)
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The above equations are a Hamiltonian system in non-canonical form, where Ã3 plays the role

of the Hamiltonian function, i.e. H = Ã3, and

J
(
x1, x2

)
=

1
√
g

 0 1

−1 0

 (1.24)

is the Poisson matrix. In fact, since H here is independent of s, it is a conserved quantity for

system (1.23). Consequently, the latter is integrable and its solutions, meaning the magnetic

field lines, lie on the intersection of the surfaces x3 = c1 and Ã3 = c2, where c1 and c2 are

constants.

Remark 1.3. In the simple case of Cartesian coordinates, where the above system describes a

magnetic field in the xy-plane, the coordinates x and y are canonical.

1.2.2 General magnetic canonical representation

Now consider the more general case, where B3 6= 0. The procedure to a Hamiltonian description

consists of three steps :

i) First, using again the gauge equivalence, we can still eliminate one of the three components of

the vector potential, sayA1, by using the function f =
∫
A1 dx

1. Therefore,A = (0, Ã2, Ã3)+∇f ,

where Ã2 = A2−∂f/∂x2 and Ã3 = A3−∂f/∂x3, or equivalently A = (0, Ã2, Ã3). From (A.34),

now the magnetic field is

B = ∇Ã2 ×∇x2 +∇Ã3 ×∇x3 (1.25)

ii) Next we make the transformation x1 −→ x̃1
(
x1, x2, x3

)
, where x̃1 = Ã2. In fact, we already

have the inverse transformation x̃1 = Ã2

(
x1, x2, x3

)
at hand, which is invertible, since the

determinant of the related Jacobian matrix (see (A.2)) equals to ∂x̃1/∂x1 = B3 6= 0. Therefore,

we can always replace x1 by x̃1, that is, solve the equation x̃1 = Ã2

(
x1, x2, x3

)
in terms of x1.

Consequently, we may use instead
(
x̃1, x2, x3

)
as coordinates, in terms of which the magnetic

field lines (1.21) are expressed as

dx̃1

ds
=

1√
g̃

∂Ã3

∂x2

dx2

ds
= − 1√

g̃

∂Ã3

∂x̃1

dx3

ds
=

1√
g̃

(1.26)
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where g̃ is now the determinant of the metric defined by the coordinate system
(
x̃1, x2, x3

)
and

its relation to g of the original system
(
x1, x2, x3

)
is
√
g =

√
g̃ ∂x̃1/∂x1.

iii) Finally, instead of s we consider x3 as the independent variable, in terms of which the

magnetic field lines are parametrized, and hence (1.26) is transformed to

dx̃1

dx3
=
∂Ã3

∂x2

dx2

dx3
= −∂Ã3

∂x̃1

(1.27)

(1.27) is a Hamiltonian system in canonical variables x̃1 and x2, the Hamiltonian function being

H = Ã3 again. Quite different from the previous case though, the Poisson matrix J given by

(C.12) simply in two dimensions is now constant, while H = H
(
x̃1, x2, x3

)
depends on “time”

x3. Thus, in general, the Hamiltonian is not conserved along the magnetic field lines nor is

system (1.27) a priori integrable.

Returning to our previous discussion about the Hamiltonian formulation of the magnetic field,

based on the results of 1.2.1 and 1.2.2, we conclude that :

Corollary 1.4. The field lines of any divergence-free magnetic field can be expressed as a

Hamiltonian system.

In the next section, we will revisit this statement and explain it in more detail on the geometrical

background of Hamiltonian systems shortly presented in appendices B and C.

1.2.3 The Frenet triad for the magnetic field lines

In this subsection, we introduce the local reference frame of an observer moving along the

magnetic field lines x(s). The vector basis of this frame of reference consists of three vectors,

namely the tangent, normal and binormal unit vectors given by the Frenet-Serret formulas with

respect to the magnetic field. In terms of (1.18), we have of course already encountered the

tangent vector to the curve x(s), being obviously B. Divided by the field’s strength, we can

construct the unit tangent vector

b =
B

|B|
=
dx

dl
. (1.28)

Here l, called the natural parameter, is a reparametrization of the magnetic field lines for which

l′(s) = |x′(s)| holds. Continuing, the curvature vector is defined as the derivative of the unit

tangent vector with respect to the natural parameter,

K =
db

dl
=
d2x

dl2
, (1.29)
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which is perpendicular to b, for 2 b ·K = 2 b · b′ = (b · b)′ =
(
|b|2
)′

= 0. The normalisation of

K in turn yields the (principal) normal

n =
K

|K|
= κK, (1.30)

where κ = 1/|K| is the curvature radius. Finally, in order to have a right-handed orthogonal

coordinate system, the binormal vector is defined as

β = b× n . (1.31)

The same argument used above shows that dβ/dl is perpendicular to β. In fact, it is parallel to

n, since β′ · b = (β · b)′ −β · b′ = −β ·n = 0. Therefore, dβ/dl = −n/σ, where the function σ

is the torsion radius.

Following [4], we make the following remarks, which will turn up useful when studying the

guiding-center motion later on this chapter.

Remark 1.5. From the definition of the curvature vector (1.29), we can also obtain the following

expression

K =
db

dl
=

∂b

∂xi
dxi

dl
= bi

∂b

∂xi
= (b · ∇) b (1.32)

Remark 1.6. Following the same steps as in the previous expression, we can obtain dβ/dl =

(b · ∇)β and since σ−1 = −n · dβ/dl, we see that the torsion radius is

σ = − 1

n · [(b · ∇)β]
(1.33)

Remark 1.7. In the case of a straight, yet inhomogeneous magnetic field, we can see that

K = 0, which means that the curvature radius becomes infinite. Therefore, neither n nor β can

be defined, they are arbitrary. A natural way to treat this case is to consider instead the only

intrinsic direction left that is fixed by the field, which is the gradient of the field’s strength. In

order then to have an orthonormal basis, we define

ñ =
∇ |B|
|∇ |B||

−
(
b · ∇ |B|
|∇ |B||

)
b (1.34)

β̃ = b× ñ (1.35)

Remark 1.8. If, however, the magnetic field is straight and parallel to the gradient of its

strength, i.e. K = β̃ = 0, or homogeneous, then besides b itself, there is no other direction

to characterize the magnetic field. We can therefore choose an appropriate coordinate system,

where one of its axes coincides with B.
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1.3 Geometrical aspects

The structure of the magnetic field has an intriguing geometrical interpretation, giving insight

to many of the features we met so far. The geometry of the magnetic field is described in this

section in the language of differential and symplectic forms, briefly summarized in appendix B,

which we will often refer to. We start off by the vector potential A, viewed though as an 1-form

in R3 in terms of curvilinear coordinates
(
x1, x2, x3

)
A = A1dx

1 +A2dx
2 +A3dx

3. (1.36)

where the switch from Ai to the components Ai of the vector function A is described in (A.23).

From the differential of A, given in (B.43) we can construct the following 2-form

B = dA =

(
∂A3

∂x2
− ∂A2

∂x3

)
dx2 ∧ dx3 +

(
∂A1

∂x3
− ∂A3

∂x1

)
dx3 ∧ dx1 +

(
∂A2

∂x1
− ∂A1

∂x2

)
dx1 ∧ dx2

Taking the Hodge star operator, we can define the magnetic field B according to (see (B.38)-

(B.40) and the resulting equation (B.44) restated here)

B = ∗B =
1
√
g

{(
∂A3

∂x2
− ∂A2

∂x3

)
∂

∂x1
+

(
∂A1

∂x3
− ∂A3

∂x1

)
∂

∂x2
+

(
∂A2

∂x1
− ∂A1

∂x2

)
∂

∂x3

}
(1.37)

which precisely expresses the curl of the vector potential A in curvilinear coordinates according

to (B.45).

As shown in appendix B and in particular (B.41), the divergence-free condition for the mag-

netic field B is equivalent to the closure property of the corresponding exact 2-form B, i.e.

∇ ·B = 0⇔ dB = 0. Recalling Definition B.16, we immediately deduce that :

Corollary 1.9. Every divergence-free magnetic fieldB defined on some region of R3 corresponds

to a presymplectic form B.

Remark 1.10. So far from the beginning of this chapter, we have taken for granted the existence

of the vector potential as a solution to the divergence-free condition of the magnetic field, being

one of Maxwell’s equations (1.4a). Using (B.42) and (B.45), ∇·B = 0⇒ B = ∇×A translated

to forms means that dB = 0 ⇒ B = dA. This assumption is justified when B is defined

in (all of) R3, where every closed form is also exact (see Remark B.7). Therefore the above

construction could be inverted, and start off more naturally with the real physical quantity,

meaning the magnetic field : since B obeys the divergence-free condition it corresponds to a

closed 2-form B, which in turn is coming from the differential of a 1-form A.
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Remark 1.11. Regardless of the existence of the vector potential, we emphasize that, as already

stated, Corollary 1.9 holds for any subspace of R3, simply-connected or not.

In light of the presymplectic form associated to every divergence-free magnetic field, the Hamil-

tonian nature of the magnetic field lines we saw in the previous section can now be explained.

Let us see how the gap between Corollaries 1.4 and 1.9 can be filled.

The symplectic structure of magnetic surfaces

First of all, in the case of magnetic surfaces §1.2.1 whereB3 = 0, the system of magnetic field lines

reduces to the surface x3 = const., described by a two-dimensional system in terms of x1 and x2.

And as we saw in Example B.13 and then again near the end of appendix C, a surface in R3 can

always be equipped with the symplectic form ω =
√
g dx2∧dx1 giving rise to the Poisson matrix

(C.14) of the system. The latter in none other than J in (1.24). Therefore, the problem reduces

to a manifold that can always be regarded as symplectic, without involving the magnetic field

whatsoever. Taking A3(x1, x2) as the Hamiltonian, we then arrive at the Hamiltonian system

(1.23) for the magnetic field. Moreover, in this case the system is completely integrable due to

the conservation of the Hamiltonian, A3 = const..

The symplectic structure of the magnetic field in general

On the other hand, in the more general problem of §1.2.2, the magnetic field enters the symplectic

structure. In this case, Proposition B.21 plays a crucial role.

To begin with, note that in terms of the equivalent potential and the variables introduced there

the 1-form expressing the vector potential is A = x̃1dx2 + Ã3dx
3 and the related presymplectic

form is B = dx̃1 ∧ dx2 + (∂Ã3/∂x̃
1) dx̃1 ∧ dx3 + (∂Ã3/∂x

2) dx2 ∧ dx3, both considered on the

x̃1x2x3-space denoted by M . But since B3 6= 0, we can always (use the rectification lemma and)

consider that the magnetic field lies on the x3-axis. In other words, we can find new variables

(y1, y2, x3) such that B(y1) = B(y2) = 0, while B(x3) = 1 is already set. In this coordinate

system, B = dy1 ∧ dy2 is expressed in canonical form.

Following the steps of the proposition’s proof, we construct then the dual E∗ of the character-

istic line bundle E, where the latter is defined in (B.56) by the kernel of B. According to Remark

B.19, sections of E are vector fields parallel to the magnetic field and therefore multiples of ∂x3 .

Consequently sections of the dual bundle E∗ are 1-forms expressed in the dual basis dx3. Thus,

if v is a 1-form on M , the generalized Liouville 1-form (B.58) on E∗ is ϑλ = v3dx
3. Since the
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presymplectic form B of M is of constant rank two, we can apply Proposition B.21 and define

on E∗ the symplectic form (B.59), for which ωλ = dv3 ∧ dx3, leading to

ω̃ = dv3 ∧ dx3 + π∗(B) (1.38)

Let us see how the induced symplectic form can indeed explain the Hamiltonian structure

of equations (1.27). First of all, to recover the dynamics of the magnetic field it is natural to

consider the 1-form A for the magnetic potential instead of any other v. In addition, we need of

course to go back to the variables of §1.2.2. In other words, instead of (y1, y2, x3, v3) we can use

(x̃1, x2, x3, ã3) as local coordinates on E∗, where ã3 is the value of the function Ã3(x̃1, x2, x3)

on R. That is to say, take ωλ = dã3 ∧ dx3. And then, when B is dragged under π∗ from M to

E∗, Ã3 can no longer be treated as a function, meaning π∗(B) = dx̃1 ∧ dx2 in these coordinates.

Hence the above symplectic form (within a sign) is none other than

ω̃ = dx2 ∧ dx̃1 − dã3 ∧ dx3 (1.39)

Now, ω̃ in (1.39) can be viewed as the extended symplectic structure (C.18) on the extended

four-dimensional phase space E∗ of the canonical symplectic form ω = dx2 ∧ dx̃1 on the two-

dimensional x̃1x2-space. Just as H̃ = Ã3 − ã3 is the extended Hamiltonian (C.16) of the x3-

dependent Hamiltonian H = Ã3 that describes the dynamics of the system on the hypersurface

H̃ = 0. In conclusion, ω̃ and H̃ are precisely the extended version of the Hamiltonian structure

of the non-autonomous system (1.27) given in terms of the canonical variables (x̃1, x2) and the

“time”-dependent Hamiltonian function Ã3.

Under the prism of presymplectic geometry, let us also revisit the widely used Clebsch repre-

sentation, which states that for every divergence-free magnetic field there exist functions a and

b such that B = ∇a×∇b. It first appeared in [66] and in [38], where Grad and Rubin gave also

a proof, which can be found more detailed in [28], section 5.2, as well. However, exploiting once

more the correspondence between a divergence-free magnetic field B and a presymplectic form

B in terms of the 1-1 mapping (B.46) of the wedge to the cross product, the above statement

expresses differently that B = da∧db. But this is just Darboux’ theorem B.18 for presymplectic

forms in the case of R3, providing canonical coordinates a and b for B, as stated in (B.55).

On this more solid ground, a word of caution is in order. According to Darboux’ theorem, the

existence of a and b is in general only guaranteed locally. Although not emphasized, this is also

mentioned in [38] unfortunately before the statements of the related theorems I and II of the

appendix I, by considering “small regions of spaces”. Only in certain cases, where magnetic

surfaces exist, such a representation can be defined globally, as, for example, the magnetic field
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(1.22) in 1.2.1. We should note that the magnetic surface requirement was also used in [66]. On

the other hand, when dropped (or replaced by the existence of only locally defined magnetic

surfaces one might say) as in [38], it leads to local considerations, i.e. a and b can be defined

only locally, and they may be multivalued functions, as well, as opposed to the well behaved,

single valued functions globally defined in the magnetic surface case.

The symplectic structure of charged particle motion

Last but not least, Proposition B.20 gives a connection between the presymplectic form B of

the magnetic field lines and the symplectic form ω of the charged particle motion. For, by

construction (see the related proof), the presymplectic Euclidean space R3 equipped with B can

be naturally embedded to the cotangent bundle T ∗R3 = R6 inducing the symplectic form (B.57)

ω = dvi ∧ dxi +B (1.40)

(where the projection from T ∗R3 to the base manifold R3 is here omitted). On the other hand,

the Poisson matrix J of the particle’s motion given in (1.13) is nondegenerate, and in light of

Proposition C.7 its inverse is the corresponding symplectic structure matrix for the Hamiltonian

system (1.15) in R6. But the latter is no other than the matrix Ω = (ωij) of the above symplectic

form ω (1.40), that is Ω = J−1. Consequently, the equations of the charged particle motion are

described by the symplectic structure ω introduced by the presymplectic form B of the magnetic

field through (1.40).

1.4 Parallel and perpendicular motion

Returning to the problem of the particle’s motion, another useful set of variables is a “cylindrical”

coordinate system for the velocity. These are the parallel and perpendicular velocities with

respect to the direction of the magnetic field, along with a third angle variable, widely known

as the gyrophase. Although conceptually simple, these variables may lead to very complicated

expressions, since the “cylinder” magnetic axis varies in space. The Hamiltonian formulation,

however, provides a rather easy and consistent way, which we can rely on to describe the problem

in terms of them. This set of velocity coordinates is actually the doorway to the guiding-center

variables, introduced later on. The Hamiltonian way of presenting them has also the advantage

of inducing the Hamiltonian version of the guiding-center motion.

We start off by considering the unit direction along the magnetic field b, and we decompose

the velocity vector v into two directions, parallel and perpendicular to b, denoted by v‖ and v⊥,
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respectively,

v = v‖ + v⊥ = v‖b+ v⊥n1 (1.41)

where v‖ = v · b and v⊥ = (v2 − v2
‖)

1
2 . A third direction can be defined that is perpendicular

to both b and n1 as n2 = b × n1, so that (b,n1,n2) is a right-handed orthogonal coordinate

system. Finally, the gyrophase ζ can be defined as the angle between n1 the normal vector n

of the magnetic field lines. The new unit vectors n1 and n2 are related to the the normal and

binormal vectors n and β, respectively, of the magnetic field lines as

n1(x, ζ) = cos ζ n(x) + sin ζ β(x)

n2(x, ζ) = − sin ζ n(x) + cos ζ β(x)
(1.42)

Inserting n1 in (1.41) and dot multiplying with n, we derive v⊥ cos ζ = v · n, from which we

can determine the angle ζ.

In order to recover the equation of motion in terms of the previously used space coordi-

nates and the above defined velocity coordinates
(
x, v‖, v⊥, ζ

)
it suffices to find the Hamiltonian

function and Poisson matrix in these new variables. The former is easily seen to be

H(x, v‖, v⊥) =
1

2
(v2
‖ + v2

⊥) + Φ(x), (1.43)

while for the latter we work as before, meaning calculate the Poisson brackets for the new vari-

ables using the bracket (1.16) in terms of the old ones (x,v). Only this time, since calculations

are much more lengthy, we can also make use of the properties of the Poisson bracket to reduce

them.

Obviously {xi, xj} = 0 once again, and note that for this bracket any two functions indepen-

dent of the velocities in general satisfy {F (x), G(x)} = 0. Next,{
xi, v‖

}
= {xi, vjbj(x)} = {xi, vj} bj + {xi, bj(x)} vj = δijbj = bi .

Moving on, from Leibniz’ rule (see Definition C.2), we have that {xi, v2
‖} = 2v‖

{
xi, v‖

}
= 2v‖bi

and
{
xi, v

2
}

= {xi, vjvj} = 2vj {xi, vj} = 2vjδij = 2vi, which help us arrive without complicated

calculations at

{xi, v⊥} =
1

2v⊥

{
xi, v

2
⊥
}

=
1

2v⊥

{
xi, v

2 − v2
‖

}
=

1

2v⊥

[{
xi, v

2
}
−
{
xi, v

2
‖

}]
=

1

2v⊥

(
2vi − 2v‖bi

)
= n1i .

In a similar way, we work our way for the angle ζ, for which, using property C.10, we note first

{xi, v⊥ cos ζ} = cos ζ {xi, v⊥}+ v⊥ {xi, cos ζ} = cos ζ {xi, v⊥} − v⊥ sin ζ {xi, ζ}. Therefore, with
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the help of the previously found bracket as well,

{xi, ζ} =
1

v⊥ sin ζ
[cos ζ {xi, v⊥} − {xi,v · n}] =

1

v⊥ sin ζ
[cos ζ n1i − {xi, vj}nj − {xi, nj} vj ]

=
1

v⊥ sin ζ
(cos ζ n1i − δijnj) =

1

v⊥ sin ζ

(
cos2ζ ni + cos ζ sin ζ βi − ni

)
=

1

v⊥
n2i .

The next three brackets between the cylindrical velocity coordinates require much more

lengthy calculations in order to derive expressions in terms of these new variables. Never-

theless, a point that needs to be made clear may save us from going in circles : until the brackets

are found the new variables
(
v‖, v⊥, ζ

)
are treated as functions of the old ones (x,v); but from

the moment we lose the brackets the old variables v are then considered as functions of the new

ones
(
x, v‖, v⊥, ζ

)
, which of course are now independent of each other. To stress this change in

treatment we denote the turning point by the letter N above the equality sign. The final form

of the expessions admits a nice representation if we also use the vector δ = v‖∇×b+ v⊥∇×n1,

which is simply the curl of the velocity in the new coordinate system.

{
v‖, v⊥

}
=

1

2v⊥

{
v‖, v

2
⊥
}

=
1

2v⊥

{
v‖, v

2 − v2
‖

}
=

1

2v⊥

{
v‖, v

2
}

=
vj
v⊥

{
v‖, vj

}
=
vj
v⊥
{vibi, vj}

=
vj
v⊥

[vi {bi, vj}+ bi {vi, vj}] =
vj
v⊥

[
vi
∂bi
∂xj

+ εijkbiBk

]
=

1

v⊥
vivj

∂bi
∂xj

N
=

1

v⊥
vj

[
∂ (vibi)

∂xj
− bi

∂vi
∂xj

]
= − 1

v⊥
bivj

∂vi
∂xj

= − 1

v⊥
b · [(v · ∇)v]

= − 1

v⊥
b ·
[

1

2
∇ |v|2 − v × (∇× v)

]
= − 1

v⊥
b ·
[

1

2
∇
(
v2
‖ + v2

⊥

)
− v × (∇× v)

]
=

1

v⊥
(b× v) · (∇× v) = (b× n1) · δ = n2 · δ

For the next bracket, we employ first
{
v‖, v⊥ cos ζ

}
= cos ζ

{
v‖, v⊥

}
− v⊥ sin ζ

{
v‖, ζ

}
just like

before, and also recall from the previous calculation that
{
v‖, vj

}
= vi∂bi/∂xj . Then, using the

same vector identities (including (A.36) towards the end) and similar techniques,

{
v‖, ζ

}
=

1

v⊥ sin ζ

[
cos ζ

{
v‖, v⊥

}
−
{
v‖,v · n

}]
=

1

v⊥ sin ζ

[
cos ζ n2 · δ −

{
v‖, vj

}
nj −

{
v‖, nj

}
vj
]

=
1

v⊥ sin ζ

[
cos ζ n2 · δ − vinj

∂bi
∂xj
− vivj {bi, nj} − bivj {vi, nj}

]
=

1

v⊥ sin ζ

[
cos ζ n2 · δ − vinj

∂bi
∂xj

+ bivj
∂nj
∂xi

]
N
=

1

v⊥ sin ζ

[
cos ζ n2 · δ + binj

∂vi
∂xj

+ bi
∂ (vjnj)

∂xi
− binj

∂vj
∂xi

]
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=
1

v⊥ sin ζ

[
cos ζ n2 · δ − binj

(
∂vj
∂xi
− ∂vi
∂xj

)]
=

1

v⊥ sin ζ
[cos ζ n2 · δ − b · [n× (∇× v)]] =

1

v⊥ sin ζ
[cos ζ n2 · δ − (b× n) · (∇× v)]

=
1

v⊥ sin ζ
(cos ζ n2 · δ − β · δ) =

1

v⊥ sin ζ

(
cos2ζ β − cos ζ sin ζ n− β

)
· δ = − 1

v⊥
n1 · δ

For the last bracket, consider
{
v2
⊥,v · n

}
= 2v⊥ {v⊥, v⊥ cos ζ} = −2v2

⊥ sin ζ {v⊥, ζ}, recalling

from the previous one that
{
v‖,v · n

}
= β · δ, too. Therefore,

{v⊥, ζ} = − 1

2v2
⊥ sin ζ

{
v2
⊥,v · n

}
= − 1

2v2
⊥ sin ζ

{
v2 − v2

‖,v · n
}

=
1

2v2
⊥ sin ζ

[{
v2
‖,v · n

}
−
{
v2,v · n

}]
=

1

v2
⊥ sin ζ

[
v‖
{
v‖,v · n

}
− vi {vi, vjnj}

]
=

1

v2
⊥ sin ζ

[
v‖β · δ − vi (nj {vi, vj} − vj {vi, nj})

]
=

1

v2
⊥ sin ζ

[
v‖β · δ − vi

(
εijknjBk − vj

∂nj
∂xi

)]
N
=

1

v2
⊥ sin ζ

[
v‖β · δ + |B|v · β − vinj

∂vj
∂xi

]
=

1

v2
⊥ sin ζ

[
v‖β · δ + v⊥ sin ζ |B| − n · [(v · ∇)v]

]
=
|B|
v⊥

+
1

v2
⊥ sin ζ

[
v‖β · δ + n · [v × (∇× v)]

]
=
|B|
v⊥

+
1

v2
⊥ sin ζ

[
v‖β · δ + (n× v) · (∇× v)]

]
=
|B|
v⊥

+
1

v2
⊥ sin ζ

[
v‖β · δ +

(
v‖n× b+ v⊥n× n1

)
· δ]
]

=
1

v⊥
(b ·δ + ωg)

where we set ωg = |B| meant only for the last bracket. For if we restore our equations to physical

units, the second term in the last parenthesis would be the Larmor frequency or gyrofrequency

ωg = q|B|/m, while

ρ =
v⊥
ωg

(1.44)

is known as the Larmor radius or gyroradius. The nature of these quantities that justifies their

names would be apparent in the next section.

Collecting all the above brackets, we can construct the Poisson matrix in terms of the variables(
x, v‖, v⊥, ζ

)
J
(
x, v‖, v⊥, ζ

)
=

 O T

−T D

 , (1.45)

where T = T (x, v⊥) = (b,n1,n2/v⊥) is the matrix with columns T i given by the cylindrical

velocity directions, while D = D
(
x, v‖, v⊥, ζ

)
is the matrix with elements Dij = T i · (T j × δ) +
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εijkδ1kρ
−1. The last relation follows from the last three brackets when expressed as triple

products, for example
{
v‖, v⊥

}
= n2 · δ = (b× n1) · δ = b · (n1 × δ). The resulting equations of

motion written as a Hamiltonian system (C.2) in terms of (1.43) and (1.45) are

dxi
dt

= bi
∂H

∂v‖
+ n1i

∂H

∂v⊥

dv‖

dt
= − bi

∂H

∂xi
+ n2 ·δ

∂H

∂v⊥

dv⊥
dt

= −n1i

∂H

∂xi
− n2 ·δ

∂H

∂v‖

dζ

dt
=

[
−n2i

∂H

∂xi
+ n1 ·δ

∂H

∂v‖
− (ωg + b ·δ)

∂H

∂v⊥

]
1

v⊥

(1.46)

Comparing the above Poisson matrix to (1.13), we see that the identity matrix has been

replaced by the matrix T consisting of the velocity directions, while B (1.14) has been replaced

by D. As a consequence (1.45) now depends apart from the positions on the velocities as well,

as opposed to (1.13). We note however that besides Jv‖v⊥ =
{
v‖, v⊥

}
and Jv‖ζ =

{
v‖, ζ

}
, the

rest of the Poisson matrix as well as the Hamiltonian are independent of the gyrophase ζ. Still,

it cannot qualify as an ignorable variable, but system (1.46), although complicated, points the

way towards the concept of the guiding center that averages out this angle. Before entering

this theory, in the next section we study a simple case, which nonetheless has the advantages

of a clear picture of several of the above concepts as well as an intuitive description of the

guiding-center notion.

Closing this section, we substitute the Hamiltonian (1.43) in (1.46) and finally see that the

equations of charged particle motion in terms of this rather mixed set of variables, consisting of

Cartesian position coordinates x and cylindrical velocity coordinates
(
v‖, v⊥, ζ

)
with respect to

the magnetic field, are of the form

dx

dt
= v‖b+ v⊥n1 (1.47a)

dv‖

dt
= E · b + v⊥n2 · δ (1.47b)

dv⊥
dt

= E · n1 − v‖n2 · δ (1.47c)

dζ

dt
=
(
E · n2 + v‖n1 · δ

) 1

v⊥
− ωg − b · δ (1.47d)

And last but not least, a Lagrangian formulation for this system is also at our disposal,

inherited from (1.17) and given by the Lagrangian function

L
(
x, v‖, v⊥, ζ, ẋ

)
=
(
A(x) + v‖b(x) + v⊥n1(x, ζ)

)
· ẋ− 1

2
(v2
‖ + v2

⊥)− Φ(x) (1.48)
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We notice the ζ-dependence of L through n1, and, as in (1.17), the independence of the deriva-

tives of the velocities. Interestingly enough, the Euler-Lagrange equations that correspond to

(1.48) express system (1.47) indirectly. Practicing for the guiding-center equations, let us see

how. First of all,

∂L

∂v‖
= 0⇒ b · ẋ− v‖ = 0⇒ ẋ · b = v‖

∂L

∂v⊥
= 0⇒ n1 · ẋ− v⊥ = 0⇒ ẋ · n1 = v⊥

∂L

∂ζ
= 0⇒ v⊥

∂n1

∂ζ
· ẋ = 0⇒ ẋ · n2 = 0

describe the components of the vector ẋ in the three coordinate axes b, n1 and n2, which then

have as an oblique result the expression (1.47a). The other set of equations,

0 =
d

dt

(
∂L

∂ẋi

)
− ∂L

∂xi
=

d

dt

(
Ai + v‖bi + v⊥n1i

)
−
(
∂Aj
∂xi

+ v‖
∂bj
∂xi

+ v⊥
∂n1j

∂xi

)
ẋj +

∂Φ

∂xi

= v̇‖bi + v̇⊥n1i + v⊥
∂n1i

∂ζ
ζ̇ +

[
∂Ai
∂xj
− ∂Aj
∂xi

+ v‖

(
∂bi
∂xj
− ∂bj
∂xi

)
+ v⊥

(
∂n1i

∂xj
−
∂n1j

∂xi

)]
ẋj +

∂Φ

∂xi

= v̇‖bi + v̇⊥n1i + v⊥ζ̇ n2i − εijkẋj
[
Bk + v‖ (∇× b)k + v⊥ (∇× n1)k

]
− Ei

= v̇‖bi + v̇⊥n1i + v⊥ζ̇ n2i − εijkẋj (Bk + δk)− Ei

corresponding now to the remaining variables xi, yield altogether the vector relation

v̇‖b+ v̇⊥n1 + v⊥ζ̇ n2 = ẋ× (B + δ) +E (1.49)

Then, dot multiplication of (1.49) with b, n1 and n2 and substitution of ẋ from (1.47a) give

(1.47b)-(1.47d), respectively,

v̇‖ = [ẋ× (B + δ) +E] · b = E · b+
[
b×

(
v‖b+ v⊥n1

)]
· δ = E · b+ v⊥n2 · δ

v̇⊥ = [ẋ× (B + δ) +E] · n1 = E · n1 +
[
n1 ×

(
v‖b+ v⊥n1

)]
· (B + δ) = E · n1 − v‖n2 · δ

v⊥ζ̇ = [ẋ× (B + δ) +E] · n2 = E · n2 +
[
n2 ×

(
v‖b+ v⊥n1

)]
· (B + δ)

= E · n2 +
(
v‖n1 − v⊥b

)
· (B + δ) = E · n2 +

(
v‖n1 − v⊥b

)
· δ − v⊥|B|

recalling also that ωg = |B| in the last expression.

1.5 Motion of a particle in simple electromagnetic fields

In this section we consider the case, where the electromagnetic field, besides stationary, is also

homogeneous, meaning a constant vector in R3. Both for convenience and more insight, we study
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first the particle’s motion in the absence of the electric field. With this preliminary, conclusions

can then be easily drawn for the general problem where both fields are present. See also Example

4.49 revealing how the next two subsections are connected.

1.5.1 E = 0, Homogeneous B

Consider first a homogeneous magnetic field when there is no electric field, that is B(x) = B is

a constant vector and E = 0. As already mentioned in Remark 1.8, a constant magnetic field,

besides b(x) = b being a constant vector, means that the rest two vectors of the Frenet triad

cannot be defined. Therefore, n and β in the previous formalism can be arbitrary (orthogo-

nal) constant vectors in the perpendicular plane. In this case, we can always choose from the

beginning the Cartesian frame of reference to be exactly (b,n,β). Let us retain at this point

this notation for easy reference to the previous as well as the next section, keeping in mind that

n and β are not defined in the sense of §1.2.3 and have nothing to do with the magnetic field

whatsoever.

Since n and β are constant in space, then n1 and n2 are independent of x, and, since b is,

too, therefore δ = 0. If x =
(
x‖, xn, xβ

)
denote the three positions along the axes b, n and β,

then the equations of motion (1.46) for this system are

dx‖

dt
= v‖

dxn
dt

= v⊥ cos ζ

dxβ
dt

= v⊥ sin ζ

dv‖

dt
= 0

dv⊥
dt

= 0

dζ

dt
= −ωg

(1.50)

where ωg = |B| is a constant. Note that ζ is still not ignorable. Also observe, that despite of the

Frenet triad defining a fixed reference frame, T 6= I, and although δ = 0, D 6= 0 neither. In other

words, the above set of variables are still noncanonical, as we can see from the corresponding

Poisson matrix

J =



0 0 0 1 0 0

0 0 0 0 cos ζ −sin ζ

v⊥

0 0 0 0 sin ζ
cos ζ

v⊥

−1 0 0 0 0 0

0 − cos ζ − sin ζ 0 0
ωg
v⊥

0
sin ζ

v⊥
−cos ζ

v⊥
0 −ωg

v⊥
0



, (1.51)
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Nevertheless, the above equations can easily be solved, starting from the last three. The fourth

and fifth one tell us that the speeds in both directions are constants, v‖(t) = v‖ and v⊥(t) = v⊥,

while the sixth one yields ζ(t) = ζ0 − ωgt, where subscripts 0 stand for initial conditions. Then,

integrating the first three equations we get

x‖(t) = x‖,0 + v‖t

xn(t) = xn,0 + ρ sin ζ0 − ρ sin (ζ0 − ωgt)

xβ(t) = xβ,0 − ρ cos ζ0 + ρ cos (ζ0 − ωgt)

where we recall ρ = v⊥/ωg. Therefore, if x0 = x‖,0b + xn,0n + xβ,0β the particle’s position in

space for any t is x(t) = x0 + v‖tb− [ρ sin (ζ0 − ωgt)− ρ sin ζ0]n+ [ρ cos (ζ0 − ωgt)− ρ cos ζ0]β

or, recalling (1.42), x(t) = x0 + v‖tb+ ρ [n2(ζ0 − ωgt)− n2(ζ0)]. Put more simply the particle’s

motion,

x(t) = x̃0 + v‖tb+ ρn2(ζ0 − ωgt) , (1.52)

is a linear combination of the fixed vector x̃0 = x0− ρn2(ζ0), a uniform motion with velocity v‖

along the constant direction b of the magnetic field and a constant motion along the uniformly

varying direction n2, which means a uniform rotation of radius ρ with angular frequency −ωg
around the point x̃0 in the perpendicular plane. Thus the particle’s trajectory, combining the

parallel uniform translation and the perpendicular uniform rotation, results in a helix of radius

ρ and slope v‖/ρ wound around the magnetic field line that passes through the point x̃0, with

angular frequency −ωg. Note that the latter is positive for negatively charged particles.

Although solved and completely determined, let us investigate a bit further system (1.50),

preparing the ground for the next section. For the moment we neglect the rotating part of the

motion and focus only on the translation along the magnetic field. In other words, we don’t

follow the entire helical trajectory x(t) but only the motion of the centre x̃(t) of the helix. This

can be expressed by considering the vector

x̃ = x− ρn2(ζ) (1.53)

analogously to the fixed vector x0 − ρn2(ζ0) which simply gives

x̃(t) = x̃0 + v‖tb (1.54)

If we want to restore the Hamiltonian formulation in terms of the new variables
(
x̃, v‖, v⊥, ζ

)
,

where x̃ =
(
x‖, x̃n, x̃β

)
with x̃n = xn+ρ sin ζ and x̃β = xβ−ρ cos ζ, we can easily calculate the
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Poisson brackets

{
x‖, x̃n

}
=
{
x‖, xn

}
+

1

ωg

{
x‖, v⊥ sin ζ

}
=

1

ωg

[
sin ζ

{
x‖, v⊥

}
+ v⊥ cos ζ

{
x‖, ζ

}]
= 0{

x‖, x̃β
}

=
{
x‖, xn

}
− 1

ωg

{
x‖, v⊥ cos ζ

}
= − 1

ωg

[
cos ζ

{
x‖, v⊥

}
− v⊥ sin ζ

{
x‖, ζ

}]
= 0

{x̃n, x̃β} = {xn, xβ} −
1

ωg
{xn, v⊥ cos ζ}+

1

ωg
{v⊥ sin ζ, xβ} −

1

ω2
g

{v⊥ sin ζ, v⊥ cos ζ}

= − 1

ωg
cos ζ {xn, v⊥}+

v⊥
ωg

sin ζ {xn, ζ}+
1

ωg
sin ζ {v⊥, xβ}+

v⊥
ωg

cos ζ {ζ, xβ}−

− 1

ω2
g

sin ζ {v⊥, v⊥ cos ζ} − v⊥
ω2
g

cos ζ {ζ, v⊥ cos ζ}

= − 1

ωg
− 1

ωg
+
v⊥
ω2
g

sin2 ζ {v⊥, ζ} −
v⊥
ω2
g

cos2 ζ {ζ, v⊥} = − 1

ωg{
x̃n, v‖

}
=
{
xn, v‖

}
+

1

ωg

{
v⊥ sin ζ, v‖

}
=

1

ωg

[
sin ζ

{
v⊥, v‖

}
+ v⊥ cos ζ

{
ζ, v‖

}]
= 0{

x̃β, v‖
}

=
{
xn, v‖

}
− 1

ωg

{
v⊥ cos ζ, v‖

}
= − 1

ωg

[
cos ζ

{
v⊥, v‖

}
− v⊥ sin ζ

{
ζ, v‖

}]
= 0

{x̃n, v⊥} = {xn, v⊥}+
1

ωg
{v⊥ sin ζ, v⊥} = cos ζ +

v⊥
ωg

cos ζ {ζ, v⊥} = 0

{x̃β, v⊥} = {xβ, v⊥} −
1

ωg
{v⊥ cos ζ, v⊥} = sin ζ +

v⊥
ωg

sin ζ {ζ, v⊥} = 0

{x̃n, ζ} = {xn, ζ}+
1

ωg
{v⊥ sin ζ, ζ} = −sin ζ

v⊥
+

1

ωg
sin ζ {v⊥, ζ} = 0

{x̃β, ζ} = {xβ, ζ} −
1

ωg
{v⊥ cos ζ, ζ} =

cos ζ

v⊥
− 1

ωg
cos ζ {v⊥, ζ} = 0

involving of course only the new variables x̃n and x̃β, since the rest are already known. Therefore,

in terms of the new coordinates the Poisson matrix is

J =



0 0 0 1 0 0

0 0 − 1

ωg
0 0 0

0
1

ωg
0 0 0 0

−1 0 0 0 0 0

0 0 0 0 0
ωg
v⊥

0 0 0 0 −ωg
v⊥

0



, (1.55)

The Hamiltonian function of course remains the same as before, meaning the one for system
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(1.50) given by equation (1.43) for Φ = 0. Hence, system (1.50) is now expressed as

dx‖

dt
= v‖

dx̃n
dt

= 0

dx̃β
dt

= 0

dv‖

dt
= 0

dv⊥
dt

= 0

dζ

dt
= −ωg

(1.56)

Note that the Poisson bracket for this system is very close to a canonical representation

{F,G} =
∂F

∂x‖

∂G

∂v‖
− ∂F

∂v‖

∂G

∂x‖
+

1

ωg

(
∂F

∂x̃β

∂G

∂x̃n
− ∂F

∂x̃n

∂G

∂x̃β

)
+
ωg
v⊥

(
∂F

∂v⊥

∂G

∂ζ
− ∂F

∂ζ

∂G

∂v⊥

)
(1.57)

The main advantage of the transformation (1.53) is the elimination of the variable ζ from the

resulting equations (1.56) of the system. Even though this system has been already solved and

integrals of motion are already apparent, for future purposes let us find the conserved physical

quantity behind the ingnorable gyrophase ζ in this simple case. This discussion could be further

elaborated in terms of symmetries and Noether’s theorem presented later on. But for the time

being it suffices to employ the typical characteristic of Hamiltonian systems that the conjugate

variable µ to an ignonarable variable ζ is a first integral of motion. From (1.57), we see that the

condition {µ, ζ} = 1 simply reduces to ∂µ/∂v⊥ = v⊥/ωg that yields µ = v2
⊥/(2ωg) or restoring

physical units

µ =
mv2
⊥

2|B|
. (1.58)

The quantity µ is known as the magnetic moment, and plays a crucial role in guiding-center

theory. Here (1.58) is easily verified as a first integral, since both v⊥ and |B| are constant.

In summary, we have transformed the original system to a much simpler one that a) admits ζ

as an ignorable variable, i.e. a symmetry in the ζ-direction n2. Moreover, in this new system b)

the magnetic moment appeared as the conjugate variable to ζ, yielding therefore an integral of

motion. Of course, for system (1.50) this integral is functionally dependent on the already known

first integral v⊥. However, even with just the addition of a homogeneous electric field in the

picture, presented in the next subsection, neither of the two velocities are conserved and no first

integral is that obvious, besides the Hamiltonian. Therefore, it would be desirable to find (if they

exist) such transformations in more general cases in order to discover (if they exist) integrals of

motion. The two aspects a) and b) give us an illustrative example of forthcoming developments

in this simple case and are also the key ingredients of the guiding-center transformation for more

general electromagnetic fields.
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1.5.2 Homogeneous B, E

We now assume that both the magnetic and the electric field are present and homogeneous,

given by constant vectors B(x) = B and E(x) = E in R3. The fixed reference frame can still

be given by the Frenet triad, but let us instead use a moving reference frame, which brings in

perhaps the most easy treatment of this case. So, we consider a Galilean transformation

x̄ = x− vt, (1.59)

where v is the constant velocity of the moving frame. The reason why (1.59) is suitable becomes

evident when we express the motion of a charged particle in the new variables ¨̄x = ẍ = ẋ×B+

E = ˙̄x×B + v ×B +E. For if we choose

v =
1

|B|2
E ×B (1.60)

the last two terms at the right hand side of the equations cancel out, leaving only the parallel

component of the electric field, v ×B +E = [(E ·B)B − (B ·B)E]/|B|2+E = E‖.

Therefore, in the frame of reference that moves with the constant velocity (1.60) the system

takes the form

¨̄x = ˙̄x×B +E‖ (1.61)

and can be decomposed in the parallel direction and the perpendicular plane with respect to

the magnetic field,

¨̄x‖ = E‖

¨̄x⊥ = ˙̄x⊥ ×B
(1.62)

where E‖ is a constant. The former can be easily integrated yielding the parabola (1.63), while

the latter is the system studied in the previous subsection and whose solution was decribed in

(1.52),

x̄‖(t) = x̄‖,0 + v̄‖,0t+
1

2
E‖t

2 (1.63)

x̄⊥(t) = x̄⊥,0 + ρ̄
[
n̄2

(
ζ̄0 − ωgt

)
− n̄2

(
ζ̄0

)]
(1.64)

whereas v̄‖(t) = v̄‖,0 + E‖t, v̄⊥(t) = v̄⊥ and ζ̄(t) = ζ̄0 − ωgt. So, in the moving reference frame

the particle undergoes the combined motion,

x̄(t) = x̄0 +

(
v̄‖,0t+

1

2
E‖t

2

)
b+ ρ̄

[
n̄2

(
ζ̄0 − ωgt

)
− n̄2

(
ζ̄0

)]
, (1.65)
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of a uniform acceleration E‖ in the direction of the magnetic field and a uniform rotation of

radius ρ̄ = v̄⊥/|B| around the point x̄0 − ρ̄n̄2

(
ζ̄0

)
with angular frequency −ωg. An observer in

this frame of reference will still see the particle’s trajectory wrapped around the magnetic field

line passing through x̄0 − ρ̄n̄2

(
ζ̄0

)
, only this time uniformly accelerated along that field line.

Although simple enough in the moving coordinate system, the solution needs to be expressed

back in the original fixed coordinates. First of all, from (1.60), we see that v‖ = v · b = 0,

i.e. the transformed reference frame moves perpendicularly to the magnetic field. Therefore,

nothing changes in the parallel direction, meaning x̄‖ = x‖ and v̄‖ = v‖. On the other hand, all

the transformation takes place in the perpendicular plane, that is, (1.59) with the choice (1.60)

simply reduces to

x̄⊥ = x⊥ − vt (1.66)

that also results in v̄⊥ = v⊥ − v. Thus, an observer in the moving frame of reference sees the

particle’s perpendicular velocity v̄⊥ = v̄⊥n̄1 in a different direction than an observer in the fixed

reference frame, for whom v⊥ = v⊥n1. Consequently, if ζ is as usual the angle between n1

and n measured by the second observer, then the first observer measures a different angle, say

ζ̄ = ζ − χ, between n̄1 and (the fixed axis for both systems) n. The relation between the two

directions is given by

n̄1

(
ζ̄
)

= n1(ζ − χ) ,

n̄2

(
ζ̄
)

= n2(ζ − χ)
(1.67)

and then the second relation follows easily from n̄2 = b× n̄1. A little trigonometry shows that

the difference between the two angles is χ = arctan (− v̄⊥ · n2/(v̄⊥ · n1)) or

χ = arctan

(
v2

v⊥ − v1

)
, (1.68)

where v1 = v · n1 = E · n2/|B| and v2 = v · n2 = −E · n1/|B|. Now, we have all we need to

express the solution (1.65) in the original coordinate system, and so inverting (1.66) we get

x(t) = x̃0 +

(
v‖,0t+

1

2
E‖t

2

)
b+
|v⊥,0 − v|
|B|

n2(ζ0 − χ0 − ωgt) + vt (1.69)

for v (1.60), where x̃0 = x̄0 − ρ̄n̄2

(
ζ̄0

)
= x0 − |v⊥,0 − v|n2(ζ0 − χ0) /|B|. More explicitly,

x‖(t) = x‖,0 + v‖,0t+
1

2
E‖t

2

xn(t) = x̃n,0 −
|v⊥,0 − v|
|B|

sin (ζ0 − χ0 − ωgt) + vnt

xβ(t) = x̃β,0 +
|v⊥,0 − v|
|B|

cos (ζ0 − χ0 − ωgt) + vβt

(1.70)
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From the above expressions, we deduce that the particle’s motion in the original reference

frame is the superposition of a uniform acceleration E‖ along the magnetic field, a uniform rota-

tion of radius |v⊥,0 − v| /|B| around x̃0 with angular frequency −ωg in the perpendicular plane

and a uniform motion with velocity v (1.60) perpendicular to both the magnetic and the electric

field. Following the example of the previous subsection, if we extract the rotating part from the

particle’s motion by defining the vector x̃ = x̄− ρ̄n̄2

(
ζ̄
)

= x− |v⊥,0 − v|n2(ζ − χ− ωgt) /|B|,

then the rest of the motion is described by

x̃(t) = x̃0 +

(
v‖,0t+

1

2
E‖t

2

)
b+

E ×B
|B|2

t (1.71)

Note that for E = 0 we recover the solution (1.54). The differences now between the case

studied here of a homogeneous electromagnetic field and the previous one of just a homogeneous

magnetic field are better revealed, if we compare (1.54) and (1.71). From their comparison we

identify the following two new features appearing due to the presence of the electric field that

correspond to the last two terms of the above expression : i) the particle is uniformly accelerated

along the magnetic field instead of moving with constant velocity, and more importantly ii) the

center of the perpendicular rotation is no longer fixed but drifts at constant speed that is

perpendicular to both fields.

The second characteristic breaks the helical symmetry of the particle’s motion and results in

a trajectory in the perpendicular plane known as a trochoid in general. The latter is expressed

parametrically by the last two equations of (1.70), but instead of the directions n and β, we

may better use the directions of w and E⊥,

xw(t) = x̃w,0 −
|v⊥,0 − v|
|B|

sin (ζ0 − χ0 − α− ωgt) + vt

xE⊥(t) = x̃E⊥,0 +
|v⊥,0 − v|
|B|

cos (ζ0 − χ0 − α− ωgt)
(1.72)

where α is the fixed angle between v and n and v = |v|= |E⊥|/|B|. Now the interpretation of

the trochoid becomes more clear; it describes the particle as a fixed point at a constant distance

|v⊥,0 − v| /|B| from the center of a rolling circle of radius v/ωg that rolls (without sliding) along

the direction of v in the perpendicular plane. For clarity and not to get lost in too many initial

conditions, let us see a particular case.

Example 1.12. Take for example ζ0 − χ0 = α, i.e. at t = 0 the vector n̄1 is parallel to v, and

assume that the particle starts with zero perpendicular initial velocity, v⊥,0 = 0. Then (1.72)



1.5 Motion of a particle in simple electromagnetic fields 29

reduce to

xv(t) = xv,0 +
v

ωg
(ωgt+ sin (ωgt))

xE⊥(t) = xE⊥,0 +
v

ωg
(1 + cos (ωgt))

(1.73)

which describe a particular case of a trochoid, called cycloid. This is the case where the fixed

point with respect to the rolling circle lies on the circle.

Other types of trochoids are encountered, depending on the initial velocity v⊥,0. For example,

if v⊥,0 < v1,0 then the said fixed point lies inside the rolling circle and we have a contracted

trochoid, while when v⊥,0 > v1,0 the fixed point lies outside the rolling circle and we get an

extended trochoid.

The above behaviour of a moving rotation center that is entirely due to the presence of the

electric field represented by the last term in (1.71) is commonly known as the E×B drift or the

electric drift. Note that this drift motion is independent of the particle’s charge, i.e. positive

and negative charges drift in the same direction. Thus the electric drift cannot give rise to a

current. We should also have in mind that in order to remain in the validity of the Newtonian

description considered so far, we must demand v << c and therefore |E|<< c|B|.

Closing this section, we conclude that, as already promised from the Introduction, the tra-

jectories of charged particles even for simple electromagnetic fields are not simple at all. From

the analysis presented here we understand that the main reason is that the magnetic field forces

the charged particle in a rotating motion around the magnetic field lines, widely called gyration.

When this rotation was absorbed in the coordinates x̃, the rest of the motion in either case

was guided by the center of gyration. To avoid any confusion we comment that the Galilean

transformation (1.59) adopted in the case of an additional homogeneous electric field E 6= 0 has

nothing to do whatsoever with the elimination of the gyrophase ζ giving rise to the magnetic

moment µ as a first integral investigated in the E = 0 case. Hoping to serve as an illustrative

example in §1.5.1, this step with all its Hamiltonian aspects was intentionally not repeated in

§1.5.2, left for more general electromagnetic fields in the next section, avoiding lengthy case

by case calculations. For even just an additional homogeneous electric field, transformation

(1.53) would not be enough to remove ζ, and
(
v‖, v⊥, ζ

)
would need to be transformed too.

This treatment and the limits of its validity for the general problem are the subject of the next

section.
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1.6 Guiding center motion

In retrospect, for the case of just a homogeneous magnetic field if we had not solved the original

system (1.50), its solution could always be recovered even more easily from the solution of (1.56)

and the inverse transformation (1.53). In fact, taking one step further, to a first approximation

we could have completely disregarded the gyration of the particle, since most charged particles,

such as electrons, protons, etc., have small masses, especially compared to their charge, and

consequently very high gyrofrequencies and very small gyroradii. Therefore the particle’s ro-

tation around the magnetic field line is only a very small deviation from the motion along the

magnetic field. What is more important is that in any case, besides this small rotation, the rest

of the trajectory x(t) that governs the evolution of the particle in space is one-to-one followed

by the trajectory x̃(t) of an imaginary particle, known as the guiding center.

The above considerations and the concept of this imaginary particle can be approximately

generalised for inhomogeneous electromagnetic fields, leading to a treatment that is widely used

in charged particle motion. The basic idea behind the guiding-center approximation is that the

particle’s motion consists of a very fast rotation around the magnetic field and a motion almost

along the magnetic field subject to certain drifts. The center of rotation that undergoes the

second part of the motion is called the guiding center. As the reader might have guessed, the

center of the helixes in 1.5.1 or the trochoids in 1.5.2 is the guiding center for these cases. The

guiding-center picture is realistic, when the electromagnetic field is weakly inhomogeneous, and

more precisely when the gyroradius ρ (1.44) is much smaller than certain characteristic lengths

of the magnetic field,

ρ << λ,κ, σ (1.74)

such as the scale length λ and the curvature and torsion radii κ and σ, respectively, of the

magnetic field lines (see §1.2.3). Below we recall collectively the above quantities from previous

sections, including the definition of the scale length,

ρ =
v⊥
ωg
, λ =

|B|
|∇|B||

, κ =
1

|(b · ∇) b|
, σ = − 1

n · [(b · ∇)β]

In this section we briefly go through the steps of the construction for the guiding-center aver-

aging transformation, arriving at the guiding-center equations of motion in Hamiltonian form.

We give a qualitative description, as full calculation details are quite lengthy and beyond the

scope of this chapter. The path followed is based however on the Poisson bracket methods

manifested in the previous sections, and similar in concept with former implementations. Al-

though the results presented are originally due to Littlejohn [77], the construction below was
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conceptually simplified by Weyssow and Balescu [114]. This route adopted here using the Pois-

son brackets has been lately very popular in statistical approaches, such as the Fokker-Planck

equation, leading respectively to the so-called Gyrokinetics.

We start with the equations of motion (1.47) in terms of the parallel and perpendicular

direction with respect to the magnetic field. As previously discussed, the gyrofrequency is quite

high for most charged particles, when (1.74) is valid. In this case, ωg is the dominant term in

the equation (1.47d) that describes the evolution of the gyrophase. This very fast gyration can

be realized by simply introducing a scaling parameter ε << 1 and replacing the gyrofrequency

with ωg/ε. Then, focusing on the dependence of the terms involved and the special role of ζ

among the rest of the variables z =
(
x, v‖, v⊥

)
, equations (1.47) taken together are expressed as

dz

dt
= f(z, ζ)

dζ

dt
= −1

ε
ωg(z) + f6(z, ζ)

(1.75)

where f = (f1, f2, f3, f4, f5) is the right hand side of (1.47a)-(1.47c), and f6 the rest of (1.47d).

The procedure continues motivated by earlier works of Kruskal [67] and Littlejohn [76], stating

that there always exists a transformation

w̃ = w + εg(w) +O
(
ε2
)
, (1.76)

where w = (z, ζ), under which the system in the new variables w̃ = (z̃, ζ̃), where z̃ =
(
x̃, ṽ‖, ṽ⊥

)
,

will be independent of the transformed gyrophase ζ̃ at least up to first-order terms,

dz̃

dt
= f̃0(z̃) + εf̃1(z̃) +O

(
ε2
)

dζ̃

dt
= −1

ε
ωg(z̃) + f̃60 (z̃) + εf̃61 (z̃) +O

(
ε2
) (1.77)

arguing that the elimination of ζ̃ could be carried over to higher order terms, as well1. Actu-

ally Littlejohn’s line of work stays very close to the proof of Darboux’ theorem for symplectic

manifolds (see appendix B). Both he and Kruskal showed that (1.76) is not unique.

In their construction, Weyssow and Balescu exploiting the non-uniqueness of transformation

(1.76) required the system (1.77), describing the motion of the guiding center, to be Hamiltonian,

too. For this to be the case, they suggested the following two conditions at least up to first-order

terms : i) the Poisson matrix in the new coordinates to be independent from the new gyrophase

1. The claim that this elimination can be extended to terms of all orders is only formally guaranteed; otherwise

some sort of symmetry would be admitted by the equations, as we will see in chapter 4.
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ζ̃, meaning J(w̃) = J0(z̃) + εJ1(z̃) +O
(
ε2
)

and so {w̃i, w̃j} = Jij,0(z̃) + εJij,1(z̃) +O
(
ε2
)

or

∂ {w̃i, w̃j}
∂ζ

= O
(
ε2
)
, (1.78)

and still having enough freedom in the choice of the new variables ii) the form of the new

Hamiltonian function will remain invariant, that is

H(x̃, ṽ‖, ṽ⊥) =
1

2
(ṽ2
‖ + ṽ2

⊥) + Φ(x̃) +O
(
ε2
)
. (1.79)

Observe that, given the non-uniqueness of w̃, the partial differential equations (1.78) do not

have to be solved in full generality, but special solutions suffice. Therefore, one can start off

with arbitrary functions g = (g1, g2, g3, g4, g5, g6) in (1.76), and implementing (1.78) and (1.79)

solve for gi keeping solutions as simple as possible. Once g and therefore w̃ is found, then the

construction of the Poisson matrix in terms of w̃ can follow using the repeated technique in this

chapter summarised in Remark C.5. And the resulting guiding-center equations (1.77) can be

built as usual by formula (C.2). Thus, the guiding-center system naturally inherits the Poisson

structure from the original one with a physically meaningful Hamiltonian function.

In this way the construction of the transformation (1.76) has been carried out through second-

order terms. Below we see the guiding-center averaging transformation up to first-order terms.

x̃ = x− εv⊥
ωg
n2

ṽ‖ = v‖ + εv⊥
v⊥
ωg

{
1

4
[2b ·(∇×b) + n1 ·(∇×n1)− n2 ·(∇×n2)] +

v‖

v⊥
n1 ·(∇×b)

}
ṽ⊥ = v⊥ − εv‖

v⊥
ωg

{
1

4
[2b ·(∇×b) + n1 ·(∇×n1)− n2 ·(∇×n2)] +

v‖

v⊥
n1 ·(∇×b) +

v‖

v⊥
n2 ·E

}
ζ̃ = ζ − ε

ωg

{
v‖

4
[n2 ·(∇×n1) + n1 ·(∇×n2)] +

v2
‖

v⊥
n2 ·(∇×b)− v⊥b ·(∇×n2)− 1

v⊥
n1 ·E +

+ v⊥n1 ·
∇|B|
|B|

}
Note that for a homogeneous magnetic field and zero electric field we recover transformation

(1.53). As Balescu points out ([4], p. 60) in order to determine the Poisson brackets through order

ε the new variables have to be calculated through order ε2, stressing the fact that the ε-ordering

of the Poisson matrix and the new variables is not the same. For details of the Poisson structure

see [4]. Here we directly present the resulting equations under the above transformation which

can be neatly expressed as

dx̃

dt
= ṽ‖b+

ε

ωg
b×N (1.80a)
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dṽ‖

dt
= − ṽ2

⊥b ·G+ b ·E +
ε

ωg
ṽ‖K · (b×N) (1.80b)

dṽ⊥
dt

= ṽ‖ṽ⊥b ·G +
ε

ωg
ṽ⊥G · (b×N) (1.80c)

dζ̃

dt
= −ωg

ε
− ṽ‖b · (∇n · β) +

ṽ‖

2
b · (∇× b) (1.80d)

where N = ṽ2
‖K + ṽ2

⊥G − E, recalling from (1.32) that K = (b · ∇) b is the curvature vector,

and defining G = ∇|B|/(2|B|), while ∇n · β in the last equation denotes the vector with

components β · ∂n/∂xi. The second term at the right hand side of (1.80a) includes the drift

velocities of the guiding center. We easily identify the last term of this cross product b ×N

as the E × B-drift we met earlier in §1.5.2 (see equation (1.60)). The other two terms that

corresppond to b×K and b×G are known as the curvature and grad-|B| drifts, respectively.

Since none of the vectors b,n,β,G,K,E depends on ζ̃, equations (1.80) are truly independent

of the new gyrophase as intended from the beginning. Therefore, the first five equations can be

solved independently from the last one, and then in principle their solution could be substituted

in (1.80d) to solve it by quadrature. In fact the latter step can be omitted, if someone is not

interested in the evolution of the gyrophase. Furthermore, given the Poisson structure of the

system one can prove that, similarly to the homogeneous case we saw in the previous section,

the ignorable variable ζ̃ for first-order terms corresponds to a conserved quantity µ̃ through

first-order terms as well, i.e. an adiabatic invariant,

dµ̃

dt
= 0 +O(ε2)

This is the canonical conjugate to the new gyrophase, meaning {µ̃, ζ̃} = 1, that can actually be

defined as the magnetic moment in the new coordinates, and which for ε −→ 0 coincides with

the original magnetic moment,

µ̃ =
ṽ2
⊥

2 |B(x̃)|
= µ+O(ε) (1.81)

Therefore, we can replace ũ⊥ and use µ̃ as a variable instead, reducing the system by one

more degree. This means that if the solution x̃(t) is found from (1.80a), then the perpendicular

velocity can always be recovered by inverting (1.81), that is v⊥ =
√

2µ̃|B(x̃)|, where µ̃ = µ̃0

is determined from the transformed magnetic moment’s initial condition. Thus, in conclusion

system (1.80) is only left with the first four equations (1.80a)-(1.80b). These are the so-called

guiding-center equations, which describe approximately the evolution of the particle in space

that is of main interest, leaving out the less significant, very fast gyromotion. If we define a
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modified magnetic direction b̃ = b+ ε ṽ‖b×K/ωg their form can also be given as

dx̃

dt
= ṽ‖b̃+

ε

ωg
b× (µ̃∇|B| −E) (1.82a)

dṽ‖

dt
= − b̃ · (µ̃∇|B| −E) (1.82b)

We emphasize that all vector fields either in (1.80) or the above equations (1.82) are evaluated

at x̃.

Complementary to the Hamiltonian formulation a Lagrangian one for the guiding-center mo-

tion has also be given by Littlejohn in [78] starting from (1.48). However, the guiding-center

variables adopted in this section, considered by Weyssow and Balescu [4, 114], are slightly dif-

ferent from Littlejohn’s in that particular paper2. Therefore the variational principle considered

here for the guiding-center system hardly deviates from the one presented in [78] and also fol-

lowed by most authors, e.g. White [118]. That said, the Lagrangian function in terms of the

variables x̃, ṽ‖, µ̃ and ζ̃ is expressed as

L =

[
A

ε
+ ṽ‖b− εµ̃

(
∇n · β − 1

2
∇× b

)]
· ˙̃x− εµ̃ ˙̃

ζ − 1

2
ṽ2
‖ − µ̃ |B| − Φ +O

(
ε2
)

(1.83)

up to first-order terms. In order to see how the corresponding Euler-Lagrange equations describe

the guiding-center equations, we start off with

∂L

∂ṽ‖
= 0⇒ b · ˙̃x− ṽ‖ = 0⇒ ṽ‖ = b · ˙̃x (1.84)

An advantage of the Lagrangian formulation is that, in light of (1.83), the independence of

the new gyrophase now straightforwardly yields the conservation of the transformed magnetic

moment up to first-order terms,

d

dt

(
∂L

∂
˙̃
ζ

)
= 0⇒ ε

dµ̃

dt
= 0

As expected the equation for the conjugate variable µ̃ describes the evolution of ζ̃ given in

(1.80d) with the help however of (1.84),

∂L

∂µ̃
= 0⇒ −ε

(
∇n · β − 1

2
∇× b

)
· ˙̃x− ε ˙̃

ζ − |B| = 0

⇒ ˙̃
ζ = −ωg

ε
− ṽ‖b ·

(
∇n · β − 1

2
∇× b

)
2. Nonetheless, inconsistencies or merely misprints between the two formulations can also be found between the

two papers [77] and [78] of Littlejohn.
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The same calculations that led from (1.48) to (1.49) show that the rest of the equations with

respect to the variables x̃i result in

∂L

∂x̃i
− d

dt

(
∂L

∂ ˙̃xi

)
= 0⇒ ε ˙̃v‖b = ˙̃x×

(
B + εṽ‖∇× b

)
+ ε (E − µ̃∇|B|) (1.85)

keeping first-order terms, meaning the third term appearing inside the bracket in (1.83) con-

tributing as an ε2-order term in (1.85) is neglected. Before continuing it would be advantageous

to define the modification of the magnetic field typically used in the literature,

B̃ = B + εṽ‖∇× b (1.86)

and B̃‖ = B̃ · b, in terms of which the modified magnetic direction makes more sense, as

b̃ = B̃/B̃‖. Note that these considerations are not just mathematically convenient, as the

divergence-free condition ∇ · B̃ = 0 still preserved demonstrates. The latter gives rise to a

modified vector potential

Ã = A+ εṽ‖b, (1.87)

too. Moving on, crossing (1.85) with b gives (b · B̃) ˙̃x − (b · ˙̃x)B̃ = ε b × (µ̃∇|B| −E), which

substituting (1.84) and solving for ˙̃x yields (1.82a),

˙̃x =
1

B̃‖

[
ṽ‖B̃ + ε b× (µ̃∇|B| −E)

]
= ṽ‖b̃+

ε

|B|
b× (µ̃∇|B| −E)

recalling once again ωg = |B|. Finally dotting (1.85) with B̃, we easily get (1.82b),

ε ˙̃v‖B̃ · b = εB̃ · (E − µ̃∇|B|)⇒ ˙̃v‖ = b̃ · (E − µ̃∇|B|)

Comparing with section 1.4 we see that, while the Lagrangian of the guiding center comes from

the Lagrangian of the parallel and perpendicular motion, the corresponding Euler-Lagrange

equations in the two cases require different manipulation to arrive at the equations of motion.

1.7 Relativistic motion

Electromagnetic fields often accelerate charged particles to very high energies, due to their

small masses, like the electron’s mass. When particles reach velocities close to the speed of

light, relativistic effects must be taken into account. In order to do so, the equations of motion

(1.3) have to be reformulated

dx

dt
=

u

γ(u)
,

du

dt
=

1

γ(u)
u×B(x) +E(x).

(1.88)
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where u is the proper velocity. The latter is the spatial component of the four-velocity defined

(as the tangent vector to a timelike world line) in the Minkwoski spacetime, and its relation to

the velocity v is u = γv, where γ(v) = 1/
√

1− (v/c)2 is the Lorentz factor, c being the speed of

light. From the last two equations we can also express the Lorentz factor in terms of the proper

velocity,

γ(u) =

√
1 +

u2

c2
(1.89)

One way to pass from Newtonian Mechanics to the realm of Special Relativity is to suitably

modify the Lagrangian or the Hamiltonian function for a given problem. Of course, this is not

always possible, but the nature of the Lorentz force allows to do so, because, recalling Remark

1.2, it stems from a generalized potential, which is linear in the velocities. So, this route will

also be followed here to recover the Hamiltonian formulation for the relativistic charged particle

motion. In this context, the kinetic energy of the system mv2/2 is replaced by mc2 = moγc
2,

where mo is the rest mass. Therefore, from (1.12) and (1.89) the Hamiltonian function3 in terms

of the position and the proper velocity is

H(x,u) = γ(u)c2 + Φ(x) = c
√
c2 + u2 + Φ(x). (1.90)

We should stress that this cannot be considered as a change of variables from v to u, mean-

ing that the Poisson structure remains the same. Only the Hamiltonian changed based on

physics arguments, regarded as the particle’s energy. Thus, system (1.88) can be described as a

Hamiltonian system with the same Poisson structure matrix (1.13), and the above Hamiltonian

function,

dxi
dt

=
∂H

∂ui
dui
dt

= εijkBk
∂H

∂uj
− ∂H

∂xi

(1.91)

This can be easily verified since, using again (1.89), the derivatives of H with respect to the

proper velocities are ∂H/∂ui = cui/
√
c2 + u2 = ui/γ.

The canonical formulation follows a similar path. The relativistic momenta are p = u +A,

in terms of which the previous Hamiltonian can be exressed as

H(x,p) = c

√
c2 + (p−A(x))2 + Φ(x). (1.92)

3. setting mo = 1 following the previously adopted normalisation
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Using (1.92), the relativistic charged particle motion (1.88) can be described by the usual canon-

ical form of Hamilton’s equations,

dxi
dt

=
∂H

∂pi
⇒ dxi

dt
= c

pi −Ai√
c2 + (p−A)2

⇒ dxi
dt

=
ui
γ
,

dpi
dt

= −∂H
∂xi

⇒ dpi
dt

= c
pj −Aj√

c2 + (p−A)2

∂Aj
∂xi
− ∂Φ

∂xi

⇒ dpi
dt

=
uj
γ

∂Aj
∂xi
− ∂Φ

∂xi
− dAi

dt
+
dAi
dt

⇒ dpi
dt
− dAi

dt
=
uj
γ

∂Aj
∂xi
− ∂Φ

∂xi
− ∂Ai
∂xj

dxj
dt

⇒ d (pi −Ai)
dt

=
uj
γ

(
∂Aj
∂xi
− ∂Ai
∂xj

)
− ∂Φ

∂xi

⇒ dui
dt

=
1

γ
εijkujBk + Ei.

Last but not least, as in the nonrelativistic case and in particular equation (1.17), a Lagrangian

function can also be constructed for system (1.88) via the relation L = p · ẋ−H giving

L (x,u, ẋ) = (A(x) + u) · ẋ− c
√
c2 + u2 − Φ(x) (1.93)

1.7.1 Magnetostatic fields

In the absence of an electric field, E = 0, the conservation of the relativistic Hamiltonian (1.90)

leads to a constant Lorentz factor γ. Let us consider the proper time τ , that is the time measured

by a clock travelling with the particle, whose relation with the time t of the original inertial

frame of reference is dτ = dt/γ. Then one easily sees that in this case the relativistic equations

of motion (1.88) in terms of τ , x and u are the same as the nonrelativistic equations for a

charged particle moving in the same magnetic field in terms of t, x and v. Therefore, if the

solution (x(t),v(t)) in the nonrelativistic limit is known, then the same problem (i.e. for the

same magnetic field) in the relativistic case has the general solution (x(t/γ),v(t/γ)/γ) for the

position and velocity of the particle.

1.7.2 Guiding center motion

The guiding-center theory has also been extended for the relativistic motion, and in terms of

a Hamiltonian formulation was first given by Grebogi and Littlejohn [41]. Simplifications to

this theory via a covariant form were made later by Brizard and Chan first for magnetostatic

fields [17] and then in the general case [104]. Essentially the route followed is identical with the
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nonrelativistic case along with one practical rule, that is the replacement vi −→ ui of ordinary

velocities with proper ones in all guiding-center considerations. This means that, under the same

guiding-center transformation only this time in terms of the proper velocity components u‖ and

u⊥, system (1.88) yields the relativistic counterpart of the guiding-center equations (1.82) that

read

dx̃

dt
=
ũ‖

γ̃
b̃+

ε

ωg
b×

(
µ̃

γ̃
∇|B| −E

)
dũ‖

dt
= − b̃ ·

(
µ̃

γ̃
∇|B| −E

) (1.94)

where ũ‖ is the parallel proper velocity of the guiding center, while now b̃ = b+ ε ũ‖b×K/ωg,

µ̃ = ũ2
⊥/(2 |B(x̃)|) and γ̃ =

√
1 + ũ2

‖/c
2 + 2 µ̃ |B| /c2 = γ +O(ε) is the modified Lorentz factor.

Notice that the usual angular frequency ωg = |B| enters in these expressions, not to be confused

with the relativistic one introduced in [41]. The Hamiltonian function in terms of
(
x̃, ũ‖, ũ⊥

)
for comparison with (1.79) is

H
(
x̃, ũ‖, ũ⊥

)
= γ̃ (ũ) c2 + Φ(x̃) = c

√
c2 + ũ2

‖ + ũ2
⊥ + Φ(x̃) +O

(
ε2
)
. (1.95)

while the Lagrangian in terms of the magnetic moment instead of the perpendicular velocity for

comparison with (1.83) is accordingly

L =

[
A

ε
+ ũ‖b− εµ̃

(
∇n · β − 1

2
∇× b

)]
· ˙̃x− εµ̃ ˙̃

ζ − c
√
c2 + ũ2

‖ + 2 µ̃ |B| − Φ +O
(
ε2
)

(1.96)

As with the exact relativistic equations the Poisson matrix, just like the rest quantities, remains

formally the same under the substitution vi −→ ui.

Final notes

The first developments of guiding-center theory were made by Northrop and others and relied

purely on averaging methods, lacking though a Hamiltonian structure. Among other things, this

was also a disadvantage from the statistical mechanics point of view of plasma physics, since

most kinetic models start off from the celebrated Liouville’s theorem, a key characteristic of a

Hamiltonian single particle motion. Kruskal and in particular Littlejohn with his series of papers

were the first to establish the guiding-center approach retaining the Hamiltonian formulation of

the problem. Canonical representations were also given by White. Following earlier works of

Northrop, Littlejohn derived the variational principle for the guiding-center equations, too.
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The guiding-center variables used in section 1.6 are the primed overbarred variables used by

Littlejohn in [77]. These have the advantage of the physically meaningful Hamiltonian (1.79)

that does not have ε-order terms, the disadvantage being, as we can see in [77], a non-block-

diagonal Poisson matrix. The situation is reversed with the other set of variables, denoted by

just overbars, adopted in that same article, in terms of which first-order terms appear now in the

Hamiltonian function, but the Poisson matrix is block-diagonal. Although its simple form (see

for example equation (17) in [41] for the corresponding Poisson bracket in the relativistic case;

compare with (1.57) for the simple case of a homogeneous magnetostatic field), having a block-

diagonal Poisson matrix is not a small restriction and better dropped. In the reduction procedure

the canonical conjugacy between the new gyrophase and the magnetic moment suffices.

As opposed to the autonomous system only considered in this chapter, the guiding-center

theory has been extended for the time-dependent case, as well. In [4], Balescu generalizes the

guiding-center approximation to include electromagnetic fields that, besides a weak inhomogene-

ity, exhibit a slow variation in time. This can be easily achieved, using the standard Hamiltonian

treatment of non-autonomous systems by considering the extended phase space, where the time

t and the Hamiltonian H itself serve as two more independent (and in fact canonical) variables

(see appendix C). A more general approach in charged particle dynamics includes the so-called

ponderomotive effects. The latter appear in the case of high frequency electromagnetic waves, in

which case the guiding-center notion is replaced by the oscillation center theory. The oscillation

center traces the motion of a charged particle when both the fast gyrofrequency and the high

frequency of the wave are averaged out. The Hamiltonian formulation of the oscillation center

motion was studied first by Grebogi and Littlejohn [40, 41] and also later by Weyssow and

Balescu [115, 116]. However, the notion of the oscillation center fails near the resonance of the

wave-particle interaction, which is of main interest in chapter 3, and so was not presented here.

In more special cases, besides the magnetic moment, additional adiabatic invariants may also

exist. Rosenbluth suggested the longitudinal invariant for charged particle motion between

two magnetic mirrors, i.e. points of converging magnetic field lines where particles are reflected.

Motivated by Van Allen radiation belts in the earth’s magnetic field, Northrop and Teller defined

a third adiabatic invariant expressing the magnetic flux through a guiding center’s orbit for

slowly time-varying electromagnetic fields. For a description of these adiabatic motions see for

example [47, 70].





Chapter 2

Integrable Perturbed Magnetic

Fields in Toroidal Geometry

One of the most important aspects of tokamak research is the appearance of neoclassical tearing

modes (NTM), exhibiting magnetic islands, and their stabilization. Breaking the investigation

of their control down to a single mode, a preliminary step required is the exact resolution of the

perturbed topology of the magnetic field. To this end, an analytical form of the islands generated

is requested, which can be provided by a magnetic surface quantity. The integrability of the

magnetic field lines in the case of such simple perturbations allows to find one and, therefore,

calculate the Poincare surface of section analytically. Thus, all the information related (position

of o- and x-points, separatrix, island width, etc.) can be recovered in full precision, without the

need of more or less approximate considerations or numerical analysis.

Given the Hamiltonian nature of the magnetic field, the plasma equilibrium, described by an

axisymmetric integrable system, is better expressed in terms of action-angle variables. In this

context, magnetohydrodynamic (MHD) instabilities can be represented by a perturbation term

in the Hamiltonian function as an infinite series of modes. For NTM-like perturbations, which,

in general, include only the modes with the same helicity, i.e. the same ratio, the system still

remains integrable due to helical symmetry. Thus, a surface quantity can be derived from an

effective Hamiltonian, which is related to the helical flux of the system. Consisting still though

of infinite modes, a Taylor expansion in the neighborhood of the resonant surface must be made

first, in order to obtain the island chain corresponding to a specific mode. As fully described in

[47] and [118], the resemblance then with the pendulum Hamiltonian leads to direct conclusions.

More about the formation of main and sattelite islands can be found in [86, 110].

41
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In practice, however, when studying magnetic island effects on other phenomena, one partic-

ular mode is considered right from the start. For these kinds of situations, no series expansion

is required and the problem reduces to simply analyzing the effective Hamiltonian. Nonetheless,

the latter is not separable and may, in general, be quite complicated, far from typical mechanical

systems. Thus, we present how to determine the perturbed topology and all its characteristics

for these cases in a straightforward and simple manner. In doing so, we take on a geometric

approach, the bottom-line being the projection of this new Hamiltonian in the desired poloidal

cross section. The technique presented is not bound to the precise form of the Hamiltonian

function, and could be applied in similar cases.

In addition - and although we use the large aspect ratio approximation for the equilibrium

magnetic field - for the purpose of higher accuracy that is usually demanded, the actual toroidal

geometry is adopted instead of the approximated cylindrical one generally used [34, 91, 93, 119].

All along, emphasis is also given on the Hamiltonian formulation, in terms of which the non-

canonical form of the toroidal coordinates reflects the corrections one should consider from the

cylindrical approximation to the toroidal one. We particularly focus on the construction of

action-angle variables, which, apart from being more convenient, they are also more suitable to

express the perturbation of the system properly. These aspects are pointed out, because of their

significance in the structure of the magnetic field. For, in plasma terminology, canonical coordi-

nates are Clebsch coordinates and vice-versa, while action-angle variables are flux coordinates,

[28, 47]. The opposite, though, in not always true, which is actually the case, when the radial

magnetic component of the background equilibrium is zero. The latter condition, met by the

standard magnetic field that is quite often considered, relates the Hamiltonian description with

more physical quantities. As will be shown, it also allows an easy manipulation of going back

to the original toroidal coordinates. When carefully carried out, then the perturbed topology

may be regarded directly in terms of them. As it turns out, toroidal coordinates, dominating

among others, when it comes to simulating real tokamak experiments, can be utilized rather

plainly with no approximations whatsoever. The outcome hopefully throws some light on these

matters and provides a systematic, yet clear way of accessing all the island information needed.

2.1 Axisymmetric systems

The magnetic fields under consideration are the ones applied in toroidal configurations, such as

tokamaks. Therefore, we introduce a (right-handed) toroidal coordinate system x = (r, θ, φ),
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where r is the minor radius of the torus, θ is the poloidal angle measured counterclockwise

from the outer edge, and φ is the toroidal angle measured clockwise from the y-axis. The

transformation from Cartesian coordinates is

x = (R0 + r cos θ) sinφ

y = (R0 + r cos θ) cosφ

z = r sin θ

where R0 is the major radius of the torus and we usyally denote R = R0 + r cos θ. As described

in the appendix A the unit base is (êr, êθ, êφ), while the covariant one (er, eθ, eφ).

The background equilibrium of a tokamak plasma is very often approximated by an ax-

isymmetric magnetic field B, i.e. independent of φ. Thus, as explained in chapter 5, we can

equivalently start off with a vector potential A (r, θ), being, too, independent of φ, meaning (see

equation (A.35))

B (r, θ) =
1
√
g

[
∂Aφ
∂θ

er −
∂Aφ
∂r

eθ +

(
∂Aθ
∂r
− ∂Ar

∂θ

)
eφ

]
(2.1)

where g = (rR)2 is the determinant of the metric tensor defined by the toroidal coordinates,

and Ar, Aθ, Aφ are the covariant components of A.

The dynamics of the magnetic field in three-dimensional Euclidean space is given by the set

of equations (1.18) and (1.21) accordingly in terms of the vector potential. The Hamiltonian

structure of the magnetic field lines has been investigated extensively [15, 21, 32, 58, 73, 87]. In

the case of axisymmetry, system (1.21) can be easily casted into Hamiltonian form, in light of

(2.1). We can go directly to the third step of §1.2.2 and adopt the usual technique of treating

the ignorable coordinate φ as the new independent variable, while eliminating the previous one

s, arriving at

dθ

dφ
=
Bθ

Bφ

dr

dφ
=
Br

Bφ

(2.2)

as long as Bφ 6= 0. Then, considering Br, Bθ and Bφ from (2.1) suggests choosing the Hamil-

tonian function as H(r, θ) = −Aφ(r, θ), while the symplectic structure as ω =
√
gBφ dr ∧ dθ.

In other words, system (2.2) can be written as a two-dimensional Hamiltonian system in non-
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canonical variables,

dθ

dφ
=

1
√
gBφ

∂H

∂r

dr

dφ
= − 1
√
gBφ

∂H

∂θ

(2.3)

Due to the axisymmetry of B, i.e. the independency of the toroidal angle, carried over to the

Hamiltonian, this system is autonomous and therefore integrable. Thus, action-angle variables,

ψ and θ, can be constructed, in terms of which the above system takes the form

dθin

dφ
= H ′(ψ)

dψ

dφ
= 0

(2.4)

Its solutions, lying on surfaces that are topologically equivalent to the torus, are then simply

ψ = const. and θin = w(ψ)φ + θin,0, where w(ψ) = H ′(ψ) and θin,0 some constant. In fusion

literature, θin is commonly known as the intrinsic poloidal angle, while the function w(ψ) as the

winding number. Its inverse, denoted by q(ψ), is called the safety factor and has the meaning of

the number of turns of the magnetic field lines around the toroidal angle φ per one turn along

the intrinsic poloidal angle θin. The triad (ψ, θin, φ), in this case, qualifies as a flux coordinate

system, in terms of which the magnetic field assumes the Clebsch representation.

2.2 Helical perturbations

The previous system, coming from a Hamiltonian function of the form H0(ψ), is a simplified

picture of actual experiments. In real tokamak plasmas, MHD instabilities introduce small

perturbations to the ideal equilibrium magnetic field. These can be modelled by considering a

perturbed Hamiltonian function [2],

H(ψ, θin, φ) = H0(ψ) + εH1(ψ, θin, φ), (2.5)

in terms of the action-angle variables (ψ, θin) and the “time” φ, where ε is the perturbation

strength. We should note that these types of perturbations do not affect in any way the compo-

nent Bφ of the magnetic field. Its Clebsch representation is also retained by the same variables,

with respect to the new Hamiltonian, but these are no longer flux coordinates, since H is no

more independent of θin and φ. In order for H1 to be single-valued, it has to be a 2π-periodic

function of the angles θin and φ. Thus, it can always be presented as a Fourier series :

H1(ψ, θin, φ) =
∑
m

∑
n

fmn(ψ) cos(mθin − nφ). (2.6)
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Tearing instabilities though involve helical perturbations ([47], section 7.3), i.e. terms with

the same ratio m/n, reducing the above double sum to a single one. Moreover in order to

investigate the effects of the perturbed magnetic topology, one is often bound to concentrate on

simply one resonance mode (m,n), i.e. one particular term of (2.6)

H1(ψ, θin, φ) = fmn(ψ) cos(mθin− nφ) (2.7)

These types of perturbations introduce systems, which are also integrable, owing now to the

helicity of Hamiltonian H(ψ,mθin− nφ), [47]. The integrability in this case can be shown in

many ways, the easiest of which is probably by replacing θin with the new variable ξ = mθin−nφ,

for which the equations for the magnetic field lines,

dξ

dφ
= m

dθin

dφ
− n = m

∂H

∂ψ
− n =

∂h

∂ψ

dψ

dφ
= − ∂H

∂θin
= −m∂H

∂ξ
= −∂h

∂ξ

, (2.8)

are casted again to Hamiltonian form [109], using h(ψ, ξ) = mH(ψ, ξ)−nψ as the new, effective

Hamiltonian. The latter is independent of φ, and therefore system (2.8) is integrable, meaning

the magnetic field lines lie on the isosurfaces h = const.. Notice that (ψ, ξ, φ), besides being

suitable for describing the symmetry of the system, they are Clebsch coordinates, as well, if h

is considered instead of H in the representation of the magnetic field. Still, they, too, are not

flux coordinates.

So, the previous invariant surfaces ψ = const. of the unperturbed system are now replaced

by h (ψ, ξ) = const.. A small perturbation, however, affects mostly the so-called resonant

surfaces. These are the rational surfaces of the unperturbed system, for which q(ψs) = m/n.

Their change in topology becomes more visible by the use of Poincare maps, which follow the

(transversal) intersection of all solutions of the system with a certain plane or surface, called

Poincare surface of section. The latter, being suitable for two-dimensional non-autonomous

dynamical systems with bounded orbits, let us visualise the three-dimensional dynamics in

order to study its structure.

2.3 Magnetic islands

As previously shown, the function h characterizes the magnetic surfaces and, thus, can serve

as a flux surface label. The latter can be useful in many ways, one of which is the analytical

construction of Poincare plots.
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In the case of magnetic field lines, where the role of “time” is played by the toroidal angle,

Poincare surfaces are simply obtained by poloidal cross sections of the torus, that is φ = const..

So, instead of loooking at the full three-dimensional space in terms of ψ, θin and φ, we restrict

ourselves to a Poincare surface of section in terms only of ψ and θin chosen at a fixed φ. For

system (2.8) though, construction of a Poincare map numerically is no longer necessary, since

we can directly obtain Poincare plots by exploiting the effective Hamiltonian.

Consider the restricted function hφ(ψ, θin) = h(ψ, θin, φ) for fixed φ. Since the magnetic field

lines lie on the surface h (ψ, ξ) = const., their intersection with a poloidal cross section φ = const.

is given by the equations hφ(ψ, θin) = const.. Therefore, a contour plot of the function hφ would

simply yield the desired Poincare surface of section. The critical points of hφ projected on

the surface (ψ, θin) correspond then to the equilibrium points of the Poincare map, representing

periodic orbits of the system. The maxima or minima give rise to centers, simply called o-points,

while the saddle points accordingly to saddles, simply called x-points.

In conclusion, when only one particular resonant (m,n) is under investigation, meaning a

perturbation of the form (2.7) is added to the unperturbed system H0, magnetic surfaces can

be characterized by a flux surface label,

h (ψ, θin, φ) = mH(ψ, θin, φ)− nψ (2.9)

and Poincare surfaces of section at any given φ = φc can be constructed by the contour plot of

the function hφc . Both o- and x-points can be determined from the condition ∇hφ = 0, which,

for fmn(ψ) 6= 0 at least in a neighborhood around ψs, trivially results in

mθin− nφ = kπ, (2.10)

w(ψ) + (−1)kεf ′mn(ψ) =
n

m
, (2.11)

where k is any integer. From the first equation we can find the 2m angles θin,i in the interval

[0, 2π) for different values of k, while from the second one the two actions ψi depending on

whether k is even or odd. To determine which case corresponds to the o-points and which

to the x-points we turn to the Hessian matrix of hφ, calculated at (ψi, θin,i). Thus, whenever

(2.10)-(2.11) hold, the eigenvalues of this matrix are

λ1 = (−1)k+1εm3fmn(ψi)

λ2 = m
[
w′(ψi) + (−1)kεf ′′mn(ψi)

] (2.12)

When λ1λ2 > 0 we have an o-point, while in the opposite case, λ1λ2 < 0, we have an x-point.

Finally, the equation for the separatrix is hφ(ψ, θin) = hφ(ψx, θin,x) for (ψx, θin,x) any x-point.
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In many cases, e.g. for a strictly monotonous profile of the safety factor and consequently of

the winding number, as well, λ2 is defined mostly by the first term, since ε is a small parame-

ter. Therefore, the product λ1λ2 has the same sign as (−1)k+1fmn(ψi)w
′(ψi) has. The latter,

changing sign for successive values of k, explains the interchange of o- and x-points, causing

the island chain formation we typically see. In light of (2.10), the number of islands is then

equal to the poloidal mode number m. From equation (2.11), on the other hand, it is evident

that o- and x-points are ε-close to the previously formed resonant surface. Taylor expansion

around ψs suggests that the deviation from the resonant surface to a first order approximation

is δψ = ψi − ψs = (−1)k+1εfmn(ψs)/w
′(ψs), recovering the results in [119]. Finally, it is also

worth noting that the value θin,0 of the intrinscic poloidal angle at φ = 0, introduced from

the very beginning, may serve through (2.10) as a rotation parameter of the islands, without

affecting whatsoever the unperturbed system. The privilege of equations (2.10) and (2.11) being

independent of each other does not allow the position ψi of o- and x-points to be disturbed by

the presence of θin,0, too.

2.4 Tokamak fields

Before proceeding with a concrete detailed example, a special class of axisymmetric systems to

begin with is considered, which is widely used in applications. These are unperturbed magnetic

fields with vanishing radial component, Br = 0. The latter reflects an equilibrium for large

aspect ratio, meaning we do not take into account the poloidal current density, nor the Shafra-

nov shift, though we retain the toroidal geometry, opposite to the cylindrical often used. A

number of properties arising regarding the previous decription is the reason why such systems

are investigated seperately as commonplaces of tokamaks.

First of all we have dr/ds = 0. Therefore, the invariant surfaces are defined simply by

r = const., meaning the magnetic field lines, in this case, lie on the surface of a torus of radius

r. In terms of the Hamiltonian description (2.3)1, this also implies that H0 is a function of r

alone, representing the normalized poloidal magnetic flux,

H0(r) =

r∫
0

√
gBθ dr =

1

2π

2π∫
0

r∫
0

B̂θ(r, θ)Rdrdφ (2.13)

1. Note that for Br = 0 we could also adopt the alternative Hamiltonian description given in §1.2.1. Since

however we want to study perturbations of such a field, we retain the previously described Hamiltonian

considerations, following more likely the path shown in §1.2.2.
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On the other hand, the construction of action-angle variables in the general case of an axisym-

metric system would first require finding canonical coordinates for system (2.3). When Br = 0,

it may skip this step. Actually, the transformation from (r, θ) to (ψ, θin) can be made via the

relation
√
gBφ dr ∧ dθ = dψ ∧ dθin. Since r is an integral of motion, ψ has to be a function of r

alone. Consequently, the previous condition can be simplified, yielding

dψ

dr

∂θin

∂θ
= rB̂φ. (2.14)

Thus, we can begin with a given function ψ(r) and then construct θin(r, θ) or vice versa. A

typical choice, widely used in the literature, is expressing the action ψ through the normalized

toroidal magnetic flux,

ψ(r) =
1

2π

2π∫
0

r∫
0

B̂φ(r, θ)rdrdθ (2.15)

while considering θin to be a 2π-periodic function of θ. In this case the effective Hamiltonian

h introduced earlier is the helical flux. It is also worth noticing that ψ depending solely on r

(regardless the form of the function ψ(r)) indicates that the mixed variables (r, θin, φ) are also

flux (though, not Clebsch) coordinates for the unperturbed case.

Another consequence of the zero radial magnetic component is an alternate expression of the

winding number directly in terms of r instead of ψ. For when Br = 0, then

w(r) =
dθin

dφ
=
∂θin

∂θ

dθ

dφ
=
RB̂θ

rB̂φ

∂θin

∂θ
(2.16)

Inverting the previous relation and taking into account that θin(r, θ + 2π) = θin(r, θ) + 2π we

recover the formula

q(r) =
1

2π

2π∫
0

rB̂φ

RB̂θ
dθ (2.17)

found in [2], [113]. Equivalently, once ψ is fixed, w and consequently q can be calculated more

simply using

w(r) =
dH0

dψ
=

1

ψ′(r)

dH0

dr
=
RB̂θ

ψ′(r)
(2.18)

At this point, we should comment that although action-angle variables have been used in

Sections 3 and 4, this is by no means a restriction. But in the general case of an axisymmetric

system the transformation to the actual toroidal coordinates r and θ would be much compli-

cated. In this case, however, the latter task would be a simple one. Actually, the unperturbed

Hamiltonian and the safety factor have already been expressed naturally in terms of r. The de-

termination of the o- and x-points for the perturbed system could also follow. Equation (2.11)
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can be solved with respect to r still independently from (2.10), and then replace its solutions ri

in (2.10) to find θi. From equation (2.16), we also deduce that when ∂θin/∂θ −→ 1, then the

number of turns around φ per one turn along either θin or θ is the same. So, in fact, all the above

conclusions allow us to draw one more. Since r is an integral of motion (for the unperurbed

system) just like the action ψ, as long as the intrinsic poloidal angle behaves like the geometrical

one, the island topology, realised in the artificial ψθin-space, is carried over to the more realistic

rθ-plane. On this ground, Br = 0 allows us to switch easily from the action-angle variables,

appealing in theory, to the original toroidal coordinates, as desired in practice, and study the

dynamics of the magnetic field lines therefrom.

2.4.1 The standard magnetic field

A typical axisymmetric model for the background equilibrium that falls into the previous cate-

gory is the so-called standard magnetic field, introduced by Balescu [5],

B0(r, θ) =
B0

R
(rwc(r) êθ +R0 êφ) , (2.19)

where B0 is a constant, expressing the toroidal field on the magnetic axis, while wc is the winding

number in the approximation of cylindrical geometry, i.e. for r/R0 → 0. The Hamiltonian

equations (2.3) for the standard magnetic field are

dθ

dφ
=
R0 + r cos θ

B0R0 r

dH0

dr
,

dr

dφ
= 0, (2.20)

where the Hamiltonian function can be deduced directly from the poloidal flux (2.13), yielding

H0(r) = B0

∫
rwc(r) dr (2.21)

Choosing ψ as the toroidal flux (2.15) and then using (2.14), we end up with the following

action-angle variables [2],

ψ = B0R0

(
R0 −

√
R2

0 − r2

)
(2.22)

θin = 2 arctan

(√
R0 − r
R0 + r

tan
θ

2

)
(2.23)

Notice that in the large aspect ratio approximation, often used in applications, θin is very similar

to θ, as requested. So, proceeding in terms of the toroidal coordinates, from equation (2.18) the

actual winding number w with respect to the approximate one wc is

w(r) =

√
R2

0 − r2

R0
wc(r). (2.24)
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Finally, from (2.11), the radial position ri of o- and x-points for any mode (m,n) we choose to

perturb the system with can be found through

w(ri) + (−1)kεf ′mn(ri)

√
R2

0 − r2
i

B0R0ri
=

n

m
(2.25)

and then the corresponding poloidal angle at any given cross section φ = φp would be

θi = 2 arctan

(√
R0 + ri
R0 − ri

tan
θin,i

2

)
(2.26)

where θin,i = (nφp + kπ)/m from (2.10).

Returning to an earlier comment, we see that the replacement θin −→ θin−θin,0 enters only in

(2.26), changing θi to some other angle θi + θ̃0, leaving, in general, θ unchanged. Thus, we can

rotate the island topology, without rotating the whole system that would alter, for example, the

typical (1/R)-dependence of the unperturbed toroidal field or the radial position of the o- and

x-points. This is a common requirement in experiments such as NTM integration with electron

cyclotron current drive, where electromagnetic waves are launched, targeting the o-points. This

way of rotating the islands is independent of the specific Hamiltonian or action-angle variables.

2.4.2 An example : The (3,2) mode

The associated Hamiltonian system (2.3) with H = H0 + εH1 describes the field lines of the

magnetic field B = B0 + εB1. If the standard magnetic field (2.19) plays the role of the

unperturbed system, corresponding to the unperturbed Hamiltonian H0 (2.21) and giving rise

accordingly to the action-angle variables (2.22)-(2.23), then any Hamiltonian perturbation H1

of the form (2.7) in terms of the latter will in turn result in a magnetic perturbation

B1 =
m
√
R2

0 − r2

rR2
fmn(r) sin ξ êr +

1

R

[
f ′mn(r) cos ξ +

mR0 sin θ

R
√
R2

0 − r2
fmn(r) sin ξ

]
êθ (2.27)

expressed back in the toroidal coordinate system, where ξ = mθin− nφ. Notice that for small

values of r the last term of the poloidal component in (2.27) would be neglegible compared to

the others.

Let us demonstrate the previous methods with an example of a (m,n) = (3, 2) resonance

mode for the standard magnetic field with ITER-like parameters, B0 = 5.51 T and R0 = 6.2 m.

Starting from density and temperature profiles, we consider [85]

wc(r) =
1

4

(
2− r2

r2
0

)(
2− 2

r2

r2
0

+
r4

r4
0

)
, (2.28)
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where r0 = 1.9 m is the maximum value of r, meaning the minor radius of the tokamak. Thus,

from (2.21) the Hamiltonian of the unperturbed system is

H0(r) =
B0r

2

2

(
1− 3r2

4r2
0

+
r4

3r4
0

− r6

16r6
0

)
, (2.29)

while the resonant surface is evaluated at rs = 96.5743 cm. Following [91], we assume a pertur-

bation amplitude of the form

f32(r) =
r

3

(
1 +

r − rs
b

)
, (2.30)

expressed directly in terms of r instead of ψ, where b = 12 is a parameter that allows to describe

asymmetry around the island. The effective hamiltonian, meaning the flux surface label (2.9),

for this magnetic field in terms of r and the helical variable ξ = 3θin− 2φ is accordingly

h(r, ξ) = 3H0(r)− 2ψ(r) + 3εf32(r) cos ξ (2.31)

Replacing θin from (2.23) we can then arrive at an expression in the original toroidal coordinates.

In the next figure, we see for ε = 0.005 the level sets, that is, the contour plot of the restriction

hφ (2.32) of h for φ = π/2, i.e. in the poloidal cross section y = 0, revealing the island topology.

hπ
2
(r, θ) = 3H0(r)− 2ψ(r)− 3εf32(r) cos(3θin(r, θ)) (2.32)
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Figure 2.1: The island topology for the (3,2) resonance.
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The contour plot of (2.32) back in the Cartesian coordinates x and z is shown in Figure 2.2.

The same Poincare section was drawn using numerical integration of the full three-dimensional

system dx/ds (1.18) with a 4th-order adaptive step-size Runge-Kutta scheme. Comparison of

the two plots reveals actually no difference whatsoever, they look identical. Figure 2.3 shows the

points from the numerical Poincare map of the magnetic field lines lying exactly on the contour

lines of the analytical flux surface label hπ
2
.
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Figure 2.2: Contour plot of flux surface label.

For the calculation of the o- and x-points, we notice first that for 0 ≤ r ≤ r0 the perturbation

f32 is everywhere positive, the winding number w is decreasing monotonously and the toroidal

flux ψ is increasing instead. Thus, from the relations (2.12), assuming λ2 ≈ 3w′(r)/ψ′(r),

we immediately deduce that when k is odd, the critical point of the function hπ
2

would be a

saddle point, resulting in an x-point, while when k is even it would be a maximum, resulting

in an o-point. So, relations (2.25) and (2.26) yield six (real) solutions altogether, three o-

points at ro = 96.6336 cm, θo = 68.0854°, 180°, 291.915 and three x-points at rx = 96.5149 cm,

θx = 0°, 127.468°, 232.532°, respectively. These values, also visualised in Figures 2.1 and 2.2 are
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in absolute agreement with the ones from field line tracing. We see that o- and x-points located

at ro and rx respectively are evenly distributed on different sides and at equal distance from the

previous resonance surface located at rs.

It is also worth noting that in the cylindrical approximation, often adopted in the large aspect

ratio limit, we recover the usual considerations ψ ≈ B0r
2/2, θin ≈ θ (as previously requested),

w ≈ wc and accordingly B1 expresses a (3,2) mode in terms of θ and φ instead of θin and

φ. The deviations, however, from the above treatment are not negligible, as, for example, the

corresponding values θin,o = 60°, 180°, 300° and θin,x = 0°, 120°, 240° of the intrinsic poloidal

angle indicate. As we can see in Figure 2.1, in a toroidal configuration these all lead to a slight

difference between the central island and the other two, unlike the cylindrical case.
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Figure 2.3: Comparison of the analytical flux surface label (red lines) and the numerical Poincare

map (blue points), zoomed in the island region.

Finally, instead of using the restriction hφ for Poincare sections, we can take by all means the

original helical flux h and from its level sets plot 3D magnetic surfaces, shown for example in

Figure 2.4 back in Cartesian coordinates x, y and z.
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2.5 Discussion

In conclusion, a simple analytical way for determining the island topology of the magnetic field

is at our disposal, when a single perturbation mode is introduced to the plasma equilibrium.

Poincare sections of field lines can be constructed by contour plotting a flux surface label that is

consistent with the magnetic field, and the positions of o- and x-points, as well as the separatrix,

can be determined analytically. The method addressed follows the nontrivial Hamiltonian nature

of the magnetic field lines in terms of their toroidal structure. The integrability of this kind of

systems is widely known in the context of Hamiltonian mechanics, yet, at times, neglected in

applications such as these. And though quite often employed in the cylindrical approximation,

to the author’s knowledge, it has not been fully utilized in the actual toroidal geometry of

tokamaks. The technique described here, requiring no assumptions on the particular form of the

integrable Hamiltonian, is quite general and could be applied elsewhere. The results presented

in this chapter have also been published in [62].

Figure 2.4: A magnetic surface for the (3,2) resonance.



Chapter 3

Magnetic Islands and

Electromagnetic Waves in Plasma

Physics

MHD instabilities in the form of neoclassical tearing modes are one of the most crucial factors in

the operation of tokamak devices such as ITER. Introducing non-axisymmetric, helical magnetic

perturbations on flux surfaces, which correspond to rational values (m,n) of the safety factor,

they result in the formation of magnetic islands that gradually lead to loss of confinement. Thus

their control is an important issue that has received much attention, particularly focusing on

the (2,1) and (3,2) modes, which are most likely to appear [68]. One of the most successful

methods for the stabilization of these perturbations is to apply radio frequency waves, used for

current drive in the plasma. When the wavefrequency is close to the cyclotron frequencies of

the electrons, the method is known as Electron Cyclotron Resonance Heating (ECRH). In this

mechanism, electromagnetic waves are launched into the plasma from an external source outside

of the torus targeting the islands.

In most cases, ECRH in plasma is studied within either linear or quasilinear considerations

using the Vlasov equation that describes the evolution of the particle distribution function.

Our purpose is to investigate the combined effects of magnetic islands and electron cyclotron

resonance in terms of the equations of charged particle motion and their full nonlinear character.

So, in this chapter, we study numerically the relativistic motion of test particles in toroidal

plasma configurations under the influence of a perturbed equilibrium magnetic field and an

electromagnetic wave. We particularly focus on the wave-particle interaction in the presence of

55
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the (3,2) island and an electron cyclotron beam, taking also into account collisional effects with

background particles. Following large numbers of electrons, macroscopic results, such as velocity

distribution functions, current drive, absorbed power, are obtained that are tested against results

from the linear theory of wave-particle interaction, and we find reasonable qualitative agreement

between the two approaches.

3.1 Magnetic perturbations

The model used for the magnetic field is the one described in the previous chapter and in partic-

ular §2.4.2. We briefly recall and repeat the basic features for easy reference. Starting with the

coordinate system, we also adopt here the toroidal coordinates (r, θ, φ) introduced at the begin-

ning of section 2.1. As already mentioned, the latter define a right-handed orthogonal curvilinear

system. In the literature, however, the toroidal angle is often measured counterclockwise from

the x-axis, that is π/2− φ, leading though to a left-handed system, and consequently to several

mix-ups, when handling quantities in toroidal geometry, like vector products, curls, etc., as in

the case of the guiding-center approximation.

In the above defined coordinate system, the unperturbed magnetic field B0 expressing the

background equilibrium is given by the standard magnetic field (2.19), where wc is cylindrically

modelled by (2.28). Characterized by a non-zero toroidal component, it allows magnetic field

lines to be viewed as a Hamiltonian system (2.3) in variables r and θ with φ playing the role

of “time”. Axisymmetry and zero radial component on the other hand result accordingly to a

Hamiltonian function H0 (2.29) that is independent of both φ and θ. Therefore B0 gives rise to

toroidal magnetic surfaces r = const.

The perturbed magnetic field B1 is coming from a Hamiltonian perturbation H1 of the pre-

vious system properly defined in action-angle variables ψ (2.22) and θin (2.23). Focusing on a

single perturbation mode (m,n), we assume H1 = fmn(ψ) cos ξ which gives rise to B1 given in

(2.27), where ξ = mθin− nφ is the helical variable. The overall magnetic field

B = B0 + εB1 = ε
m
√
R2

0 − r2

rR2
fmn(r) sin ξ êr +

+
1

R

[
B0rwc(r) + ε

(
f ′mn(r) cos ξ +

mR0 sin θ

R
√
R2

0 − r2
fmn(r) sin ξ

)]
êθ +

B0R0

R
êφ

(3.1)

projected in two dimensions results in an island chain, which replaces the resonant surface

r = rs of the unperturbed system. The location of the island chain is defined by the relation

q(rs) = m/n, where q is the safety factor given by the inverse of the winding number (2.24).
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For the (3,2) mode, f32 given in (2.30) and ITER-like parameters collected in Table 3.1, Figures

2.1 and 2.2 show the island formation in the poloidal cross section y = 0 distorting the previous

straight lines or circles, respectively, r = const. of the unperturbed system.

In this setup, the Hamiltonian formalism is not without a physical interpretation : the unper-

turbed Hamiltonian function H0 is the poloidal flux, the action ψ is the toroidal flux, while the

effective Hamiltonian

h = mH − nψ = mH0 − nψ + εmfmn cos ξ

is the helical flux, where H = H0 + εH1 is the perturbed Hamiltonian. Finally, the somewhat

artificial angle θin behaves very much like the actual poloidal angle θ, and in the large aspect

ratio r/R0 −→ 0 we have θin = θ. This is in fact the only price we pay, a rather small one, to

have at our disposal an analytical, exact quantity to extract any information required regarding

the magnetic field lines. For, as shown in section 2.2, the perturbed system is also integrable

and the magnetic field B now lies on the helical surfaces h = const. demonstrated in Figure 2.4.

In other words, the function h is an invariant of the magnetic field lines and can serve directly

as a magnetic surface quantity, without the need of Taylor expansion, or other approximations

that are often considered. Provided with a flux surface label h, we determine the periodic

orbits of the field lines, as well as their stability, and consequently the location of o-, x-points

and the separatrix all of them analytically and in full precision. The previously mentioned

2D Poincare sections 2.1 and 2.2 or the 3D one 2.4 have also been constructed analytically by

contour plotting. In addition, later on in §3.4.2 the volumes of flux surfaces can too be calculated

safely and accurately avoiding any numerical error likely to arise when approaching the o-point.

Remark 3.1. For practical purposes, after all calculations are made, the flux surface label h

is normalised in order to be consisent with other approaches often found the literature, i.e. the

o-points correspond to the value h = − 1, while the separatrix to h = 1. So, for example, the

magnetic surface shown in Figure 2.4 corresponds to h = − 0.437.

3.2 Electromagnetic wave

One of the most common ways of heating a plasma is the use of radio frequency waves in the

form of a focused beam, exploiting ECRH. We assume a relatively simple yet realistic model of

a Gaussian, monochromatic beam, launched from the low-field side outside of the torus, injected

into the plasma and propagating in the direction

k = −k (cos θl sinφl, cos θl cosφl, sin θl) , (3.2)
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with respect to the Cartesian coordinate system, where θl and φl are the poloidal and toroidal

launching angles, respectively. In consideration of having a wave beam that is confined through

a Gaussian shape in the perpendicular to propagation direction, we assume that the electric

field of the wave is multiplied by a factor exp(−d2/2s2), where s is the width of the beam and

d the distance from a point x to the beam axis. If the latter passes through a fixed point xo,

then this distance is

d = |x− xo| sin ζ =

√
|x− xo|2 −

[
(x− xo) · k̂

]2
, (3.3)

where ζ is the angle between the propagation vector k and the vector x − xo, and k̂ the unit

vector along k.

Now, in order to determine the wavenumber k and the polarization of the wave, we use

the homogeneous-plasma wave equation, derived from Maxwell’s equations, which after Fourier

analysis in both time and space yields

k × (k ×E) +
ω2

c2
ε ·E = 0, (3.4)

where ω is the wave frequency, c the speed of light, E the electric field of the wave and ε the

linear dielectric tensor. The general form of the latter is given by a 3 × 3 complex matrix,

whose elements, for hot, weakly-relativistic plasma and assuming that at the time of entry the

background magnetic field B0 is parallel to the y-axis, are equal to [117] :

ε11 = 1− βT
ω2
p

ω2

∞∑
l=−∞

l2

λ
Γ|l|F|l|+3/2,

ε12 = βT
ω2
p

ωωg
n‖n⊥

∞∑
l=−∞

l

λ
Γ|l|
(
F|l|+3/2 −F|l|+5/2

)
,

ε13 = −iβT
ω2
p

ω2

∞∑
l=−∞

lΓ′|l|F|l|+3/2,

ε22 = 1− βT
ω2
p

ω2

∞∑
l=−∞

Γ|l|

[
βTn

2
‖
(
F|l|+7/2 − 2F|l|+5/2 + F|l|+3/2

)
+ F|l|+5/2

]
,

ε23 = iβT
ω2
p

ωωg
n‖n⊥

∞∑
l=−∞

Γ′|l|F|l|+5/2,

ε33 = 1− βT
ω2
p

ω2

∞∑
l=−∞

(
l2

λ
Γ|l|F|l|+3/2 + 2λΓ′|l|F|l|+5/2

)
,

(3.5)

while ε21 = ε12, ε31 = ε13 and ε32 = −ε23. In the above, ωg = qe|B|/me is the electron

gyrofrequency, ωp = qe
√
ne/meεo is the plasma frequency, εo is the dielectric constant of free
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space, l is the cyclotron harmonic under consideration, n = ck/ω is introduced for simplicity,

βT = mec
2/kBTe is the inverse of the normalized thermal energy, Γl(λ) = e−λIl(λ) with Il the

modified Bessel function of argument λ = k2
⊥v

2
th/ω

2
g (the parameter λ measures the ratio of

the gyroradius over the wavelength), and Fq(α, ζl) are the Shkarofsky functions of arguments

α = βTn
2
‖/2 and ζl = βT (1− lωg/ω).

Equation (3.4) is a linear, homogeneous system in terms of the Cartesian components E1, E2

and E3 of the electric field. The matrix describing this system has elements ninj − n2δij + εij

(where δij is Kronecker’s delta) and in order to have non-trivial solutions for E, its determinant

must vanish, leading to the so-called dispersion relation that relates the wavenumber k to the

frequency ω of the wave,

D(ω,k) =

∣∣∣∣∣∣∣∣∣∣
ε11 − n2

2 − n2
3 ε12 + n1n2 ε13 + n1n3

ε21 + n1n2 ε22 − n2
1 − n2

3 ε23 + n2n3

ε31 + n1n3 ε32 + n2n3 ε33 − n2
1 − n2

2

∣∣∣∣∣∣∣∣∣∣
= 0, (3.6)

The left hand side is a six-degree polynomial in terms of k, having accordingly six roots. For hot

plasma all these roots are complex, with the real part of the refraction index representing prop-

agation and the imaginary part collisionless absorption. The complete solution of the (complex)

dispersion relation is a much complicated numerical issue (see e.g. [103]). A typical simplifica-

tion, which is followed also here, is to assume that the imaginary part of k is an order smaller

than its real part (weak-absorption ordering), and also to prescribe the parallel component k‖

(following the experimental practice). In this way, only the Hermitian part of ε is involved in

the solution and an explicit expression for the real part may be achieved.

Having satisfied condition (3.6), the system of equations (3.4) then gives rise to the polariza-

tion of the wave, i.e. the relations between the different components of E. Since the rank of the

system is two, we need to use only two equations, and then the third one would be trivially satis-

fied. Thus, keeping for example E1 arbitrary, we may solve for E2 = c2E1/c1 and E3 = c3E1/c1,

where ci = (−1)3+iD3iD
∗
31 and Dij denotes the subdeterminant of D by crossing out the i-th

row and the j-th column. Since the components Ei(ω,k) are complex functions, they need to

be transformed back to the real quantities Ei(t,x). Taking the inverse Fourier transformation

E(t,x) = Re
(
E(ω,k)ei(k·x−ωt)

)
, we arrive at

E1(t,x) = E0 c1e
− d2/2s2 cos (k·x− ωt)

E2(t,x) = E0 c2e
− d2/2s2 cos (k·x− ωt+ η2)

E3(t,x) = E0 c3e
− d2/2s2 cos (k·x− ωt+ η3)

(3.7)
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where the angles η2 = arctan(Im c2/Re c2) and η3 = arctan(Im c3/Re c3) express the phase

differences of E2 and E3, respectively, with respect to E1, and E0 is a constant.

In the case of this Gaussian beam, given the wave power P0 one can recover E0 as follows :

For plane waves, the Poynting vector is given as S = cεo |E|2 k̂, and so the instantaneous wave

power for (3.7) is

P =

∫
a

S · da = cεoẼ0

2π∫
0

∞∫
0

e−ρ
2/s2dρdφ = cεoπs

2Ẽ2
0 (3.8)

where a is the cross-sectional area of the beam, (ρ, φ) are polar coordinates in a beam cross sec-

tion and Ẽ2
0 = E2

0

(
c2

1 cos2(k·x− ωt) + c2
2 cos2(k·x− ωt+ η2) + c2

3 cos2(k·x− ωt+ η3)
)
. Thus,

the wave power, defined as the averaged power over the wave period T , is

P0 = 〈P 〉 =
1

T

T∫
0

P dt

=
cεoπs

2E2
0

T

T∫
0

[
c2

1 cos2 (k·x− ωt) + c2
2 cos2 (k·x− ωt+ η2) + c2

3 cos2 (k·x− ωt+ η3)
]
dt

=
1

2
cεoπs

2E2
0

(
c2

1 + c2
2 + c2

3

)
(3.9)

From equation (3.9) we can then determine E0 in terms of P0, arriving at

E0 =
1

s

√
2P0

πcεo
(
c2

1 + c2
2 + c2

3

) (3.10)

Finally, taking into account the damping of the wave energy as the beam propagates in the

plasma, we consider a profile for the wave power along the direction of the beam, as well,

P0 = Pmax [b1 tanh(b2(σ − b3)) + b4] , (3.11)

where Pmax is the initial wave power, σ measures the length along the beam and bi are constants.

Equation (3.11) is based on the absorption modelled using ray tracing [56], for which a detailed

description will be given later on.

3.3 Particle dynamics

For the test-particle simulations and the particle orbits, we integrate the relativistic equations

of the charged particle motion. The latter include as force terms the perturbed magnetic field
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(3.1) and the electric wave field (3.7), previously described. As a first approach, the magnetic

field of the wave is not taken into account since it does not directly affect the energization (but

it is accountable for other effects and should be considered later on). We follow large numbers of

particles, starting from a specific flux-surface within the island and around the o-point, at which

the wave beam passes by, with the particles initially having a Maxwellian velocity distribution

with prescribed temperature Te (which is the local value of the electron plasma temperature in

the island region).

3.3.1 Equations of motion

The code is given two options for the equations of motion that are being integrated, either

the full Lorentz force or the guiding-center equations, both to be chosen in the relativistic

or nonrelativistic limit. For the integration of both, the Lorentz force and the guiding-center

equations, we use a 4th-order, adaptive step-size Runge-Kutta scheme, implemented in Fortran.

Lorentz force law

Considering the more general case when relativistic effects are not negligible, the exact equations

of motion (1.88) in Cartesian coordinates, restoring physical units, are

dx

dt
=
u

γ
,

du

dt
=

qe
me

(
1

γ
u×B +E

)
.

(3.12)

where me and qe are the mass and charge of the electron, respectively. Given a time-step of the

order of the particle gyration period, the numerical integration of the above equations seems to

run very slow. On the other hand, for longer integration times, the conservation of energy is not

well-behaved anyway, as it should in the collisionless case. The guiding-center approximation,

bypassing the fine structure of the gyromotion, overcomes both of these setbacks.

Guiding-center approximation

As previously described in chapter 1, for weakly inhomogeneous fields, the previous six equations

can be reduced, by eliminating the gyrophase at least through first-order terms. The Hamilto-

nian nature of the system relates the ignorable gyrophase with the adiabatic invariance of the

conjucated magnetic momemt. Thus, the system is reduced by two, leaving four equations to

describe the position of the guiding center and its parallel to the magnetic field velocity. In the
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relativistic version (1.94), restoring again physical parameters, these are

dx̃

dt
=
ũ‖

γ̃
b̃+

1

meωg
b×

(
µ̃

γ̃
∇|B| − qeE

)
dũ‖

dt
= − 1

me
b̃ ·
(
µ̃

γ̃
∇|B| − qeE

) (3.13)

Simulation tests have shown a very good coincidence of the trajectories of the Lorentz force

case with the guiding-center approximation (in absence of the wave). However, the conservation

of energy and momentum (for the noncollisional case) are now much improved in the guiding-

center case. In terms of the same integration step-size, the guiding-center code runs twice as fast

as the Lorentz force one, with the order of the error being almost ten times smaller. Thus, given

its high accuracy, much larger steps can be used with the guiding-center approach, reducing

significantly the computational cost.

3.3.2 Collisions

In all the simulations, we take collisions into account, since the collision time is smaller than

the total integration time. For simplicity, we consider the electrons to collide only with the

background ions, and we apply the pitch angle scattering process as described in [46]. This

implies that we solve an additional stochastic differential equation for the pitch angle α (defined

as the angle between the particle’s velocity and the magnetic field),

dα = Fαdt+DαWt (3.14)

with Dα =
√

(Γe/i/2v3)2dt, Fα = −(Γe/i/2v3)(v‖/v⊥) and Wt an independent and identi-

cally distributed Gaussian random variable with mean value zero and variance one. Here,

Γa/b = nbq
2
aq

2
b ln Λa/b/(4πε20m

2
a), where qa, ma and na stand for electric charge, mass and density,

respectively, of species a and ln Λa/b is the Coulomb logarithm (see e.g. [65]).

Equation (3.14) is solved with a finite time-step dt (i.e. by using the Euler-Maruyama

method), which is a small fraction of the thermal collision time tth (given as t−1
th = Γe/i/v3

th, with

vth =
√
kBTe/me the thermal velocity of the electrons). After every time-step dt, the integration

of the equations of motion is interrupted, and the velocity components are pitch angle scattered,

i.e. rotated with the angle dα given by (3.14), according to

v‖,i+1 = v‖,i cos(dα)− v⊥,i sin(dα)

v⊥,i+1 = v‖,i sin(dα) + v⊥,i cos(dα),
(3.15)

after which the integration of the equations of motion is continued. For the parameters given in

Table 3.1, the thermal collision time amounts to 0.2 msec.
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3.3.3 Wave-particle interaction

The test particles interact strongly with the wave, when the following resonance condition holds :

ω − k‖v‖ −
lωg
γ

= 0 (3.16)

where l is the cyclotron harmonic and k‖ the component of the wave vector parallel to the

magnetic field.
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Figure 3.1: The island topology for the (3,2) mode suitably rotated for EC resonance. The red

curve indicates the initial flux surface, while the green one the resonance region.

For the 1st harmonic, i.e. l = 1, using v‖ = vth/
√

2 and substituting in the gyrofrequency ωg

the magnitude of the magnetic field for r = ro and φ = π/2, we find the corresponding poloidal

angle θres that lies in the resonance regions. In order to investigate the interaction inside the

islands, we rotate the magnetic field lines in the poloidal direction, as explained in chapter 2,

such as, one of the o-points, say the first one, is placed at exactly θo = θres. For xo (see equation

(3.3)) defined by the coordinates (ro, θres, π/2), we also have the beam passing through that

o-point. Setting the o-point in the resonance region, we follow orbits of electrons starting from
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that o-point area, i.e. the initial positions are randomly picked from a specific flux surface, very

close to the o-point, using the h-label introduced earlier. Figure 3.1 illustrates the situation in

the poloidal cross section of the magnetic field lines at y = 0 for electrons with initial conditions

on the flux surface h0 = − 0.94.

The guiding-center approximation is only valid when the high frequency electromagnetic wave

vanishes, i.e. outside the beam. Thus, when a particle is approaching the wave beam region,

the code switches from the guiding-center equations and a very large time step to the Lorentz

force law and a much smaller time step, and vice versa. The very small Larmor radius of the

electrons along with their high velocities allows one to do so, since the first order terms of the

gyro-averaging transformation are six scales down from the zero order ones.

In our study, we use a reference case of ITER-like parameters that is summarized in Table

3.1. Our main results are deduced for the values listed, unless stated otherwise.

Before turning to statistical results, we focus on the dynamics of individual particles in their

interaction with the electromagnetic wave. First, we consider very short integration times, of the

order of about one collision time, in order to capture in more detail the wave-particle interaction.

Every time the particles pass by the wave beam region, a “kick” in their energy appears, as can

be seen in figure 3.2. Figure 3.3 shows the magnitude of the electric field that the same particle

experiences, and of course the peaks are located at the exact same times at which the energy

of the particle changes. The electric field zoomed into one of its peaks areas, i.e. a single beam

crossing, is shown in figure 3.5, reflecting the Gaussian cross-section of the beam and oscillating

due to the elliptical polarization of the wave (the oscillations actually are not resolved in the

figure). Figure 3.4 presents how the energy changes during one single beam crossing, obviously

oscillating in accordance with the electric field, having though a net energy gain on exit of the

beam.

B0 5.51 T R0 6.2 m

r0 1.9 m b 12

ε 0.005 h0 − 0.94

θl 30° φl 80°

ω/2π 170 GHz s 3 cm

Pmax 10 MW T 8 keV

t 1.5 msec particles 96000

Table 3.1: Typical parameters used in the test-particle simulations.
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Figure 3.2: Kinetic energy of a typical particle as a function of time, for a short integration

time.
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Figure 3.3: Electric wave field amplitude, as experienced by a typical particle, as a function of

time, for a short integration time.
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Figure 3.4: The kinetic energy oscillations during the wave-particle interaction.
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Figure 3.5: The Gaussian form of the electric wave field amplitude.

Turning now to integration times that are clearly larger than the collisions time, we show the

time evolution of the kinetic energy of three different particles in Figure 3.6 (the integration



3.3 Particle dynamics 67

time used here corresponds to about 8 collision times). At various time-intervals many particles

increase their energy almost systematically after several interactions with the electromagnetic

wave. Collisions, however, can alter qualitatively the energy behavior, leading to a more complex

picture. Overall, the kinetic energy of each particle seems to vary in a rather random-walk like

manner. Only few particles keep on gaining energy almost constantly during extended phases,

like the blue curve in Figure 3.6. Most of them undergo much bigger and more frequent changes

like the other two curves. Some may even lose energy, as the red one clearly demonstrates.
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Figure 3.6: Time evolution of the kinetic energy for three different electrons, and for a relatively

large final time.

3.3.4 Statistics

In order to test the single-particle model against other approaches to the wave-particle interac-

tion, the particle simulations are oriented for obtaining macroscopic results. Reliable statistics

require large numbers of particles to be tracked. For this purpose, the code has been parallelised

over the individual particles, both with OpenMP (for multiprocessors with shared memory) and

MPI (for computer systems with distributed memory). Since the particles move independently of

each other, the simulations are highly scalable and profit a lot from massively parallel execution.
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Figure 3.7: Mean kinetic energy of 105 electrons as a function of time.

Figure 3.7 shows the mean kinetic energy of 105 electrons as a function of time. The mean

energy increases, so there is a clear gain of energy on the average. The figure also implies

that no asymptotic state has been reached yet by the particles at the largest integration time

considered here (longer integration times could not have been achieved, due to restrictions in

computational power). In figure 3.8, the final velocity distribution as a function of the parallel

and perpendicular velocity is shown. It exhibits a plateau-like depression of the distribution at

intermediate velocities around the peak, as it is characteristic for wave-particle interaction and

very reminiscent of Landau damping.

3.4 Current drive and wave absorption

3.4.1 Current drive

The driven current, meaning the plasma current induced by the wave in the direction parallel

to the magnetic field, can be calculated by the velocities of the test-particles. At a fixed set of

time-instances during the simulations, we keep track of the parallel and perpendicular velocities

v‖ and v⊥ of each electron, as well as the flux surface h it lies upon. For each time-instance,

the particles are separated into different bins labeled by h of sufficiently large width δh, starting

from the separatrix hx until we reach the o-point ho. The optimal choice for δh should be a
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Figure 3.8: Final velocity distribution of 105 electrons at t = 1.5 msec.

value large enough to include a statistically significant number of particles in every bin (2.5% of

the particles being the minimum), but also small enough for good resolution in h. Calculating

the average parallel velocity
〈
v‖
〉

(h) over the particles lying between h and h+ δh, we can find

the total current density

J‖(h) = neqe
〈
v‖
〉

(h) =
neqe
Nh

Nh∑
i=1

v‖,i(h), (3.17)

generated at the flux surface h, where ne is the electrons density and Nh is the number of

particles in the interval [h, h+ δh]. In this way, the driven current density is obtained as a

function of the flux surface label h.

In the next two figures, the current drive density for the typical case of Table 3.1 is presented

in red. As we can see, the current density shows a negative peak around − 220 MA/m2 at

h = − 0.97 approximately. The deviation from the initial flux surface is actually quite small

and consistent with the particle drifts towards the o-point. In Figure 3.9, a comparison is made

between the reference case with initial conditions on h0 = − 0.94 and a case of a different initial

flux surface, namely h0 = − 0.7, indicated in blue. The latter looks like a natural continuation

of the red curve and, unlike the former, shows no peak at all, as expected since the particles are

further away from the resonance region. In Figure 3.10, we see the reference case compared to
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two cases with different toroidal launching angles φl = 100° and φl = 120° represented by the

blue and green curves, respectively. The current density is much reduced at these new launching

angles, and due to the noise-level, which is of the order of ± 10 MA/m2, it cannot be considered

to be significantly different from zero.
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Figure 3.9: Current drive density as a function of h at final time t = 1.5 msec for two different

initial flux surfaces.
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Figure 3.10: Current drive density as a function of h at final time t = 1.5 msec for three different

toroidal launching angles. The dashed line corresponds to the initial conditions of the particles.
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3.4.2 Wave absorption

The wave power density absorbed by the test-particles can be determined in a very similar

manner, by computing the variation in the particles kinetic energy over time. First, the kinetic

energy E is determined from the velocities and then the difference δE for each particle during

the time interval δt between two subsequent time-instances. Following the same binning in h

to the particles as before, the average power 〈δE(h)〉 /δt over the particles lying between h and

h+ δh yields the absorbed power density as a function of the flux surface label h,

P (h) = ne
〈δE(h)〉
δt

=
ne
Nhδt

Nh∑
i=1

δEi(h) (3.18)

The next two figures present the results for the absorbed power density corresponding to

the current densities shown in Figures 3.9 and 3.10, respectively. As before, the red curve in

both plots describes our reference case of Table 3.1, which shows a peak around 104 MW/m3 at

h = − 0.97 again, where the peak of the current drive lies. The same drift towards the o-point

is also manifest here. As we can see in Figure 3.11 showing the comparison of initial conditions,

the particles released at h0 = − 0.7 being too far from the resonance region, they basically carry

zero power density. Figure 3.12 shows that the power density for the toloidal launching angles

φl = 100° and φl = 120° is not significantly different from zero within the noise level, which here

is of the order of ± 2 MW/m3.
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Figure 3.11: Absorbed power density as a function of h at final time t = 1.5 msec for two different

initial flux surfaces.
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Figure 3.12: Absorbed power density as a function of h at final time t = 1.5 msec for different

toroidal launching angles. The dashed line corresponds to the initial conditions of the particles.

3.5 Comparison with the linear theory

For comparison with the linear theory, we use the ray-tracing code described in [56]. In this code,

the Hamiltonian equations of ray-propagation are based on the cold plasma dispersion relation,

the wave absorption along the ray path is calculated in terms of the imaginary part of the

wave vector, as determined from the weakly relativistic, hot plasma dispersion relation, and the

current drive efficiency is calculated with the linear adjoint method, and it includes the effects

of trapped particles, ion-electron collisions and the poloidal variation of the collision operator.

Exactly the same magnetic background topology and perturbation as for the test-particles are

used in the ray tracing code, and the calculation of the volumes enclosed by flux surfaces within

the island is done by means of an analytical flux surface labeling that is quantitatively almost

coincident with the one used for the test-particles.

In order to have a meaningful comparison, in the sense that the nonlinear and the linear

approach explore the same resonance region, the island had been rotated such that its o-point

lies close to the region where the ray is resonant, and the initial conditions of the test-particles

have been chosen in this region. Also, for the ray to pass by the reference point of the beam in

the particle treatment and for the beam’s and the ray’s wave-vector to be parallel, we applied

back-tracing of the ray from the beam’s reference point to the plasma edge, to determine the

appropriate initial conditions for the actual ray tracing.
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Figure 3.13: Comparison of current drive density between test particle simulations at final time

t = 1.5 msec (red curve) and ray-tracing (blue curve).
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Figure 3.14: Comparison of absorbed power density between test particle simulations at final

time t = 1.5 msec (red curve) and ray-tracing (blue curve).

In Figures 3.13 and 3.14, we show the results from the particle simulations and the nonlinear

character of the equations of motion compared with the ray tracing method and the linear

theory, using the same initial wave power Pmax = 10 MW and toroidal launching angle φl = 80°.

The current density from the linear code is roughly 2.5 times smaller than the one derived from
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the nonlinear simulations, see Figure 3.13. In addition, and as described above, the peak in

the nonlinear case is slightly offset towards the o-point from the linear one, which quite well

coincides with the flux surface where the particles have initially been released. As mentioned,

this difference can be explained by particle drifts, which the ray tracing code cannot take into

account. On the contrary to the current density, the linearly determined absorbed power density

is roughly 2 times larger than the one from the nonlinear simulations, as shown in figure 3.14,

while the same nonlinear drift effect of the peak as for the current density is present.

Figures 3.15 and 3.16 are the counterparts of figures 3.10 and 3.12, showing the results from

the ray-tracing code for different toroidal launching angles. Also here, current drive density and

absorbed power density are much reduced for φl = 100° and 120°. The current density is close

to zero for both new launching angles, and thus the results are compatible with the nonlinearly

derived ones, within the error-level of the latter. The same holds for the power density at

φl = 120°, which is close to zero both linearly and nonlinearly, only for φl = 100° there is a

systematic difference, with a linear peak value of 50 MW/m3, which lies clearly above the noise

level around 0 of the nonlinear simulations.
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Figure 3.15: Current drive density as a function of h, for three different toroidal launching

angles, calculated with the ray-tracing code.
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Figure 3.16: Absorbed power density as a function of h, for three different toroidal launching

angles, calculated with the ray-tracing code.

3.6 Discussion

We have performed test particle simulations of the wave-particle interaction in ECRH within

a magnetic island of an NTM perturbed equilibrium topology. Our code is simply based on

direct numerical integration of the equations of motion for charged particles, suitably switching

from the Lorentz force law to the guiding-center approximation and back. Both the perturbed

magnetic field and the electromagnetic wave are analytically prescribed to the system. For the

former, we also have at our disposal an analytical flux surface label (presented in the previous

chapter) to determine in full precision any information required along the way for the magnetic

islands. On the other hand the wave for ECRH is modeled by a narrow beam described (i.e.

its wavenumber and polarization) in terms of the hot plasma theory. Electron-ion collisions

are also implemented using a pitch angle scattering procedure outside the equations of motion.

Initial positions for the particles can be randomly chosen on a given flux surface, while initial

velocities are also random, following a Maxwellian distribution. Finally, parallel processing

allows detecting large numbers of particles in order to investigate their collective behavior and

arrive at statistical conclusions.

This work is still in progress. Although the code has rather reached a mature level and some

first results have been produced, conclusions at this stage would be too hasty to draw. First of

all, as previously commented in terms of Figure 3.7, we need to be able to extend our integration
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times in order to reach some kind of asymptotic state. This is purely a matter of computational

power, but very crucial for reliable validation and comparison against other codes or theories,

which in their majority make predictions for stationary states. Once this obstacle is overcome,

our tools will be able to target more focused problems, e.g. make more precise the effects

coming from the magnetic islands or ECRH, either separetely or combined together. Other

necessary improvements, which are now under development and will soon be completed, are the

inclusion of the wave magnetic field and the electron-electron collisions. Both of them could

alter significantly the energy of the particles : the latter directly affecting the amount of energy,

while the former changing the way this energy is distributed over the parallel and perpendicular

velocities. After completing the aforementioned tasks the results presented in this chapter will

be submitted for publication [61].

In summary, we have developed what is hopefully a useful tool for studying numerically the

charged particle motion. And even though suitably staged here for the magnetic island topology

and ECRH, it could be employed elsewhere. Last but not least, although aiming towards results

of more statistical nature, the code is, as one can imagine, equally suited for investigating indi-

vidual orbits, i.e. exploring the motion of charged particles more like a dynamical system, and

of course without having the aforementioned computational restrictions. For example, identi-

fying banana orbits of trapped particles, or plotting Poincare sections that show the dynamics

of the particles for longer times are all features included in the code and ready to be used for

inspection.
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Chapter 4

Symmetry Methods and Group

Theory of Differential Equations

Simply consider the first-order ordinary differential equation

dx

dt
= f(t, x) (4.1)

where t, x ∈ R and f a differentiable function. If f does not depend on the variable x, then this

equation can be easily solved by integration

x(t) =

∫
f(t) dt

Thus, in the general case, it is to our advantage to find new variables t̃ and x̃ which transform

the above equation (4.1) into the simpler form

dx̃

dt̃
= f̃

(
t̃
)

(4.2)

For then from the solution x̃
(
t̃
)

of (4.2) we can return back to the original variables t and x and

recover the solution x(t) of (4.1).

Example 4.1. Take for instance the differential equation

dx

dt
= tx

Note that the transformation x −→ −x leaves the equation invariant. So without loss of gener-

ality we may assume x > 0 and replace the variable x with x̃ = lnx. Then the above equation

transforms into
dx̃

dt
= t

79
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which can be solved with direct integration, yielding

x̃(t) =
t2

2
+ c̃

and returning back to the original variable x, we arrive at the general solution

x(t) = c e
t2

2

Of course the equation in this example can be solved using separation of variables and then

integration. But all cases are not so simple. Let us see another example.

Example 4.2. In general, the Riccati equation

dx

dt
=
x+ 1

t
+
x2

t3

can be solved by finding a special solution x1(t). The transformation x = x1 + y−1 leads then

to a linear first-order differential equation for y(t), whose solution yields the general solution

x(t) = x1(t) + 1/y(t).

Alternatively if we introduce new variables

t̃ = x/t

x̃ = −1/t

then we get the differential equation
dx̃

dt̃
=

1

1 + t̃ 2

Integrating it, we find

x̃
(
t̃
)

= arctan t̃+ c

and going back to the original varibales

x(t) = − t tan

(
1

t
+ c

)
As we can see we deduced the solution of the equation in a different way, which looking back

one could say that looks simpler.

In the treatment of ordinary differential equations one often encounters various solving tech-

niques, most of which are based somewhat on a trick which brings the equation into a much

simpler, known form. These techniques, which seem unrelated to each other, apply only in

certain equations, leaving the majority outside. Actually they are just a small part of a theory

that can be applied to every differential equation of any order. At its core lies the concept of

symmetry, and (for continuous symmetries only considered here) it is almost entirely based on

the work of Sophus Lie. The transformations we used in the previous examples to integrate the

differential equation in each case have not been found by accident, but through this theory.
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4.1 Systems of differential equations

In order to introduce the notion of symmetry, first we need to describe differential equations

on a more geometrical ground. Our goal is to keep our presentation as simple as possible and

briefly go through the key concepts of symmetry theory. Therefore, in what follows we mainly

consider Euclidean spaces, besides a small deviation in section 4.2, where there is no need to. A

detailed and at the same time concrete account for the technicalities arising when working on

manifolds is given in [89], section 3.5.

Although we are primarily concerned with ordinary differential equations (ODEs), symmetry

methods do not distinguish ordinary from partial differential equations (PDEs). In our presen-

tation therefore symmetry theory is introduced in terms of the more general case of PDEs, while

demonstrated mostly with examples of ODEs. The multi independent variable case is all the

same needed, when we move to the notion of equivalence transformations, as well. For avoid-

ing confusion, we stress from the beginning the different notation between ODEs and PDEs,

based on physical arguments: In ODEs, which usually decribe the time evolution of the spatial

position for a system in general, as the problem studied in this thesis, the dependent variables

are repsresented collectively by the space coordinates x and the independent one by the time t,

while in PDEs usually describing the evolution of a physical quantity both in space and time,

dependent variables are denoted by u and independent ones by x.

So, consider two Euclidean spaces X = Rq and U = Rp together with a smooth mapping

f : X −→ U , whose coordinates at any points x and u, respectively, express the independent

variables

x =
(
x1, x2, . . . , xq

)
of the problem at hand, and the dependent ones

u = f(x) =
(
u1, u2, . . . , up

)
Following the standard notation often employed in PDEs, where subscripts designate partial

diferentiation, the k-th order partial derivative of the component f i(x) with respect to the

variables xj1 , . . . , xjk will be denoted as

uiJ =
∂kf i

∂xj1∂xj2 · · · ∂xjk

Let Uk represent the set of all these k-th order derivatives of all the components of u for every

choice of J = (j1, . . . , jk), whose dimension is dimUk = p
(
q+k−1
k

)
. Finally, u(n) stands for all
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the derivatives of u up to order n and U (n) = U1× · · · ×Un their set, which is isomorphic to the

pn-dimensional Euclidean space, where pn =
n∑
k=1

dimUk is the dimension of U (n).

Now, the first step to picture a differential equation is to glue together the independent and

dependent variables by considering the space M = X×U with coordinates (x, u). Then in order

to include derivatives, the second one is an extension given by the space of independent and

dependent variables now along with all the derivatives up to n-th order,

M (n) = X × U × U (n)

with coordinates
(
x, u, u(n)

)
. The space M (n) is called the jet space of n-th order of the base space

M , while smooth, real functions defined on M (n) are called differential functions. If m = q+p is

the dimension of M , then mn = q+ p+ pn = q+ p ( q+nn ) denotes the dimension of M (n). Notice

that x and u in terms of M and, in general, x and u(n) in M (n) are treated as coordinates on

equal footing, independent of each other with no reference to f anymore.

To recover the relation between x and u, we may interprete a function u = f(x) defined on a

subset S ⊂ X geometrically. And that is by identifying f with its graph,

Γf = {(x, u) : x ∈ S, u = f(x)} ,

consisting of all points (x, f(x)) in M , for which f is defined. The subset Γf of M can be

extended to a subset Γ
(n)
f of the n-jet space M (n) given by the graph of f (n),

Γ
(n)
f =

{
(x, u, u(n)) : x ∈ S, u = f(x), u(n) = f (n)(x)

}
Let ∆ = (∆1, . . . ,∆l) be a vector function on M (n), where ∆ν for ν = 1, . . . , l are differential

functions. A system of differential equations of order n is given by a set of equations

∆ (x, u, u(n)) = 0 (4.3)

and can be viewed as the vanishing of the smooth map ∆ : M (n) −→ Rl. In this context, (4.3)

defines a subset of the n-jet space M (n)

D =
{

(x, u, u(n)) : ∆ (x, u, u(n)) = 0
}

A smooth function u = f(x) defined on the subset S ⊂ X is called a solution of the system, if

it satisfies equations (4.3) for any x ∈ S, meaning

x ∈ S ⇒ Γ
(n)
f ⊂ D (4.4)
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Remark 4.3. Several of the above geometrical notions can be relaxed. For example a given

problem may not be defined over all of M , but only on an open subset thereof and ∆ accordingly

on an open subset of M (n). Further generalizations would be the case where X and U are in

general differentiable manifolds, in which case M (n) is a jet bundle (see [95] for the geometry of

jets).

So far, our discussion has been kept quite general. We should, however, impose some rather

mild restrictions on ∆ to exclude any degeneracies. We comment first that, in the above fashion,

a system of differential equations can be viewed to some extent as a set of algebraic equations (in

the sense of constraints) among the variables z =
(
z1, . . . , zmn

)
, where z =

(
x, u, u(n)

)
is a point

in M (n), meaning zµ for µ = 1, . . . ,mn is any of the variables xj , ui or uiJ . Of course algebraic

relations strictly among the independent variables do not qualify as differential equations and

therefore are not allowed. In this algebraic viewpoint it is only natural to rule out any functional

dependencies among the equations themselves. Therefore, for every system ∆(z) = 0 we consider

that the rank of the l ×mn Jacobian matrix

J∆ =

(
∂∆ν

∂zµ

)
equals l when ∆ = 0, in which case the system is called of maximal rank. This is not much of a

restriction and is often met in practice as the next example illustrates.

Example 4.4. Obviously there is no point considering the scalar PDE (ut − uxx)2 = 0 or the

system {ut − uxx = 0, 3ut − 3uxx = 0}, both violating the maximal rank condition, rather than

the heat equation ut − uxx = 0 itself which respects it.

In the particular case, where the maximal rank condition is satisfied for just u(n) and not all of

z, i.e. the l × pn submatrix
(
∂∆ν/∂u

i
J

)
is of rank l, then by the implicit funtion theorem l of

the derivatives uiJ can be expressed in terms of the rest mn − l variables zµ, meaning that the

system can be written in the familiar solved form.

On the other hand, a noticeable difference between differential and algebraic equations is that

for the latter the set of solutions and the set defined by the equations themselves would be the

same thing. On the contrary, for a system of differential equations (4.3) there is no guarantee

in general that the collection of all the extended graphs Γ
(n)
f for every solution u = f(x) will

cover all of D defined by the system. There may be points in D, through which no (derivatives

of) solutions pass. Examples of this notion are often found in systems of PDEs with nontrivial

integrability conditions of order less or equal to n that cannot be satisfied as an algebraic

consequence of the equations of the system.
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Example 4.5. For instance, the system {ut = 0, ux = t(u− 1)} defines a subset D in the 1-jet

space consisting of all the points of the form (t, x, u, 0, t(u− 1)). However, the compatability

condition utx = uxt results in the equation 0 = u− 1 of order less than n = 1, i.e. an algebraic

relation, that is new to the system. Therefore, the only solution of the system is u(t, x) = 1 and

the extended set Γ
(1)
1 of solutions is given by the points (t, x, 1, 0, 0). Obviously there are points

in D, such as (0, 0, 0, 0, 0), which do not correspond to solutions of the system.

A system ∆
(
x, u, u(n)

)
= 0 for which every point in D corresponds to the graph Γ

(n)
f of the

derivative of a solution u = f(x) is called locally solvable. Nonsingular ODEs and evolution

equations in general or scalar PDEs are all locally solvable.

Technical the above features may sound, they will prove necessary for making precise the

symmetry condition later on. So, in the following we assume that a system of differential

equations is nondegenerate, that is both of maximal rank and locally solvable.

Let us also make a little notation index rule to avoid exhausting repetition. In this chapter,

unless stated otherwise, the indices i, j, k, µ and ν take the following values : i = 1, . . . , p,

j = 1, . . . , q (with or without subscript), k = 1, . . . , n, ν = 1, . . . , l and µ = 1, . . . ,mn. We also

adopt Einstein’s summation convention, according to which a repeated index appearing in a

term means summation over all values of that index. In particular, summation with respect to

the multi-index J is meant for all k-tuples for all k.

4.2 Groups of transformations

In order to describe the way a system of differential equations transforms under a change of

variables, we need to investigate the key notion of a vector field and its related consequences.

Playing a central role in symmetry theory, the discussion below stays close to differential equa-

tions aspects, not so much following the more abstract line of differential geometry. Starting

with the formal definition of a vector field, given in appendix B limited there just for the needs

of differential forms, we move on the notion of the flow. Then, based on these concepts, we

quickly generalize in the second subsection of this section, selectively borrowing elements from

the theory of Lie groups.

4.2.1 The flow of a vector field

So, recalling Definition B.2, consider a vector field v on a q-dimensional manifold X in general,

which at every point x ∈ X assigns a tangent vector vx of the manifold. Along with this
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geometrical view, preference here will be given to a more abstract one (for finite-dimensional

manifolds), according to which a vector field v can be equivalently defined as a derivation, acting

on the space C∞(X) of smooth, real functions on the manifold X (see (B.6)). In other words it

maps a smooth function to another one, satisfying linearity with respect to addition and Leibniz’

rule with respect to multiplication (see the properties of Definition (B.1)). Repeating (B.7), this

operator in local coordinates is expressed as

v = ξi(x)
∂

∂xi
(4.5)

where ξi are smooth functions of x, stating that the partial derivatives ∂/∂xi are a basis for the

set of all vector fields on X.

A typical example of a vector field v is the velocity field of a fluid, which relates a velocity

vx of a particular direction and magnitude to every point x of the fluid. In this picture, a fluid

particle starting from some arbitrary point x0, follows a trajectory x = ϕ(t), along which its

velocity at every point is equal to the field vϕ(t), that is

dϕ

dt
= vϕ(t) ⇒

dϕi

dt
= ξi(ϕ(t))

The collection of all these trajectories, each one starting from a different point x0, describes the

flow of the fluid.

Returning to our general discussion on vector fields (4.5), but keeping the fluid visualization

in mind, consider now a curve ϕ(ε) on X parametrized by ε the latter lying in some open interval

I ⊂ R. If at any point x = ϕ(ε) of a smooth curve, the vector field v is tangent to ϕ, meaning

ϕ′(ε) = vϕ(ε), then ϕ is called the integral curve of v. In terms of local coordinates, the tangency

condition reads
dxi

dε
= ξi(x) (4.6)

and since ξi are smooth functions, existeness and uniqueness for the solution ϕ(ε) of the system

with given initial conditions ϕ(0) = x0 (assuming 0 belongs to I) is guaranteed, at least in a

neighborhood of x0, by the well-known theorems for ODEs. Two curves ϕ(ε) for different initial

conditions cannot intersect, for then from their intersection point two solutions of the system

would set off violating the uniqueness property. Therefore, only one such curve ϕ(ε) passes

through a fixed point x of the manifold, which will be denoted by ϕx(ε). Letting x vary, we

consider the function ϕ(ε, x) = ϕx(ε).

Flow then of a vector field v on a differentiable manifold X is the set of solutions ϕ(ε, x)

of system (4.6), each of which passes through a different point x ∈ X. In other words, it is
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a map ϕ : U −→ X, where U is an open subset of R × X such that for each x ∈ X the set

Ix = {ε ∈ R : (ε, x) ∈ U} is an open interval containing 0, which satisfies the following properties

1. ϕ (0, x) = x, for all x ∈ X (4.7a)

2. ϕ (ε, ϕ(δ, x)) = ϕ (ε+ δ, x) , for all δ ∈ Ix and ε ∈ Iϕ(δ,x) such that ε+ δ ∈ Ix (4.7b)

3.
∂ϕ(ε, x)

∂ε
= vϕ(ε,x) , for all ε ∈ Ix (4.7c)

The first property expresses the initial conditions of the system, while the second one comes

from the uniqueness of solutions. The third property is really system (4.6) and states that the

vector field v for a fixed x is tangent to the curve ϕ(ε, x) at each point. From (4.7a) and (4.7c)

we can also find a way to recover the vector field from its flow,

vx =
∂ϕ

∂ε

∣∣∣∣
ε=0

, (4.8)

The map φ along with the properties (4.7a) and (4.7b) defines a local group action of the

Lie group R on the manifold X, also known as a one-parameter local group of transformations.

Since ϕ is smooth, then from Taylor’s theorem near the point (0, x) it can be expressed as

ϕ(ε, x) = ϕ(0, x) + ε
∂ϕ

∂ε

∣∣∣∣
ε=0

+
ε2

2

∂2ϕ

∂ε2

∣∣∣∣
ε=0

+O
(
ε3
)

The linear term in the above expansion is already given by (4.8), which recalling (B.5) can also

be written as ϕε(0, x) = v(x). Moving on to higher derivatives we split (4.7c) in components,

ϕiε = ξi(ϕ(ε, x)) and differentiate with respect to ε, ϕiεε = ξi
ϕj
ϕjε . Then set again ε = 0 and

using also (4.8) we arrive at ϕiεε(0, x) = ξi
xj
ξj or ϕεε(0, x) = v(ξ) = v(v(x)) ≡ v2(x). Therefore,

substituting in the above Taylor expansion, we deduce that a point x under the flow ϕ of a

vector field v transforms into another point x̃ given as

x̃ = ϕ(ε, x) =

(
I + εv +

ε2

2
v2 + · · ·

)
x.

where I is the identity operator. Successively differentiating (4.7c) and assuming convergence

of the entire Taylor series, one can show that this transformation is described by the so-called

Lie series

x̃ =
∞∑
k=0

εk

k!
vk(x). (4.9)
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where vk is defined as the operator given by the composition of v with itself k times and v0 = I.

The linear part of the above expression, x+ εv(x), is called the infinitesimal transformation of

x, while v the infinitesimal generator. Equation (4.9) is also written symbolically

x̃ = eεv(x) (4.10)

and thus referred to as the exponentiation of v. So, given a vector field one can find the

transformation under its flow using the exponentiation formula (4.10), while in the opposite

direction, one can recover the infinitesimal generator of a given transformation using (4.8).

Example 4.6. Consider the vector field v = ∂x on R, where the symbol ∂x stands for the partial

derivative ∂/∂x in general. Obviously v(x) = 1, while higher-order terms in the Lie series (4.9)

will vanish, vk(x) = vk−1(v(x)) = vk−1(1) = 0 for k ≥ 2. Therefore, the transformation under

the flow of this vector field is ϕ (ε, x) = x̃ = (I + εv)x = x+ ε, namely a translation.

Example 4.7. Consider now the vector field v = x∂x on R, for which v(x) = x, and so is

vk(x) = vk−1(v(x)) = vk−1(x) = · · · = v(x) = x for any k ≥ 1. Therefore, from the Lie series

(4.9), the transformation generated by this vector field is a scaling, also called a dilatation,

ϕ (ε, x) = x̃ =
∞∑
k=0

εk

k!
x = eεx

Example 4.8. Finally, let X = R2 with coordinates (x, y) and v = x∂y − y∂x. We easily see

that v(x) = − y and v(y) = x, based on which we can find by induction v2k(x) = (−1)kx,

v2k+1(x) = −(−1)ky, v2k(y) = (−1)ky and v2k+1(y) = (−1)kx for any k ≥ 0. Therefore, from

the Lie series (4.9) we have that

x̃ = eεv(x) =
∞∑
k=0

(−1)kε2k

(2k)!
x−

∞∑
k=0

(−1)kε2k+1

(2k + 1)!
y,

ỹ = eεv(y) =

∞∑
k=0

(−1)kε2k

(2k)!
y +

∞∑
k=0

(−1)kε2k+1

(2k + 1)!
x.

The above sums converge to the well-known trigonometric functions sine and cosine, and so the

flow of this vector field is

ϕ (ε, (x, y)) = (x̃, ỹ) = (x cos ε− y sin ε, y cos ε+ x sin ε)

Switching to polar coordinates (ρ, φ) via x = ρ cosφ and y = ρ sinφ, this transformation is more

suitably expressed as (ρ̃, φ̃) = (ρ, φ+ ε) and now easily identified as a rotation.
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Returning to our general discussion, the change of a function f defined on the manifold X

under the flow of a vector field v can also be obtained in a similar manner. Starting from (B.6)

we have v(f)(x̃) = vx̃(f), while from (4.7c) that ∂ϕi/∂ε = ξi(x̃). Combined with just the chain

rule ∂f/∂ε = ∂f/∂x̃i · ∂ϕi/∂ε we arrive at ∂f/∂ε = ξi(x̃)∂f/∂x̃i or

∂f

∂ε
= v(f)(x̃) (4.11)

Then, just as before, we can Taylor expand f near the point (0, x) and determine each term

from (4.11). Firstly setting ε = 0 on the latter, we get

∂f

∂ε

∣∣∣∣
ε=0

= v(f)(x)

Proceeding with the second derivative, we find

∂2f

∂ε2
=

∂

∂ε

(
∂f

∂x̃i
∂ϕi

∂ε

)
=

∂2f

∂x̃i∂x̃j
∂ϕi

∂ε

∂ϕj

∂ε
+
∂f

∂x̃i
∂2ϕi

∂ε2

which for ε = 0 yields

∂2f

∂ε2

∣∣∣∣
ε=0

=
∂2f

∂xi∂xj
ξi(x)ξj(x) +

∂f

∂xi
∂ξi

∂xj
ξj(x) = ξj(x)

∂

∂xj

(
ξi(x)

∂f

∂xi

)
= v2(f)(x)

Continuing in this fashion to higher derivatives and within the convergence assumption, the

transformation of a function f defined on the manifold X under the flow of a vector field v is

given by the Lie series

f(x̃) = eεv(f(x)) =

∞∑
k=0

εk

k!
vk(f)(x). (4.12)

As we can see the action of a vector field v on a function f gives the infinitesimal variation of

the function under the flow of the vector field.

4.2.2 Lie groups and their Lie algebras

The previous notions of vector fields and flows can be generalized in terms of Lie algebras and

Lie groups. In general, an r-parameter Lie group is an r-dimensional smooth manifold that

also carries the structure of a group, such that the group operation and inversion are smooth

maps from the manifold to itself. In particular, local Lie groups can always be identified with

(meaning they are isomorphic to) the neighborhood near the identity of some (global) Lie group

[89, 90]. On the other hand, Lie groups usually go together with another intriguing structure,

that of a Lie algebra. Specifically, the Lie algebra g that corresponds to an r-parameter Lie

group G can be identified with (meaning is isomorphic to) the tangent space to the Lie group

G at the identity, i.e. g = TeG, and therefore g is r-dimensional, too. More generally,
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Definition 4.9. A Lie algebra is a real vector space g equipped with a bilinear operation

[ , ] : g× g −→ g called the Lie bracket which for all v,u,w ∈ g satisfies the properties :

1. [v,u] = − [u,v] (skew-symmetry)

2. [[v,u] ,w] + [[w,v] ,u] + [[u,w] ,v] = 0 (Jacobi identity)

Example 4.10. As explained in appendix B, the space of all vector fields on a manifold X

denoted as X (X) is a vector space over R with ∂/∂xi as a basis. Moreover X (X) is a Lie

algebra, where the Lie bracket of two vector fields v and u is defined as the unique vector field

[v,u] = vu− uv (4.15)

For our purposes here (and for most applications as well) the above somewhat abstract dis-

cussion can be made more concrete, and realize Lie groups merely as groups of transformations,

as they were actually first comprehended by Lie himself. As previously mentioned, the flow of

a vector field is a one-parameter local group of transformations. A natural generalization to

this notion is a local group of transformations that depends on (not just one, but) r parameters

ε1, . . . , εr, and which is accordingly defined by the action of (not R, but) a local Lie group G on

the manifold X with similar properties (4.7a)-(4.7b).

Definition 4.11. Let X be a smooth manifold and G an r-parameter local Lie group with ·

denoting the group operation. An r-parameter local group of transformations is the action of G

on X defined as a smooth map ϕ : U −→ X, where U is an open subset of G×X such that for

each x ∈ X the set Gx = {ε ∈ G : (ε, x) ∈ U} contains the identity element e of G, and which

satisfies the properties :

1. ϕ (e, x) = x, for all x ∈ X

2. ϕ (ε, ϕ(δ, x)) = ϕ (ε·δ, x) , for all δ ∈ Gx and ε ∈ Gϕ(δ,x) such that ε·δ ∈ Gx

In fact, since under the action of G to X each element of G is associated with a map from the

manifold X to itself, a local group of transformations of X is practically identified with the local

Lie group G.

For symmetry methods and their criteria the action of an r-parameter Lie group can actually

be considered as a composition of r one-parameter subgroups such as the flow of a vector field

previously shown. Admittedly skipping important steps of Lie group theory along the way

(see [112]), let us go right into the heart of it. And that is a generalization of relations (4.8)
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and (4.10) : Assuming connected Lie groups, the transformation x̃ = ϕ (ε, x) of a point x of a

manifold X under the action of G can be expressed similarly to (4.10) as

x̃ = eε1v1eε2v2 · · · eεrvr(x) (4.16)

Here ε = (ε1, . . . , εr) are local coordinates in G near the identity element e, giving rise to one-

parameter subgroups Gi of G for i = 1, . . . , r. In this context, the action ϕ(εi, x) = eεivi(x) (no

summation) of each subgroup Gi on the manifold X can be viewed as the flow of the vector field

vi, meaning

vix =
∂ϕ

∂εi

∣∣∣∣
εi=0

, (4.17)

Now, v1, . . . ,vr are r linearly independent vector fields that form a basis of the Lie algebra g

that corresponds to the Lie group G. And as already mentioned and silently considered above

there is a 1-1 correspondence between vi and Gi. Moreover, for transformation groups the Lie

algebra g of a Lie group G acting on a manifold X can be mapped to the space X (X) of vector

fields on X while retaining its Lie bracket structure. This means that there is a homomorphism

ψ between g and X (X), which gives rise to a Lie subalgebra ψ(g) of vector fields on X. The

latter are defined precisely as in (4.17) namely the vector fields on X whose flow coincides with

the action of one-parameter subgroups of G. In practice g is identified with its image ψ(g) and

the homomorphism ψ is omitted, so that (4.17) makes sense. Keeping this in mind, vi and

elements of g in general are treated as vector fields on X, just like elements of G are treated as

transformations on X as previously mentioned.

The reason is the following : As with any Lie algebra, the basis vectors v1, . . . ,vr of g satisfy

the fundamental relations

[vi,vj ] = ckijvk (4.18)

for i, j, k = 1, . . . , r, where c kij form a constant 3-tensor of mixed type and are known as the

structure constants of g. Reflecting the Lie bracket properties, these are easily seen to satisfy

1. c kij = −c kji (skew-symmetry)

2. c kij c
m
kl + c kli c

m
kj + c kjl c

m
ki = 0 (Jacobi identity)

where all indices take values 1, . . . , r. Now, the justification for the above treatment is that up

to isomorphisms the structure constants define the same Lie algebras and the same Lie groups

accordingly (given the 1-1 correspondence between them explained below).

The vector fields of the Lie algebra g are called the infinitesimal generators of the Lie group

(action) G, and when they form a basis of g exponentiation (4.16) can always yield the local
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transformations of G. Equation (4.18) is the content of Lie’s second fundamental theorem, while

the two properties of the structure constants are given by Lie’s third fundamental theorem. The

first fundamental theorem of Lie in essence states that the flow of a vector field gives rise to a

one-parameter local group of transformations, as we saw in the previous subsection.

Lie’s truly brilliant idea in symmetry theory of differential equations that cannot be overesti-

mated was the use of Lie algebras instead of the corresponding Lie groups. For the former carry

almost all the information of the latter, but translated from the manifold to the much simpler

linearization version of it offered by the tangent space. And while every Lie group gives rise to a

Lie algebra, in some cases the converse is also true. For finite-dimensional Lie algebras, a direct

consequence of Ado’s theorem is a 1-1 correspondence between simply-connected Lie groups and

Lie algebras (see [112] and references therein). The same holds between connected subgroups

of a Lie group and subalgebras of the corresponding Lie algebras (see [89, 112]). These results

allow us to switch easily from elements of G to vector fields of g and back.

An illustration of the above ideas that also characterizes the Lie bracket of two vector fields

as the infinitesimal commutator is given by the next theorem; for proof see [89], p. 36.

Theorem 4.12. Let X be a smooth manifold and G a two-parameter connected Lie group

acting on X. Then the flows generated by two vector fields v1 and v2 commute if and only if

their Lie bracket vanishes everywhere, i.e. for all x ∈ X and ε = (ε1, ε2) ∈ G

eε1v1eε2v2(x) = eε2v2eε1v1(x) ⇔ [v1,v2] = 0

4.3 Transformations of differential equations

Consider now a vector field v on the space M of the independent and dependent variables of

a system of differential equations ∆
(
x, u, u(n)

)
= 0. Under the flow of v the transformation of

the variables x and u to new variables

x̃ = eεv(x)

ũ = eεv(u)
(4.21)

naturally induces a transformation of the derivatives of the function u = f(x) to the correspond-

ing derivatives of the transformed function ũ = f̃ (x̃). In other words the one-parameter local

group of transformations G generated by the vector field v, acting on M through the flow

ϕ (ε, (x, u)) = (x̃, ũ)
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is naturally extended to a one-parameter local group of transformations G(n) acting on the n-jet

space M (n) by simply requesting that the transformation of the derivatives of u with respect

to x is given by the derivatives of the transformed ũ with respect to the transformed x̃, that

is ũ(n) = ũ(n). This action is defined by the map ϕ(n) : U (n) −→ M (n), where U (n) is an open

subset of R×M (n), with

ϕ(n)(ε, (x, u, u(n))) = (x̃, ũ, ũ(n))

and can be viewed as the flow generated by the vector field v(n) on the space M (n) satisfying

the relation

v
(n)

(x,u,u(n))
=
∂ϕ(n)

∂ε

∣∣∣∣∣
ε=0

(4.22)

Put it another way, knowledge of v(n) is sufficient to describe the transformation of the system

∆
(
x, u, u(n)

)
= 0 under the change of variables (4.21), using again exponentiation

x̃ = eεv
(n)

(x)

ũ = eεv
(n)

(u)

ũ(n) = eεv
(n)

(u(n))

(4.23)

The field v(n) defined by the above equation (4.22) is called the n-th prolongation of the vector

field v. And similar to (4.12), one can prove that the transformation of a function f(x, u, u(n))

defined on the manifold M (n) under the flow ϕ(n) is given by the Lie series

f(x̃, ũ, ũ(n)) =

∞∑
k=0

εk

k!

(
v(n)

)k
(f)(x, u, u(n)). (4.24)

where now the action of v(n) on the function f(x, u, u(n)) describes accordingly the infinitesimal

variation of the function under the flow ϕ(n).

Example 4.13. The simplest case to begin with would be a constant vector field on M = Rq+p

of the form

v =
∂

∂x1
+ · · ·+ ∂

∂xq
+

∂

∂u1
+ · · ·+ ∂

∂up

Genaralizing Example 4.6, the flow ϕ (ε, (x, u)) = (x̃, ũ) generated by this vector field is simply

a translation in each component, (
x̃j , ũi

)
=
(
xj + ε, ui + ε

)
Therefore, the new derivatives remain unchanged,

ũix̃j =
∂ũi

∂x̃j
=
∂ui

∂xj
= uixj
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and, of course, this is carried on to higher derivatives of any order, meaning ũ(n) = u(n), as well.

Thus, the flow extended on M (n) = Rq+p+pn would be ϕ(n)
(
ε, (x, u, u(n))

)
=
(
x̃, ũ, u(n)

)
. If we

differentiate the latter equation with respect to ε and set ε = 0,

∂ϕ(n)

∂ε

∣∣∣∣∣
ε=0

= (1, . . . , 1︸ ︷︷ ︸
q

, 1, . . . , 1︸ ︷︷ ︸
p

, 0, . . . , 0︸ ︷︷ ︸
pn

)

we arrive at the components of the vector field v(n) that generates the flow ϕ(n). Therefore in

this case v(n) = v, that is the prolongation of this vector field is simply the vector field itself

since no transformation occurs in the derivatives.

Example 4.14. Let us consider the case of one independent variable t ∈ R and one dependent

x ∈ R and the vector field

v = t
∂

∂t
− 2x

∂

∂x

Following Example 4.7, the flow of this vector field according to (4.21) is the scaling

ϕ (ε, (t, x)) =
(
t̃, x̃
)

=
(
teε, xe−2ε

)
From the chain rule we can find the derivative ˙̃x

(
t̃
)

in terms of the derivative ẋ(t)

˙̃x =
dx̃

dt̃
=
dx̃

dx

dx

dt

(
dt̃

dt

)−1

= e−2εdx

dt
e−ε = e−3εẋ

So, the transformation on M = R2 with coordinates (t, x) extends to a transformation on

M (1) = R3 with coordinates (t, x, ẋ) given by

ϕ(1) (ε, (t, x, ẋ)) =
(
teε, xe−2ε, ẋe−3ε

)
Likewise, for the second derivative

¨̃x =
d ˙̃x

dt̃
=
d ˙̃x

dẋ

dẋ

dt

(
dt̃

dt

)−1

= e−3εdẋ

dt
e−ε = e−4εẍ

and so we get the transformation

ϕ(2) (ε, (t, x, ẋ, ẍ)) =
(
teε, xe−2ε, ẋe−3ε, ẍe−4ε

)
Differentiating the latter equation with respect to ε and setting ε = 0,

∂ϕ(2)

∂ε

∣∣∣∣∣
ε=0

= (t,−2x,−3ẋ,−4ẍ)

yields the components of the vector field v(2) that generates the flow ϕ(2) on M (2) = R4 with

coordinates (t, x, ẋ, ẍ),

v(2) = t
∂

∂t
− 2x

∂

∂x
− 3ẋ

∂

∂ẋ
− 4ẍ

∂

∂ẍ
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The procedure followed in the previous example can be employed in general for any vector

field and yields inductively the prolongation of any vector. The resulting algorithm is given by

the next proposition.

Proposition 4.15. Let v be a vector field defined on the space M of the independent and

dependent variables of the form

v = ξj(x, u)
∂

∂xj
+ ηi(x, u)

∂

∂ui

The n-th prolongation of v on the corresponding jet space M (n) of n-th order is given by the

general formula

v(n) = v + ηJi (x, u, u(n))
∂

∂uiJ
(4.25)

where

ηJi (x, u, u(n)) =
d

dxJ

(
ηi − ξj ∂u

i

∂xj

)
+ ξj

∂uiJ
∂xj

and d/dxJ = DJ = Dj1Dj2 · · ·Djk , Dj being the total derivative with respect to xj .

It is worth noting that the n-th prolongation v(n) of the field v can be also viewed as the first

prolongation of the field v(n−1), just like the n-th derivative of a function is the derivative of

the (n− 1)-th derivative. That is why in practice the calculation of the components ηJi is made

step by step, using the recursion relation

ηJi =
dη

J/k
i

dxjk
− dξj

dxjk

∂uiJ/k

∂xj
(4.26)

where J/k = (j1, . . . , jk−1). In the case of one independent variable t and one dependent x, the

above relation takes the form

η(k) =
dη(k−1)

dt
− dξ

dt

dkx

dtk
(4.27)

It is preferable at this point to give an illustrative example to avoid any confusions caused by

the above notation.

Example 4.16. In order to be as thorough as possible, let us examine the case of two indepen-

dent variables t and x and one dependent u. Consider the vector field

v = τ(t, x, u)
∂

∂t
+ ξ(t, x, u)

∂

∂x
+ η(t, x, u)

∂

∂u

The first prolongation of this field is

v(1) = v + ηt
∂

∂ut
+ ηx

∂

∂ux
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where according to (4.26)

ηt =
dη

dt
− dτ

dt
ut −

dξ

dt
ux = ηt + (ηu − τt)ut − ξtux − τuu2

t − ξuuxut

ηx =
dη

dx
− dτ

dx
ut −

dξ

dx
ux = ηx + (ηu − ξx)ux − τxut − ξuu2

x − τuuxut

The second prolongation is

v(2) = v(1) + ηtt
∂

∂utt
+ ηxt

∂

∂uxt
+ ηxx

∂

∂uxx

where for example

ηxx =
dηx

dx
− dτ

dx
uxt −

dξ

dx
uxx

= ηxx + (2ηxu − ξxx)ux − τxxut + (ηuu − 2ξxu)u2
x − 2τxuuxut − ξuuu3

x−

− τuuu2
xut + (ηu − 2ξx)uxx − 2τxuxt − 3ξuuxuxx − τuutuxx − 2τuuxuxt

We realize that as we move on to higher orders the calculation of the components of the prolonged

vector fields becomes more and more complicated. For example the term ηxxx of the third

prolongation is

ηxxx =
dηxx

dx
− dξ

dx
uxxx −

dτ

dx
uxxt = ηxxx + (3ηxxu − ξxxx)ux − τxxxut + (3ηxuu − 3ξxxu)u2

x−

− 3τxxuuxut + (ηuuu − 3ξxuu)u3
x − 3τxuuu

2
xut − ξuuuu4

x − τuuuu3
xut + 3 (ηxu − ξxx)uxx−

− 3τxxuxt + 3 (ηuu − 2ξxu)uxuxx − 3τxuutuxx − 6τxuuxuxt − 6ξuuu
2
xuxx − 3τuuuxutuxx−

− 3τuuu
2
xuxt − 3ξuu

2
xx − 3τuuxxuxt + (ηu − 3ξx)uxxx − 3τxuxxt − 4ξuuxuxxx−

− 3τuuxuxxt − τuutuxxx

4.4 Symmetry groups

The transformations we described in the previous sections map a point (x, u) to another (x̃, ũ)

in the space of independent and dependent variables and have the structure of a Lie group.

Therefore, they are widely known as Lie point transformations. A group of transformations will

always mean a group of Lie point transformations in this thesis.

Definition 4.17. Let ∆
(
x, u, u(n)

)
= 0 be a system of differential equations. A local group G

of transformations (x, u) −→ (x̃, ũ) acting on the space M of the independent and dependent

variables with the property that if u = f(x) is a solution of the system, then ũ = f̃ (x̃) is also a

solution of the system is called a symmetry group for the system. Equivalently G is a symmetry
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group of the system if ∆
(
x, u, u(n)

)
= 0 ⇒ ∆

(
x̃, ũ, ũ(n)

)
= 0, i.e. the equations of the system

are invariant under the action of the group.

Remark 4.18. According to Definition 4.17, the existence of a symmetry group is independent

of the choice of variables in which a system or its solution is expressed.

If one tries to employ the above definition to find a symmetry of a given system, he will be

faced with a new system of differential equations much more difficult than the original one. For

example, consider a first-order differential equation ẋ = F (t, x) and a group of transformations(
t̃, x̃
)

= ϕ (t, x) where ϕ =
(
ϕ1, ϕ2

)
. Then x̃

(
t̃
)

is a solution if ˙̃x = F (t̃, x̃), which in terms of

the original variables yields

ϕ2
t + F (t, x)ϕ2

x

ϕ1
t + F (t, x)ϕ1

x

= F
(
ϕ1(t, x), ϕ2(t, x)

)
(4.28)

Even if the equation we started with was linear, i.e. F was linear, the latter partial differential

equation would be quasilinear.

One of the key contributions of Lie’s fundamental work was to linearize the symmetry condi-

tion of the above definition, expressing it in terms of the Lie algebra instead of the Lie group,

meaning on the tangent space of G rather than G itself.

Theorem 4.19. Let ∆
(
x, u, u(n)

)
= 0 be a nondegenerate system of differential equations. A

vector field v is a generator of a symmetry group for the system if and only if v(n)(∆) = 0

whenever ∆ = 0.

Proof. Let us examine first the implications of Definition 4.17. Consider a symmetry transfor-

mation (4.21) generated by the vector field

v = ξj(x, u)
∂

∂xj
+ ηi(x, u)

∂

∂ui
.

Then if u = f(x) is a solution of the system ∆ν(x, u, u(n)) = 0, so is ũ = f̃ (x̃). According to

(4.4) this means that

∆ν(x̃, ũ, ũ(n)) = 0.

Differentiating with respect to ε and setting ε = 0, we get

∂∆ν

∂xj
∂x̃j

∂ε

∣∣∣∣
ε=0

+
∂∆ν

∂ui
∂ũi

∂ε

∣∣∣∣
ε=0

+
∂∆ν

∂uiJ

∂ũiJ
∂ε

∣∣∣∣
ε=0

= 0.

From definition (4.22) and (4.25), the previous equation takes the form

ξj
∂∆ν

∂xj
+ ηi

∂∆ν

∂ui
+ ηJi

∂∆ν

∂uiJ
= 0 or v(n)(∆ν) = 0.
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Therefore, the latter condition, assuming ∆ν = 0 from the beginning, is necessary for v to be a

symmetry generator of the system.

To prove that is also sufficient, let v be a vector field on M for which v(n)(∆ν) = 0 for

every solution u = f(x) of the system, that is, whenever ∆ν = 0. For convenience we collect

all the variables together, z =
(
z1, . . . , zmn

)
=
(
x, u, u(n)

)
, as in section 4.1, where zµ is any

of the coordinates xj , ui or uiJ of M (n). Since v 6= 0, we can always choose local coordinates(
y1, . . . , ymn

)
by a suitable transformation in M , in which the vector field v is expressed as

v =
∂

∂y1

where y1 is a function of the independent and dependent variables. Accordingly v(n) = v (see

Example 4.13), and as the existence of a symmetry is indepenedent of the coordinate system

used our assumption now reads v(∆ν) = 0 when ∆ν = 0. Due to the maximal rank condition of

nondegenerate systems, this means that the equations of the system are genuinely independent

of the variable y1,
∂∆ν

∂y1
= 0

since the Jacobian matrix (∂∆ν/∂y
µ) is of rank l, when ∆ν = 0. Therefore, the translation

ỹ =
(
y1 + ε, y2, . . . , ym

)
generated by the vector field v is admitted by the system. In other

words, if ∆(y) = 0 then ∆(ỹ) = 0 too. And since the system is locally solvable, this implies

that if y is a solution of the system, then ỹ is also a solution of the system. Therefore, v is a

symmetry generator.

The above conclusions are not limited to one-parameter symmetry groups, for the same ar-

guments hold for every infinitesimal generator vi of an r-parameter group.

Theorem 4.19 hands in a criterion that allows to find all the symmetries for a system of

differential equations, meaning the most general symmetry group admitted by the system. Let

us stress the fact that the condition v(n)(∆) = 0 needs to hold only on solutions of the system.

Related to this, another important point is the following.

Remark 4.20. A solution of a system does not satisfy only its equations ∆ν = 0, but also its

differential consequences, that is, the equations DJ∆ν = 0 resulting from differentiation with

respect to any of the independent variables xj1 , . . . , xjk for any k.

We should also emphasize that the nondegeneracy assumption was essential for the converse

part of the infinitesimal symmetry criterion. The maximal rank condition and the local solvabil-
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ity guarantee that neither more nor less, respectively, generators are found than the symmetries

truly admitted. Their necessity is better illustrated by simple examples.

Example 4.21. For the equation ∆ = (ẍ− t)2 = 0, the Jacobian matrix (∂∆/∂zµ), where

z = (t, x, ẋ, ẍ), has zero rank when ∆ = 0, and so the maximal rank condition does not hold.

Take then for instance the vector field v = ∂t; it meets the symmetry criterion of Theorem

4.19, v(n)(∆) = v(∆) = 2 (ẍ− t) = 0 when ∆ = (ẍ− t)2 = 0, but the translation t̃ = t + ε

generated is obviously not a symmetry of the equation. The zero rank of the related Jacobian

matrix in this case means that all the derivatives of ∆ vanish on solutions of the system, and

as a consequence one cannot conclude on which variables the equation does not depend on. In

particular, ∂∆/∂t = 0 on ∆ = 0 does not imply that ∆ is independent of t (this deduction was

crucial in the proof of the previous theorem).

Example 4.22. In Example 4.5 we saw that the system {∆1 = ut = 0,∆2 = ux − t(u− 1) = 0},

whose only solution is u(t, x) = 1 for any t and x, is not locally solvable. Contrary to the previous

example, now t̃ = t+ ε is a symmetry for the system, for if u(t, x) is a solution of the system, so

is u(t̃, x). But now the generator v = ∂t does not satisfy the infinitesimal symmetry criterion

since v(n)(∆2) = v(∆2) = −(u− 1) does not vanish when ∆1 = ∆2 = 0.

Let us now see how Theorem 4.19 works in practice to find the symmetries admitted by an

ordinary differential equation.

Example 4.23. Consider the one-dimensional motion of a particle experiencing a nonlinear

velocity-dependent force described by the second-order differential equation

ẍ =
ẋ2

x
− x2

The second prolongation of the vector field v = t∂t − 2x∂x, calculated earlier in the example

4.14, is v(2) = t∂t − 2x∂x − 3ẋ∂ẋ − 4ẍ∂ẍ, and

v(2)

(
ẍ− ẋ2

x
+ x2

)
= −4ẍ− 3ẋ

(
−2ẋ

x

)
− 2x

(
ẋ2

x2
+ 2x

)
= −4

(
ẍ− ẋ2

u
+ x2

)
.

Therefore,

v(2)

(
ẍ− ẋ2

x
+ x2

)
= 0, when ẍ =

ẋ2

x
− x2 . (4.29)

Consequently the vector field v generates a symmetry for the equation.

If, however, we want to find all the symmetries admitted, we have to work our way back,

meaning request an arbitrary vector field

v = ξ(t, x)
∂

∂t
+ η(t, x)

∂

∂x
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to satisfy the condition of Theorem 4.19, that is, (4.29) in this case. From (4.25)

v(2) = ξ
∂

∂t
+ η

∂

∂x
+ ηt

∂

∂ẋ
+ ηtt

∂

∂ẍ

while (4.27) gives

ηt =
dη

dt
− dξ

dt
ẋ

ηtt =
dηt

dt
− dξ

dt
ẍ

Restricting example 4.16 to the case of one independent and one dependent variables (by setting

τ = 0, ut = 0 and relabelling the variables (x, u) by (t, x)), we recover expressions for the above

ηt kai ηtt. Substituting ẍ with ẋ2/x − x2 from the equation itself, condition (4.29) takes the

form (
− ξxx −

ξx
x

)
ẋ3 +

( η
x2
− ηx

x
+ ηxx − 2ξtx

)
ẋ2 +

(
−2ηt
x

+ 2ηtx − ξtt + 3ξxx
2

)
ẋ +

+
(
2ηx+ ηtt − ηxx2 + 2ξtx

2
)

= 0

The functions ξ and η depend only on the variables t and x and not on ẋ, and so the above

relation, which holds for every ẋ, is equivalent to the system

− ξxx −
ξx
x

= 0

η

x2
− ηx

x
+ ηxx − 2ξtx = 0

−2ηt
x

+ 2ηtx − ξtt + 3ξxx
2 = 0

2ηx+ ηtt − ηxx2 + 2ξtx
2 = 0

(4.30)

Starting from the top, we find

xξxx + ξx = 0 ⇒ xξx = f1(t) ⇒ ξ = f1(t) ln |x|+ f2(t)

Substituting this expression in the second equation, we have

ηxx −
ηxx− η
x2

− 2f ′1(t)

x
= 0 ⇒ ηx −

η

x
− 2f ′1(t) ln |x| = f3(t) ⇒

ηxx− η
x2

− 2f ′1(t)
ln |x|
x

=
f3(t)

x
⇒ η

x
− f ′1(t) ln2 |x| = f3(t) ln |x|+ f4(t) ⇒

η = f ′1(t)x ln2 |x|+ f3(t)x ln |x|+ f4(t)x

Proceeding with the third one, we substitute ξ and η and end up with

3f ′′1 (t) ln |x|+ 3f1(t)x+ 2f ′3(t)− f ′′2 (t) = 0
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The above equation is satisfied when the coefficients of the functions of x are zero, so we get

f1(t) = 0 and f ′2(t) = 2f3(t) + c2,

where c2 an arbitrary real constant. Finally, the fourth equation of (4.30) after substituting ξ

and η takes the form

f3(t)x2 ln |x|+ f ′′3 (t)x ln |x|+ (f4(t) + 3f3(t) + 2c2)x2 + f ′′4 (t)x = 0

so, likewise, we get

f3(t) = 0 , f4(t) = −2c2 and so f2(t) = c2t+ c1

where c1 is also a constant. Summing up, the general solution of system (4.30) is

ξ(t, x) = c2t+ c1

η(t, x) = −2c2x

In other words, every vector field of the form v = (c2t+ c1) ∂t−2c2x∂x generates a two-parameter

symmetry group for the equation. So, the algebra of the symmetry group is spanned by the

vector fields

v1 = ∂t

v2 = t∂t − 2x∂x

and the corresponding transformations, meaning the one-parameter groups generated, are

G1 :
(
t̃, x̃
)
−→ (t+ ε1, x)

G2 :
(
t̃, x̃
)
−→

(
eε2t, e−2ε2x

)
Therefore, according to Definition 4.17, if x = f(t) is a solution of the equation, so are

x1 = f (t− ε1)

x2 = e−2ε2f
(
e−ε2t

)

The previous example demonstrates the way to calculate the symmetries admitted by a dif-

ferential equation or in general a system of differential equations. The whole procedure consists

actually of the following steps : i) Apply condition v(n)(∆) = 0 of Theorem 4.19, ii) substitute
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the restrictions ∆ = 0 and write the symmetry condition as a polynomial in the derivatives,

iii) equate the coefficients of the derivative monomials to zero, iv) solve the resulting system

of equations to find the most general form of the vector field v, and finally v) construct the

symmetry group for the system. The equations derived in the third step of the above algo-

rithm are called the determining equations of the symmetry group for a given system. These

are always linear, homogeneous partial differential equations, and in most cases constitute an

overdetermined system, meaning there are more equations than unknowns.

Remark 4.24. An exception to the latter rule is in particular a differential equation of the

simplest form: a first-order ODE say ẋ = F (t, x). For in this case if v = ξ(t, x)∂t+η(t, x)∂x, the

restriction ẋ = F to solutions of the system in the second step of the algorithm leaves the one

and only determining equation ηt− ξFt−ηFx = 0 (see Example 4.23 for ηt) with no derivatives.

Therefore, it does not split to more equations, and so we are left with only one determining

equation with two unknowns, i.e. the two components of the generator,

∂η

∂t
+
∂η

∂x
F − ∂ξ

∂t
F − ∂ξ

∂x
F 2 − ξFt − ηFx = 0 (4.31)

(compare with (4.28)), and which cannot be solved without making any ansatzes. For example,

once f is given, one may prescribe one of the components ξ or η of the vector field to find the

other. In this way, a particular solution of the above equation can be obtained.

Remark 4.25. Another kind of differential equations that resist to symmetry analysis are

actually linear ones in the sense that the linearity advantage of the determining equations over

the original system is lost. The solution of the determining equations that yields the components

of the symmetry generator requires in this case the solution of the original system. For example

consider the general n-th order linear, inhomogeneous ordinary differential equation

fn(t)x(n) + · · ·+ f1(t)ẋ+ f0(t)x− g(t) = 0

and the n linearly independent solutions xk(t) of the corresponding homogeneous equation. Due

to the linearity, if x(t) is a solution of the above equation, then so is x(t) + εxk(t). Therefore,

x̃ = x + εxk(t) is a symmetry with generator vk = xk(t)∂x having the solution xk(t) of the

original equation as its coefficient.

This also shows that an n-th order linear ODE admits at least an n-parameter symmetry

group. For the same reason a linear PDE always has an infinite-dimensional symmetry algebra

generated by the solution of the equation given now by an arbitrary function.



102 4. Symmetry Methods and Group Theory of Differential Equations

On the other hand, the symmetry properties of linear equations can help us identify lineariz-

able equations, that is, equations that can be transformed to linear ones in suitable variables.

For instance, an n-th order nonlinear ODE that has n or more symmetries may be a linear

equation in disguise.

Getting back to our discussion on the calculation of symmetries, the fourth stage of the

algorithm presented that involves finding the solution of the determining equations is obviously

the most difficult one. It is common practice to solve the equations one at a time starting

from the one that corresponds to the highest derivative and working our way down. Since this

is an overdetermined system, compatability conditions can also be of use. In many cases this

technique proves quite efficient. Let us see another example of calculating the symmetry group

this time for a partial differential equation.

Example 4.26. Encountered in many physical phenomena, describing the way waves (usually

water waves, but also sound waves and even plasma waves) propagate, the celebrated Korteweg-

de Vries (KdV) equation

ut = uxxx + uux

has also many interesting mathematical aspects, as well, leading the way in the field of integrable

systems. To find the symmetry group admitted, we consider the vector field

v = τ(t, x, u)
∂

∂t
+ ξ(t, x, u)

∂

∂x
+ η(t, x, u)

∂

∂u

and following the algorithm previously described, first we require

v(3)(ut − uxxx − uux) = 0 when ut = uxxx + uux

which takes the form

ηt − ηxxx − ηux − ηxu = 0

where ηx, ηt, ηxxx have been calculated in Example 4.16. From the equation itself we substitute

ut as well as her derivatives uxt = uxxxx + u2
x + uuxx and uxxt = uxxxxx + 3uxuxx + uuxxx. The

(reduced) system of the determining equations (after substitutions among the original equations

themselves) we end up with is

τu = 0

τx = 0

ξu = 0
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3ξx − τt = 0

ηuu = 0

ηxu − ξxx = 0

η + ξt + 2 (uξx + ηxxu) = 0

− ηt + uηx + ηxxx = 0

From the first two equations of the above system, we have

τ = 3f1(t)

while form the third and fourth

ξ = f ′1(t)x+ f2(t)

The latter combined with the fifth and sixth yields

η =
(
f ′1(t) + f3(t)

)
u+ f4(t, x)

Substituting ξ and η in the seventh one, we get (3f ′1(t) + f3(t))u+ f ′′1 (t)x+ f4(t, x) + f ′2(t) = 0

resulting in

f3(t) = −3f ′1(t)

f4(t, x) = −f ′′1 (t)x− f ′2(t)

Taking these into account, the last of the determining equations yields f ′′1 (t)u+f ′′′1 (t)x+f ′′2 (t) = 0

from which we deduce f ′′1 (t) = f ′′2 (t) = 0 and therefore

f1(t) = c4t+ c1

f2(t) = c3t+ c2

where c1, c2, c3, c4 are arbitrary real constants. Putting it all together and replacing 3c1 → c1,

we arrive at

τ(t, x, u) = 3c4t+ c1

ξ(t, x, u) = c4x+ c3t+ c2

η(t, x, u) = −2c4u− c3

Thus, the KdV equation admits a 4-parameter symmetry group generated by the vector fields

v1 = ∂t



104 4. Symmetry Methods and Group Theory of Differential Equations

v2 = ∂x

v3 = t∂x − ∂u

v4 = 3t∂t + x∂x − 2u∂u

The corresponding symmetry transformations are

G1 :
(
t̃, x̃, ũ

)
−→ (t+ ε1, x, u)

G2 :
(
t̃, x̃, ũ

)
−→ (t, x+ ε2, u)

G3 :
(
t̃, x̃, ũ

)
−→ (t, x+ ε3t, u− ε3)

G4 :
(
t̃, x̃, ũ

)
−→

(
e3ε4t, eε4x, e−2ε4u

)
Therefore, if u = f(t, x) is a solution for the KdV, so are

u1 = f (t− ε1, x)

u2 = f (t, x− ε2)

u3 = f (t, x− ε3t)− ε3

u4 = e−2ε4f
(
e−3ε4t, e−ε4x

)
If we interpret t and x as time and space coordinates, respectively, then the subgroups G1

and G2 represent the symmetry of KdV under time and space translations, accordingly. If we

regard u as velocity, the symmetry subgroup G3 is a Galilean boost for an observer moving with

velocity ε3 with respect to an inertial frame of reference. Finally, G4 expresses the symmetry of

the equation under scaling transformations.

By definition, a symmetry group for a system maps a solution of the system to another

solution. So, symmetries can be used, as in the previous examples, to construct new solutions

ũ = f̃ (x̃) from already known ones u = f(x). Apparently, this method for finding solutions has

the disadvantage that a solution must first be known. Moreover, if the symmetries found are

rather usual transformations, say for example translations or scalings, then the new solutions

are qualitatively not different than the ones we began with.

However, there is another way to manipulate the symmetry information, which although

distinguishes between ordinary and partial differential equations, it is essentially the same. This

method relies on the concept of invariance, and for ODEs leads to integration by quadratures,

while for PDEs constructing invariant solutions.
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4.5 Integration of ODEs

For treating the case of ODEs, first we recall that every n-th order ordinary differential equation

of the form x(n) = f
(
t, x, ẋ, . . . , x(n−1)

)
can be transformed to a system of n first-order ordinary

differential equations. On the other hand, the converse is not true; not every system of first-

order ODEs can be transformed to a single ODE. Therefore, we consider the more general class

of (non-autonomous) systems
dx

dt
= F (t, x) (4.32)

where t is the independent variable and x =
(
x1, . . . , xp

)
are the dependent ones, while F is a

smooth vector function. Note that this is a nondegenerate system.

Theorem 4.27. The existence of a one-parameter symmetry group for a system of first-order

ordinary differential equations reduces the order of the system by one.

Proof. Let v be the generator of an one-parameter symmetry group for system (4.32). In

every point (t, x), where v 6= 0, we can change to new coordinates (s, y), choosing s as the new

independent variable and y =
(
y1, . . . , yp

)
the new dependent ones, such that

v =
∂

∂y1

The system in these coordinates takes the form y′(s) = F̃ (y, s), while v(1) = v. Therefore, the

symmetry condition is expressed as

v(1)

(
dyi

ds
− F̃i(y, s)

)
= 0 ⇒ ∂F̃i

∂y1
= 0

meaning the functions F̃i do not depend on the variable y1. Thus, the system we are faced with

has an ignorable variable,

dy1

ds
= F̃1

(
s, y2, . . . , yp

)
dy2

ds
= F̃2

(
s, y2, . . . , yp

)
...

dyp

ds
= F̃p

(
s, y2, . . . , yp

)
The last (p− 1) equations can be solved independently from the first one, and if their solution(
y2(s), . . . , yp(s)

)
is found, then the first one can be solved by simply integrating

y1(s) =

∫
F̃1

(
s, y2(s), . . . , yp(s)

)
ds
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Remark 4.28. The variables
(
s, y2, . . . , yp

)
are actually the characteristics of the first-order

linear PDE v(f) = 0, while y1 can be any particular solution of v(f) = 1.

Remark 4.29. Recall that for first-order ODEs the corresponding determining equation is un-

derdetermined as explained in Remark 4.24. This drawback is often paraphrased as a first-order

ODE has infinite symmetries, considering an underdetermined system has infinite solutions. It

could be argued that solving (4.31), although linear, is a much more difficult task than solving

the original equation. In light of the above theorem, however, the disadvantage of not being able

to solve the determining equation in complete generality is of less significance since it suffices to

find just one particular solution, that is, just one symmetry to integrate a first-order ODE.

In fact, underdetermined systems of determining equations is a characteristic that generalizes

to every system of first-order ODEs; the number of the determining equations is always less by

one from the number of the unknown components of the symmetry generator. For n-th order

systems n ≥ 2, however, a typical way out to this problem is to transform them to an equivalent

n-th order equation, when this is possible. Thus, we can perform the symmetry analysis for

that equation and then go back to the system. Careful handling is needed though regarding

the transformation of the symmetries : the symmetry generators of the system are the (n-1)-th

prolongations of the symmetry generators of the related equation.

Example 4.30. We have seen earlier that the differential equation ẍ = ẋ2/x − x2 has a one-

parameter symmetry group generated by the vector field v2 = t∂t − 2x∂x. Note that the

transformation t̃ = − t leaves the equation also invariant; this is an example of a discrete sym-

metry. Thus, there is no loss of generality in assuming t > 0. The equation can be equivalently

transformed to the system

ẋ = v

v̇ =
v2

x
− x2

Notice that the expression of v2 in the new variables (t, x, v = ẋ) actually requires its first

prolongation,

v2 = t∂t − 2x∂x − 3v∂v

We seek new variables (s, y, u) in which the symmetry generator takes the form v2 = ∂y. This

leads to v2(s) = v2(u) = 0 and v2(y) = 1, which can be satisfied by choosing s = xt2, y = ln t

and u = vt3. Using these variables the above system is transformed to

dy

ds
=

1

2s+ u
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du

ds
=
u2 − s3 + 3su

s (2s+ u)

As we can see, the second equation can be solved independently from the first one. And if

we substitute the solution u(s) in the first one, then y(s) can be simply found by integration.

Therefore, the order of the system has indeed been reduced, since it suffices to solve only one

first-order equation to find the general solution of the system.

From the above discussion, it is naturally to assume that an r-parameter symmetry group

can reduce the order of a system by r. But this is not always the case. Recall that for the

differential equation of the previous example, we had found in Example 4.23 a two-parameter

symmetry group. However, when we reduced the system in the previous example, we end up

with another one, in which the information of the second symmetry had been lost.

The notion we need to avoid such cases is that of a solvable symmetry group. This guarantees

that an r-parameter group of transformations splits into r one-parameter transformation sub-

groups each of which is a normal subgroup of the other, and therefore acts independently with

respect to the others. Avoiding a more formal definition, we straightforwardly proceed with the

following criterion.

Proposition 4.31. An r-parameter Lie group is solvable if and only if its Lie algebra has a

basis {v1, . . . ,vr} such that

[vi,vj ] =

j−1∑
k=1

ckijvk for i < j (4.33)

Obviously every abelian Lie algebra, for which the Lie bracket of any two basis vectors is

always zero, is solvable. This was the case of Theorem 4.12 stating that the actions of the

corresponding one-parameter groups commute. We should note that every two-dimensional Lie

algebra is also solvable. For solvable symmetry groups the following theorem holds; for proof

see [89], p. 151 for the similar (though sub-)case of an n-th order ODE.

Theorem 4.32. Consider a system of p first-order ordinary differential equations that admits

an r-parameter solvable Lie group of symmetries, acting regularly. Then the order of the system

can be reduced by r, resulting in a reduced system consisting of (p− r) first-order equations. In

particular, if r = p, then the general solution of the system can be found by quadratures alone.

The implementation of the reduction procedure, just like the theorem’s proof, follows the

specific order in which (4.33) is expressed. In other words, we start off the reduction of the

system using v1, then v2, and we continue in this order until vr. Thus, following this order,
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which may not be unique, the remaining symmetries in every step are still admitted by the

reduced system.

Example 4.33. Let us revisit the system from Example (4.30) assuming now x > 0. We first

calculate the Lie bracket of the two vector fields v1 = ∂t and v2 = t∂t − 2x∂x − 3v∂v that

generate the two-parameter symmetry group for the system,

[v1,v2] = ∂t (t∂t − 2x∂x − 3v∂v)− (t∂t − 2x∂x − 3v∂v) ∂t = ∂t = v1

Therefore, we begin the reduction with v1, admitted by every autonomous system. This vector

field is already in the desired form, so we retain the same variables, considering though t = t(x)

and v = v(x) as functions of x. In this way, the system is expressed

dt

dx
=

1

v
dv

dx
=
v

x
− x2

v

whose order is smaller from the original by one. Continuing with the vector field v2, whose first

prolongation with respect to these variables is v
(1)
2 = −2x∂x + t∂t − 3v∂v + 3t′∂t′ − v′∂v′ , we

verify that it is still a symmetry for the system,

v
(1)
2

(
t′ − 1

v

)
= 0 when t′ − 1

v
= 0

v
(1)
2

(
v′ − v

x
+
x2

v

)
= 0 when v′ − v

x
+
x2

v
= 0

Making a new change of variables from (x, v) to (y, u), where y = x3/v2 and u = −(lnx)/2,

such that v2(y) = 0 and v2(u) = 1, the system finally takes the form

dt

dy
=

eu
√
y (2y + 1)

du

dy
= − 1

2y (2y + 1)

and can be solved by quadratures. So, using the solvable symmetry group in the prescribed

order of the generators, we were able to reduce the system by two.

Now, we can find the solution of the system simply by integration. From the second equation

we find

u = ln

(
2y + 1

c2
1y

) 1
2

where c1 is a real constant. Then, we substitute u in the first one and integrate

t =
1

c1
ln

√
2y + 1− 1√
2y + 1 + 1

+ c2 ⇒ y =
2ec1(t−c2)(

1− ec1(t−c2)
)2
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assuming c1 > 0. Taking the inverse transformation, we have

x = e−2u = c2
1

y

2y + 1
=

2c2
1e
c1(t−c2)(

1 + ec1(t−c2)
)2

and if we make the substitution c1 → 2c1, we find that the solution of the system (meaning the

original equation) is

x(t) = 2c2
1 sech2(c1(t− c2))

Since sech is an even function so is sech2, and therefore c1 can be arbitrary.

4.6 Invariant solutions of PDEs

In the treatment of partial differential equations, we are often forced to resort into some sort of

ansatz, not being able to find the general solution. This is not as disappointing as it sounds, for

these special types of solutions can give us information for the asymptotic or even the dominant

behavior of the general solution, while in addition they could have great value from the physics

point of view. A typical example is the search for travelling waves in wave equations, as well as

the method commonly known as separation of variables. The symmetry analysis may allows us

to determine from the beginning the form of some families of solutions admitted by the equation

at hand.

Following the same route with the previous section, we consider now a nondegenerate system

of partial differential equations

∆ (x, u, u(n)) = 0

and let v be the infinitesimal generator of a one-parameter symmetry group for the system. At

each point (x, u) where v 6= 0 we can change to new variables (y, w), such that

v =
∂

∂y1

and consequently v(n) = v. The symmetry condition for the transformed system

∆̃ (y, w,w(n)) = 0

is now expressed as

v(n)(∆̃ν) = 0 ⇒ ∂∆̃ν

∂y1
= 0

Since the variable y1 does not directly appear in this system, we may assume that w do not

depend on it. Thus, we can rest assured that this ansatz will not prove wrong for the system in

question.
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In order to find the transformation of ∆, we need to express the variables u in terms of the new

ones y and w. In this expression there may be left some of the old independent variables x, which,

hoewever, appear only as parameters and should not concern us. So, we have u = u(x, y, w),

and differentiation of this relation according to the chain rule

uixj =
∂ui

∂xj
+
∂ui

∂ym
∂ym

∂xj
+
∂ui

∂wn
∂wn

∂ym
∂ym

∂xj

results in a similar expression of the form ux = ux(x, y, w,wy), taking into account that wy1 = 0.

Proceeding with the higher derivatives, we substitute all the expressions found in the original

system ∆ and thus arrive at the form of the new one ∆̃.

Example 4.34. We have seen earlier that one of the symmetries of the KdV equation

ut = uxxx + uux

is generated by the vector field

v3 = t∂x − ∂u

We choose new variables (s, y, w) = (x/t, t, x + tu), such that v3(s) = 1, v3(y) = v3(w) = 0,

where w is considered as a function only of y. Then, solve w = x+ tu for u,

u =
w − x
y

and calculate the derivatives

ut =
ywy + x− w

y2
, ux = −1

y
, uxxx = 0

Substitution in KdV, yields the equation

dw

dy
= 0

and from its solution w = c, where c is a real constant, we finally have

u(t, x) =
c− x
t

We note, from the above example, too, that the variable y1 that we eliminate does not enter

the picture at all. Indeed, to make the transformation to the system ∆̃, it was sufficient to know

all the rest
(
y2, . . . , yp, w1, . . . , wq

)
, for which the infinitesimal generator v of the symmetry

vanishes,

v(y2) = · · · = v(yp) = v(w1) = · · · = v(wq) = 0
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and then by the chain rule, to express the derivatives of the old variables u in terms of the now

ones w. These variables are called invariants of the symmetry group, since as we can see from

equation (4.12) they remain constant under the group transformations.

If a second symmetry for the system exists, then to make a second ansatz, meaning to eliminate

a second variable, the symmetry must be conserved in the transformed system. In other words,

just as in the reduction of order for ODEs, an r-parameter symmetry group must be solvable in

order to eliminate r independent variables of the system of PDEs. Based on this requirement,

using p − 1 symmetries, where p is the number of independent variables, we can arrive at a

system of ordinary differential equations. And if r ≥ p, then from the symmetries left we can

continue as we have shown in the previous section by reducing the order of this system.

Instead of finding though the invariants
(
y2, . . . , yp, w1, . . . , wq

)
of the first symmetry v1, then

determine a second one v2 that satisfies the relation [v1,v2] = c1
12v1, and then find its invariants,(

ỹ3, . . . , ỹp, w̃1, . . . , w̃q
)
, and so on, we can find directly the invariants of the full symmetry group

generated by the vector fields v1,v2, . . . ,vr. That is, instead of using the symmetries one by

one, we can employ them all in one step, by finding directly functions ψ(x, u) such that

c1v1(ψ) + · · ·+ crvr(ψ) = 0 (4.34)

After determining the invariants ψ of the entire symmtery group from the above relation, we

suitably separate them into independent and dependent variables for the new system, and then

move on to the transformation of the derivatives just like before. Of course, if the dimension of

the symmetry algebra found is greater than the number of the independent variables, as in the

case of the KdV, then we can choose any subalgebra.

Example 4.35. Let us for example take the linear combination of the first two symmetry

generators of the KdV,

v12 = ∂t + c∂x

giving rise to the transformation subgroup G12(
x̃, t̃, ũ

)
−→ (x+ cε, t+ ε, u)

where c is a real constant. Invariants of this group are (y, w) = (x − ct, u). Note that by

choosing x− ct as the independent variable with t playing the role of time and x that of space,

the function u(x − ct) describes a disturbance propagating in the x-direction with velocity c,

known as travelling wave. Substituting u = w, ut = −cwy, ux = wy and uxxx = wyyy in KdV,
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we end up with the ordinary differential equation

cwy + wyyy + wwy = 0

which can be directly integrated,

cw + wyy +
w2

2
+ k = 0.

Multiplying with wy and integrating again yield

cw2

2
+
w2
y

2
+
w3

6
+ kw + l = 0

where k and l are arbitrary constants. If we are looking for solutions that vanish sufficiently

rapidly at infinity, then from the last two relations, we conclude k = l = 0. In this case, the

above equation has the general solution

w = −3c sech2

(√
c

2
y + b

)
assuming that the velocity c is positive, while b is an arbitrary constant. Returning back to the

original variables, we finally have

u(x, t) = −3c sech2

(√
c

2
(x− c t) + b

)
This type of solutions describe a special class of waves with remarkable properties that appear

in nonlinear PDEs. These waves are called solitons and are a key characteristic of integrable

systems.

4.7 Noether’s theorem in Classical Mechanics

Many problems in physics describing basic theories from Classical Mechanics to Electromag-

netism or even the General Theory of Relativity are coming from a variational principle. It

is therefore of particular interest to study the role of symmetry in variational problems. The

investigation of symmetries from this point of view was made by Emmy Noether, resulting in

her famous theorem according to which there is a one-to-one correspondence between a certain

subclass of symmetries of such systems and the conservation laws that they obey. It is worth

mentioning that her contribution to symmetry theory does not stop here (see final notes at the

end of this chapter).

In this section we will restrict our discussion strictly for ODEs and in particular second-order

systems appearing in mechanics, where as usual the independent variable is denoted by t and
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the dependent ones collectively by x =
(
x1, . . . , xp

)
(the route for more general systems of either

ordinary or partial differential equations follows a very similar path, but concrete results, e.g.

the derivation of conservation laws, depend much on the order of the system). From calculus

of variations, we borrow the notion of a functional L, which in this case is given by the definite

integral of a differential function of the form L (t, x, ẋ) over the time interval t2 − t1,

L [x] =

t2∫
t1

L (t, x, ẋ) dt . (4.35)

A variational problem consists then of determining the smooth functions x(t), for which the

integral L attains maximum or minimum values. Just as the extrema of an ordinary function

are found among its critical points, so too the extrema x(t) of the functional L are found among

the critical “points” of L. The latter are the functions where the variational derivative δL with

components δL/δxi, defined as

t2∫
t1

δL

δxi
yidt =

dL [x+ εy]

dε

∣∣∣∣
ε=0

(4.36)

where y(t) is another smooth function defined on t2 − t1, vanishes. Interchanging the order of

differentiation and integration, and then using the divergence theorem to integrate by parts,

dL [x+ εy]

dε

∣∣∣∣
ε=0

=

t2∫
t1

dL (t, x+ εy, ẋ+ εẏ)

dε

∣∣∣∣
ε=0

dt =

t2∫
t1

(
∂L

∂xi
yi +

∂L

∂ẋi
ẏi
)
dt

=

t2∫
t1

[
∂L

∂xi
− d

dt

(
∂L

∂ẋi

)]
yi dt

we see that the variational derivative of L with respect to xi in this case is given by the relation

δL

δxi
=
∂L

∂xi
− d

dt

(
∂L

∂ẋi

)
Therefore, the extrema x(t) of the functional L [x] (4.35) satisfy the so-called Euler-Lagrange

equations

Ei(L) =
∂L

∂xi
− d

dt

(
∂L

∂ẋi

)
= 0 (4.37)

where Ei is known as the i-th Euler operator, while the function L that characterizes the varia-

tional problem is called the Langrangian of the system. Clearly, for a first-order Lagrangian with

one independent variable the Euler-Lagrange equations ∆ ≡ E(L) = 0 are systems of second-

order ODEs, i.e. ∆ = ∆(t, x, ẋ, ẍ). Newtonian systems with conservative forces are perhaphs
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one of the most popular cases of Euler-Lagrange systems. The system studied in this thesis

coming from the Lorentz force is another more general example described in section 1.1.

If the Lagrangian function L is the total derivative of another function f , meaning L = df/dt

(note that f must be independent of ẋ in order L to be independent of ẍ), then the corresponding

functional L [x] = f(t2, x(t2))− f(t1, x(t1)) depends only on the behavior of f at the endpoints

of the interval t2 − t1. Therefore, if x(t) is an extremum of L, then any other function simply

satisfying the same boundary conditions with f will be an extremum, too. It is not difficult to

see that the Euler-Lagrange equations in this case vanish identically for all t and x,

Ei

(
df

dt

)
=

∂

∂xi

(
df

dt

)
− d

dt

[
∂

∂ẋi

(
df

dt

)]
=

∂

∂xi

(
df

dt

)
− d

dt

[
∂

∂ẋi

(
∂f

∂t
+
∂f

∂xj
ẋj
)]

=
∂

∂xi

(
df

dt

)
− d

dt

(
∂f

∂xi

)
= 0

since the two operators d/dt and ∂/∂xi commute. Obviously this type of functions are of no

interest, and in order to exclude them we will consider two different functionals L1[x] and L2[x]

defined on the same interval t2− t1 equivalent if and only if L1 = L2 + df/dt for any differential

function f .

Considering that every solution of the Euler-Lagrange equations (4.37) is not necessarily an

extremal of the functional (4.35), it is natural to focus on the symmetries that leave the functional

invariant and not the equations themselves.

Definition 4.36. Let L [x] be a variational problem for the Lagrangian function L (t, x, ẋ). A

local group G of transformations (t, x) −→
(
t̃, x̃
)

acting on the space M of the independent

and dependent variables is called a variational or Noether symmetry group of the system if

L [x̃] = L [x], i.e. the functional of the system is invariant under the action of the group,

t̃2∫
t̃1

L (t̃, x̃, ˙̃x) dt̃ =

t2∫
t1

L (t, x, ẋ) dt (4.38)

As with Lie symmetries, the existence of a Noether symmetry group is independent of the

choice of variables. The next theorem describes the analogous infinitesimal criterion for Noether

point symmetries.

Theorem 4.37. Let L [x] be a variational problem described by the Lagrangian function

L (t, x, ẋ). A vector field v = ξ(t, x)∂t + ηi(t, x)∂xi is a generator of a variational symmetry

group for the system if and only if there exists a function f(t, x), such that for all t and x

v(1)(L) + L
dξ

dt
=
df

dt
(4.39)
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Proof. Let v be a variational symmetry generator for the functional L [x], and v(1) = v + ηti∂ẋi

its first prolongation. Then Definition 4.36 implies that L [x] = L [x̃], and consequently the

equality (4.38). The latter, if we parametrize the integral on the left hand side in terms of the

original variable t, can be written as

t2∫
t1

L (t̃, x̃, ˙̃x)
dt̃

dt
dt =

t2∫
t1

L (t, x, ẋ) dt

where (t̃, x̃, ˙̃x) = eεv(t, x, ẋ) are given by the flow of v. Differentiation with respect to ε on both

sides,
t2∫
t1

[(
∂L

∂t̃

∂t̃

∂ε
+
∂L

∂x̃i
∂x̃i

∂ε
+
∂L

∂ ˙̃x

∂ ˙̃x

∂ε

)
dt̃

dt
+ L

(
dξ

dt
+O(ε)

)]
dt = 0

and then setting ε = 0, we have

t2∫
t1

(
∂L

∂t
ξ +

∂L

∂xi
ηi +

∂L

∂ẋi
ηti + L

dξ

dt

)
dt = 0 or

t2∫
t1

(
v(1)(L) + L

dξ

dt

)
dt = 0

In accordance with our equivalence relation among functionals, the last equation is satisfied

when the integrand is equal to the total derivative of an arbitrary function f(t, x), resulting in

(4.39).

For the converse, let us first comment on the commutation relation between the total derivative

Dt = d/dt of a function and the prolongation v(n) of a vector field v. In the simplest case of

n = 1, where v(1) = v + ηti∂ẋi and ηti = Dtη
i − ẋiDtξ, for every function of the form g(t, x) we

have

d

dt
(v(g)) =

d

dt

(
ξgt + ηigxi

)
=
dξ

dt
gt + ξ

dgt
dt

+
dηi

dt
gxi + ηi

dgxi

dt

= ξ
∂

∂t

(
dg

dt

)
+ ηi

∂

∂xi

(
dg

dt

)
+

(
dηi

dt
− dξ

dt
ẋi
)
gxi +

dξ

dt
gt +

dξ

dt
ẋigxi

= ξ
∂

∂t

(
dg

dt

)
+ ηi

∂

∂xi

(
dg

dt

)
+ ηti

∂

∂ẋi

(
dg

dt

)
+
dξ

dt

(
gt + gxi ẋ

i
)

= v(1)

(
dg

dt

)
+
dξ

dt

dg

dt

or

Dtv = v(1)Dt +Dt(ξ)Dt (4.40)

Keeping in mind that both sides act on the same type of functions, we might as well write[
Dt,v

(1)
]

= Dt(ξ)Dt. In fact, this relation can be generalized for the prolongation of any order,
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meaning
[
Dt,v

(n)
]

= Dt(ξ)Dt in the same sense, that is both sides are considered acting on

functions of the form g(t, x, ẋ, . . . , x(n−1)). For ξ = 0, the flow of the vector field transforms

only the dependent variables and the two operators commute. This kind of fields are known

as evolutionary vector fields, and are particularly useful for several generalizations; see [89],

sections 5.1 and 5.3 for more on this topic.

Now, suppose (4.39) holds. According to the Lie series (4.24) the expansion of the function

L(t̃, x̃, ˙̃x) for instance up to second-order terms is

L(t̃, x̃, ˙̃x) = L (t, x, ẋ) + εv(1)(L) (t, x, ẋ) +
ε2

2
v(1)

(
v(1)(L)

)
(t, x, ẋ) +O

(
ε3
)

while, since t̃ = t + εv(t) + ε2

2 v(v(t)) + O
(
ε3
)

= t + εξ + ε2

2 v(ξ) + O
(
ε3
)
, in light of (4.40) we

also have

dt̃

dt
= 1 + ε

dξ

dt
+
ε2

2

d

dt
(v(ξ)) +O

(
ε3
)

= 1 + ε
dξ

dt
+
ε2

2

[
v(1)

(
dξ

dt

)
+

(
dξ

dt

)2
]

+O
(
ε3
)

Therefore,

L(t̃, x̃, ˙̃x)
dt̃

dt
= L+ ε

[
v(1)(L) + L

dξ

dt

]
+

+
ε2

2

{
v(1)(v(1)(L)) + 2v(1)(L)

dξ

dt
+ L

[
v(1)

(
dξ

dt

)
+

(
dξ

dt

)2
]}

+O
(
ε3
)

= L+ ε

[
v(1)(L) + L

dξ

dt

]
+

+
ε2

2

{
v(1)

(
v(1)(L) + L

dξ

dt

)
+
dξ

dt

[
v(1)(L) + L

dξ

dt

]}
+O

(
ε3
)

where the last line follows from v(1)(L)Dtξ+Lv(1)(Dtξ) = v(1)(LDtξ), since the prolongation of

a vector field v of any order satisfies the Leibniz’ rule, too. Hence, according to our assumption,

and using (4.40) once more we arrive at

L(t̃, x̃, ˙̃x)
dt̃

dt
= L+ ε

df

dt
+
ε2

2

[
v(1)

(
df

dt

)
+
dξ

dt

df

dt

]
+O

(
ε3
)

= L+ ε
df

dt
+
ε2

2

d (v(f))

dt
+O

(
ε3
)

Continuing in this fashion, one can show that the terms of any order are given by the total

derivative of some function. Thus, L(t̃, x̃, ˙̃x)Dtt̃ = L(t, x, ẋ) +DtF and so

t̃2∫
t̃1

L (t̃, x̃, ˙̃x) dt̃ =

t2∫
t1

L (t̃, x̃, ˙̃x)
dt̃

dt
dt =

t2∫
t1

L (t, x, ẋ) dt

i.e. the vector field v is a variational symmetry generator for the functional L [x].
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Note that while the infinitesimal criterion of Theorem 4.19 for the usual Lie symmetry groups

has to hold only on solutions x(t) of the system, the corresponding one (4.39) of Theorem

4.37 for Noether symmetry groups is an identity for all t and x. Considering variational prob-

lems, a natural question posed is the relation between these two concepts, between these two

groups. Leaving the functional L [x] invariant and consequently the Euler-Lagrange equations,

a Noether symmetry (t, x) −→
(
t̃, x̃
)

transforms extremals x(t) of L [x] to extremals x̃(t̃) of

the same functional L [x̃] = L [x], and consequently solutions of the Euler-Lagrange equations

to solutions of the same equations, accordingly. Therefore, by definition the next proposition

holds; a computational proof is also given here in terms of the previously mentioned infinitesimal

criterions.

Proposition 4.38. Let L [x] be a variational problem described by the Lagrangian function

L (t, x, ẋ). If G is a variational symmetry group of the functional L [x], then G is a symmetry

group of the corresponding Euler-Lagrange equations E(L) = 0.

Proof. Let us first note that the Lie bracket1 of the first prolongation v(1) = v+ηti∂ẋi of a vector

field v = ξ∂t + ηi∂xi , where ηti = Dtη
i − ẋiDtξ, and the partial derivative ∂/∂xi is[

v(1),
∂

∂xi

]
=

[
ξ
∂

∂t
+ ηj

∂

∂xj
+ ηtj

∂

∂ẋj
,
∂

∂xi

]
= − ∂ξ

∂xi
∂

∂t
− ∂ηj

∂xi
∂

∂xj
−
∂ηtj
∂xi

∂

∂ẋj

and therefore for any given function L(t, x, ẋ) the two operators can be interchanged as follows

v(1)

(
∂L

∂xi

)
=

∂

∂xi

(
v(1)(L)

)
− ∂ξ

∂xi
∂L

∂t
− ∂ηj

∂xi
∂L

∂xj
−

(
dηj

xi

dt
− dξxi

dt
ẋj

)
∂L

∂ẋj
(4.41)

Also the Lie bracket of v(1) and the partial derivative ∂/∂ẋi is[
v(1),

∂

∂ẋi

]
=

[
ξ
∂

∂t
+ ηj

∂

∂xj
+ ηtj

∂

∂ẋj
,
∂

∂ẋi

]
= −

∂ηtj
∂ẋi

∂

∂ẋj

and hence

v(1)

(
∂L

∂ẋi

)
=

∂

∂ẋi

(
v(1)(L)

)
−
∂ηtj
∂ẋi

∂L

∂ẋj
=

∂

∂ẋi

(
v(1)(L)

)
− ∂

∂ẋi

(
dηj

dt
− dξ

dt
ẋj
)
∂L

∂ẋj

=
∂

∂ẋi

(
v(1)(L)

)
− ∂

∂ẋi

[
∂ηj

∂t
+
∂ηj

∂xk
ẋk −

(
∂ξ

∂t
+

∂ξ

∂xk
ẋk
)
ẋj
]
∂L

∂ẋj

1. See [89], p. 301 and in particular equation (5.23) therein for the definition of the Lie bracket of prolonged vector

fields, and in general the so-called generalized vector fields whose components depend on the derivatives of the

dependent variables, too. In the two Lie brackets considered here no complications arise and the commutator

follows naturally. On the other hand, the case of the previous formula (4.40) would require all the technicalities

of a formal definition and that is why it was rather presented in a more straightforward manner.



118 4. Symmetry Methods and Group Theory of Differential Equations

=
∂

∂ẋi

(
v(1)(L)

)
−
(
∂ηj

∂xi
− ∂ξ

∂xi
ẋj
)
∂L

∂ẋj
+
dξ

dt

∂L

∂ẋi
(4.42)

accordingly. Equations (4.41) and (4.42) are useful here to simplify the infinitesimal symmetry

criterion to be investigated.

Now, let v be a generator of the variational symmetry group G. As previously mentioned,

equation (4.40) generalizes to higher orders, e.g. Dtv
(1) = v(2)Dt +Dt(ξ)Dt. Therefore,

v(2)(Ei(L)) = v(1)

(
∂L

∂xi

)
− v(2)

[
d

dt

(
∂L

∂ẋi

)]
= v(1)

(
∂L

∂xi

)
− d

dt

[
v(1)

(
∂L

∂ẋi

)]
+
dξ

dt

d

dt

(
∂L

∂ẋi

)
Then, using (4.41) and (4.42) we have :

v(2)(Ei(L)) =
∂

∂xi

(
v(1)(L)

)
− ∂ξ

∂xi
∂L

∂t
− ∂ηj

∂xi
∂L

∂xj
−

(
dηj

xi

dt
− dξxi

dt
ẋj

)
∂L

∂ẋj
−

− d

dt

[
∂

∂ẋi

(
v(1)(L)

)
−
(
∂ηj

∂xi
− ∂ξ

∂xi
ẋj
)
∂L

∂ẋj
+
dξ

dt

∂L

∂ẋi

]
+
dξ

dt

d

dt

(
∂L

∂ẋi

)
= Ei

(
v(1)(L)

)
− ∂ξ

∂xi
∂L

∂t
− ∂ηj

∂xi
∂L

∂xj
+
∂ηj

∂xi
d

dt

(
∂L

∂ẋj

)
− ∂ξ

∂xi
ẍj
∂L

∂ẋj
−

− ∂ξ

∂xi
ẋj
d

dt

(
∂L

∂ẋj

)
− d2ξ

dt2
∂L

∂ẋi

= Ei

(
v(1)(L) + L

dξ

dt

)
− Ei

(
L
dξ

dt

)
− ∂ξ

∂xi
∂L

∂t
− ∂ηj

∂xi
Ei(L)− ∂ξ

∂xi
ẍj
∂L

∂ẋj
−

− ∂ξ

∂xi
ẋj
d

dt

(
∂L

∂ẋj

)
− d2ξ

dt2
∂L

∂ẋi

Now, recalling the infinitesimal criterion (4.39) for variational symmetries and that the Euler

operator on total derivatives vanishes, the first term on the right-hand side of the above equation

equals to zero. So,

v(2)(Ei(L)) = −dξ
dt

∂L

∂xi
− Ldξxi

dt
+
d

dt

[
L
∂

∂ẋi

(
dξ

dt

)
+
dξ

dt

∂L

∂ẋi

]
− ∂ξ

∂xi
∂L

∂t
− ∂ηj

∂xi
Ei(L)−

− ∂ξ

∂xi
ẍj
∂L

∂ẋj
− ∂ξ

∂xi
ẋj
d

dt

(
∂L

∂ẋj

)
− d2ξ

dt2
∂L

∂ẋi

= −
(
dξ

dt
+
∂ηj

∂xi

)
Ei(L) +

∂ξ

∂xi
dL

dt
− ∂ξ

∂xi
∂L

∂t
− ∂ξ

∂xi
ẍj
∂L

∂ẋj
− ∂ξ

∂xi
ẋj
d

dt

(
∂L

∂ẋj

)
= −

(
dξ

dt
+
∂ηj

∂xi

)
Ei(L) +

∂ξ

∂xi

[
∂L

∂xj
ẋj +

∂L

∂ẋj
ẍj − ẍj ∂L

∂ẋj
− ẋj d

dt

(
∂L

∂ẋj

)]
= −

(
dξ

dt
+
∂ηj

∂xi

)
Ei(L) +

∂ξ

∂xi
ẋj Ej(L)

from which we deduce that v(2)(E(L)) = 0 when E(L) = 0, hence v is also a symmetry generator

of the Euler-Lagrange equations.
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The converse of this proposition is not true, since every solution of the Euler-Lagrange equa-

tions is not an extremal of the functional. Thus, the Noether symmetry group is a subgroup

of the Lie symmetry group for Euler-Lagrange systems. The significance of variational symme-

tries starts with their connection with conservation laws established by the celebrated Noether’s

theorem, which is stated here in terms of classical mechanics.

Theorem 4.39 (Noether). Let L [x] be a variational problem described by the Lagrangian

function L (t, x, ẋ). Each variational symmetry generator v = ξ(t, x)∂t + ηi(t, x)∂xi for the func-

tional L [x] corresponds to a first integral of motion I(t, x, ẋ) for the Euler-Lagrange equations

E(L) = 0, given by the relation

I = ξL+
(
ηi − ξẋi

) ∂L
∂ẋi
− f (4.43)

Proof. Let v be the generator of a variational symmetry, meaning v(1)(L)+LDtξ = Dtf , where

v(1) = v + ηti∂ẋi and ηti = Dtη
i − ẋiDtξ. Straightforward calculations,

0 = v(1)(L) + L
dξ

dt
− df

dt
= ξ

∂L

∂t
+ ηi

∂L

∂xi
+

(
dηi

dt
− dξ

dt
ẋi
)
∂L

∂ẋi
+ L

dξ

dt
− df

dt

=
d(ξL)

dt
− ξ dL

dt
+ ξ

∂L

∂t
+ ηi

∂L

∂xi
+
dηi

dt

∂L

∂ẋi
− dξ

dt
ẋi
∂L

∂ẋi
− df

dt

=
d

dt

(
ξL+ ηi

∂L

∂ẋi
− ξẋi ∂L

∂ẋi
− f

)
− ηi d

dt

(
∂L

∂ẋi

)
+ ξ

d

dt

(
ẋi
∂L

∂ẋi

)
− ξ ∂L

∂xi
ẋi − ξ ∂L

∂ẋi
ẍi + ηi

∂L

∂xi

=
dI

dt
+
(
ηi − ξẋi

) [ ∂L
∂xi
− d

dt

(
∂L

∂ẋi

)]
,

show that this is this case if and only if the function I is a constant of motion for the solutions

of the Euler-Lagrange equations.

The juxtaposition of Lie symmetries with Noether ones is also better revealed when it comes

to reduction of order for ODEs. We need first though the following proposition (first presented

by Lutzky) that as Sarlet and Cantrijn [94] point out is often neglected.

Proposition 4.40. The first integral of motion I (4.43) corresponding to a variational symmetry

generated by the vector field v is an invariant of its first prolongation, v(1)(I) = 0.

Proof. Let v = ξ(t, x)∂t+ηi(t, x)∂xi be the variational symmetry generator and v(1) = v+ηti∂ẋi

its first prolongation, where ηti = Dtη
i−ẋiDtξ. Then, using firstly the Leibniz’ rule and dropping

the prolongation where not needed we have

v(1)(I) = Lv(ξ) + ξv(1)(L) +
∂L

∂ẋi
v(1)

(
ηi − ξẋi

)
+
(
ηi − ξẋi

)
v(1)

(
∂L

∂ẋi

)
− v(f)
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From (4.39) and (4.42) first, and then separating terms with respect to L and its derivatives,

followed by rather straightforward calculations, we get

v(1)(I) = L

(
ξ
∂ξ

∂t
+ ηi

∂ξ

∂xi

)
+ ξ

(
df

dt
− Ldξ

dt

)
+

[
ξ
∂ηi

∂t
+ ηj

∂ηi

∂xj
−
(
ξ
∂ξ

∂t
+ ηj

∂ξ

∂xj

)
ẋi−

− ξ

(
dηi

dt
− dξ

dt
ẋi
)]

∂L

∂ẋi
+
(
ηi − ξẋi

) [ ∂

∂ẋi

(
df

dt
− Ldξ

dt

)
−
(
∂ηj

∂xi
− ∂ξ

∂xi
ẋj
)
∂L

∂ẋj
+

+
dξ

dt

∂L

∂ẋi

]
− ξ ∂f

∂t
− ηi ∂f

∂xi

= −
[
ξ
∂f

∂t
+ ηi

∂f

∂xi
− ξ df

dt
−
(
ηi − ξẋi

) ∂

∂ẋi

(
df

dt

)]
+

+

[
ξ
∂ξ

∂t
+ ηi

∂ξ

∂xi
− ξ dξ

dt
−
(
ηi − ξẋi

) ∂

∂ẋi

(
dξ

dt

)]
L +

+

[
− ξẋj ∂η

i

∂xj
+ ηj

∂ηi

∂xj
+ ξẋiẋj

∂ξ

∂xj
+ ηj

∂ξ

∂xj
ẋi −

(
ηj − ξẋj

)( ∂ηi
∂xj
− ∂ξ

∂xj
ẋi
)]

∂L

∂ẋj

= −
[
ηi
∂f

∂xi
− ξẋi ∂f

∂xi
−
(
ηi − ξẋi

) ∂f
∂xi

]
+

[
ηi
∂ξ

∂xi
− ξẋi ∂ξ

∂xi
−
(
ηi − ξẋi

) ∂ξ
∂xi

]
L = 0

Compared now to Theorem 4.27, the next theorem unravels the power of Noether symmetries

stemming from the variational structure.

Theorem 4.41. The existence of a one-parameter variational symmetry group for an Euler-

Lagrange system of ordinary differential equations with Lagrangian L(t, x, ẋ) reduces the order

of the system by two.

Proof. Let v be the generator of a one-parameter variational symmetry group for the Euler-

Lagrange system ∆ (t, x, ẋ, ẍ) = 0, ∆ = E(L) of order 2p. Following our usual technique, in

every point (t, x), where v 6= 0, we can change to new coordinates (s, y), choosing s as the new

independent variable and y =
(
y1, . . . , yp

)
the new dependent ones, such that v = ∂y1 . The

system in these coordinates takes the form ∆̃ (s, y, y′, y′′) = 0, ∆̃ = E(L̃), where L̃(s, y, y′) is the

transformed Lagrangian, while v(2) = v(1) = v. By Proposition 4.38, v is also a generator of a

one-parameter symmetry group for the system, too, and the symmetry condition reads

∂∆̃

∂y1
= 0

meaning the equations of the system do not depend on the variable y1. On the other hand,

the first equation of the system, using the variational symmetry condition, now expressed as

∂L̃/∂y1 = df/ds, easily yields the first integral I = ∂L̃/∂y1
′
− f , which is none other than
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(4.43). Furthermore Proposition 4.40 guarantees that v(I) = 0 and hence I(s, y, y′) is also

independent of y1. Therefore, we can solve I(s, y, y′) = const. for y1
′

and replace the solution

y1
′

= F1(s, y2, . . . , yp, y2
′
, . . . , yp

′
)

in the remaining p − 1 equations. Consequently the latter will be independent of either y1 or

y1
′

forming a system of order 2p− 2,

∆̃i(s, y
2, . . . , yp, y2

′
, . . . , yp

′
) = 0, i = 2, . . . , p

which can be solved independently of y1, and once their solution
(
y2(s), . . . , yp(s)

)
is found,

then y1(s) can be determined by simply integrating

y1(s) =

∫
F1(s, y2(s), . . . , yp(s), y2

′
(s), . . . , yp

′
(s))ds

One can also prove that the reduced system is an Euler-Lagrange system subject to a con-

straint (see [89], p. 258 for this treatment and [24], p. 216 for variational problems with condi-

tions). Then, one naturally asks what happens in the case of a second variational symmetry.

The answer is that unless an r-parameter variational symmetry group is abelian, there is no

guarantee that the order of the system can be reduced by 2r. This is the counterpart of the

well-known Arnold-Liouville’s theorem of complete integrability for finite Hamiltonian systems,

according to which if a 2p-dimensional Hamiltonian system admits p integrals of motion in in-

volution, then its solutions can be found by quadratures alone. The analogy between these two

statements is provided by the one-to-one correspondence between the Lie algebra of Hamiltonian

symmetries (these are variational symmetries for Hamiltonian systems for which a Hamiltonian

version of Noether’s theorem holds; see [89]) and the Poisson algebra of integrals of motion,

having the same structure constants.

Much more can be said about the reduction of either Euler-Lagrange or Hamiltonian systems

with all their geometrical artillery. This, however, lies outside the purpose of this thesis and

thus we refer to the vast literature. Here we close this discussion by an illustrative example

from charged particle motion too, the motion in a magnetic dipole, also known as the Störmer

problem.

Example 4.42. Consider a charged particle moving in zero electric field and a magnetic field

of the form B =
(
3xz, 3yz, 2z2 − x2 − y2

)
/r5, where r =

√
x2 + y2 + z2 is only introduced for
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brevity. The equations of motion (1.1) read

ẍ =

(
2z2 − x2 − y2

)
ẏ − 3yzż

(x2 + y2 + z2)
5
2

ÿ = −
(
2z2 − x2 − y2

)
ẋ− 3xzż

(x2 + y2 + z2)
5
2

z̈ = − 3z (xẏ − yẋ)

(x2 + y2 + z2)
5
2

(4.44)

The magnetic field is coming from the vector potential A = (− y, x, 0) /r3, and according to

relation (1.7), the Lagrangian function of this problem is

L(x, y, z, ẋ, ẏ, ż) =
1

2

(
ẋ2 + ẏ2 + ż2

)
+

xẏ − yẋ
(x2 + y2 + z2)

3
2

(4.45)

As we can see, the vector field v = − y∂x+x∂y, whose first prolongation is v(1) = v− ẏ∂ẋ+ ẋ∂ẏ,

generates a variational symmetry,

v(1)(L) = − ẏ
(
ẋ− y

r3

)
+ ẋ
(
ẏ +

x

r3

)
− y ẏr

3 − (ẋy − yẋ)3rx

r6
− x ẋr

3 + (ẋy − yẋ)3ry

r6
= 0

satisfying criterion (4.39) for f = 0. Therefore, it corresponds to the first integral of motion

(4.43) I = − y∂L/∂ẋ+ x∂L/∂ẏ or after substitution of the Langrangian,

I = xẏ − yẋ+
x2 + y2

(x2 + y2 + z2)
3
2

(4.46)

Let us now follow the steps of the proof of Theorem 4.41, and change first to polar coordinates

(ρ, φ, z) in which v = ∂φ and I = ρ2(φ̇+r−3). The equations of motion (4.44) in the new variables

are ρ̈ = ρφ̇ [φ̇ + (2z2 − ρ2)r−5] and z̈ = −3zr−5ρ2φ̇, while the third one simply reduces to the

invariance of I. By solving I = c, where c is a constant, for φ̇, the latter yields

φ̇ =
c

ρ2
− 1

(ρ2 + z2)
3
2

(4.47)

As promised, all equations are independent of φ, and taking one step further, we can use the

above relation (4.47) to eliminate φ̇ as well from the first two,

ρ̈ =
c2

ρ3
− 3cρ

(ρ2 + z2)
5
2

+ ρ
2ρ2 − z2

(ρ2 + z2)4

z̈ = − 3cz

(ρ2 + z2)
5
2

+
3zρ2

(ρ2 + z2)4

(4.48)
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Therefore, the original system of sixth order has been reduced by two, since if we solve the

fourth-order one (4.48) for ρ(t) and z(t), then φ(t) can be found by integrating (4.47). Last but

not least the reduced system (4.48) can be recovered from the Lagrangian

L(ρ, z, ρ̇, ż) =
1

2

(
ρ̇2 + ż2

)
+

1

2

[
c2

ρ2
− ρ2

(ρ2 + z2)3

]
(4.49)

The latter is coming from the original Lagrangian function expressed in terms of the new coor-

dinates. Due to the symmetry ∂φ, it does not depend on φ, while the dependence in φ̇ was also

removed using (4.47). Note however that c in (4.49) is not to be treated as a constant, but as

the function I(ρ, z; φ̇), which only after extracting the Euler-Lagrange equations can be replaced

by I = c.

4.8 Equivalent differential equations

In many circumstances, arbitrary elements, such as functions or parameters, appear in a differ-

ential equation, in which case we speak of a family of differential equations, and it is important

to know for which of these elements, i.e. for which members of the family, if and which sym-

metries appear. Repeating Ovsiannikov [90], the correspondence between differential equations

and symmetry groups is not one-to-one : two differential equations may have the same symmetry

group, while there is only one symmetry group admitted by a differential equation. Therefore,

the answer to the above question is preferably given by a classification (of members of a family)

of differential equations in terms of their symmetry groups rather than the other way round.

As previously implied, this can help us identify different members of a class of differen-

tial equations admitting the same symmetry groups. As a result, we may be able to bring

complicated-looking equations to a much simpler form (for instance it could be a linear one if

they have the “right” type of symmetry, as was pointed out in Remark 4.25), and map solutions

of one differential equation to another. For example it has been proven [79] that a second-order

ODE has 0, 1, 2, 3 or 8 symmetries, and that it is linear or linearizable by a point transformation

if and only if it has 8 symmetries, or that for n ≥ 3 a linear or linearizable n-th order ODE has

n+ 1, n+ 2 or n+ 4 symmetries [80]. All the same symmetry classification of differential equa-

tions is not just of theoretical interest, since many problems in Mathematical Physics provide

us with a variety of experimental data that allows some arbitrariness of parameters or functions

involved, from which we can choose the ones with desirable analytical properties.

This line of work was also initiated by Lie himself, but more extensively investigated by

Cartan and Tresse formulating the so-called equivalence problem geometrically. Ovsiannikov [90]
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further exploited the group classification problem in a context very similar to Lie’s framework

for symmetry transformations, by defining transformations that leave invariant an entire class

of differential equations. Then later on Ibragimov and coworkers first presented the analogous

infinitesimal version with numerous applications [51, 53, 54]. A comprehensive treatment of

this theory carefully inspecting and working out in detail many of its aspects was given by

Lisle [75]. For a first encounter we refer to a manuscript of Ibragimov included in [53], p. 67

and illustrative examples therein, and for further reading Lisle’s thesis for formal and complete

definitions, constructions and proofs of theorems, written in an articulate way, too. Here we

content ourselves in a brief description of the basic concepts, key points for direct application,

generalized almost directly from symmetry theory.

In order to investigate relations between differential equations, first we must make precise and

define properly the notion of a class of differential equations. We return to our general notation

of section 4.1, meaning x =
(
x1, . . . , xq

)
and u = f(x) =

(
u1, . . . , up

)
are the independent and

dependent variables, respectively. Recall the corresponding spaces X and U , their Cartesian

product M = X × U and the n-jet space M (n) of x, u and the derivatives u(n) of u with

respect to x up to n-th order. Now, in addition, we also consider the space A = Rr of arbitrary

functions a = g(x, u) =
(
a1, . . . , ar

)
of x and u, whose coordinates are given by ah, h = 1, . . . , r,

and accordingly define N = M × A and the s-jet space N (s) of (x, u), a and the derivatives of

a with respect to either x or u up to s-th order denoted as a(s). Note that for the extension

M (n) u are treated as the dependent variables, but for the extension N (s) as independent ones.

Let ∆ = (∆1, . . . ,∆l) be differential functions on M (n) × N (s) and δ = (δ1, . . . , δλ) differential

functions on N (s). In general, a class C of differential equations is given by two decoupled

systems of equations

∆ (x, u, u(n); a, a(s)) = 0 (4.50a)

δ (x, u, a, a(s)) = 0 (4.50b)

where the first one is the primary system of interest and the second one is known as the auxiliary

system. The order s of the highest derivatives of a appearing in the two sets of equations need

not to be the same, but for simplicity we assume that s is the maximum between the two sets.

In practice, the auxiliary system expresses conditions that the arbitrary functions a entering

system (4.50a) of primary concern must obey. These could express any restrictions involved in a

physical problem. In the absence of physical arguments, they can simply describe the functional

dependence of a in terms of x and u.
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Example 4.43. The Fokker-Planck equation for time-independent friction and diffusion coeffi-

cients b and a, respectively,

ut = − (b(x)u)x + (a(x)u)xx

viewed as the primary system of a class of differential equations with arbitrary functions a and

b, can be enlraged by the auxiliary equations

at = au = bt = bu = 0

We emphasize that the two sets forming a class of differential equations are decoupled (even

when u are present in the auxiliary system). In fact, one has to solve first the auxiliary system

and then insert its solution into the primary one. For every solution a = g(x, u) of the auxiliary

system, the primary system corresponds to a member C(g) of the class,

∆ (x, u, u(n), g(x, u), g(s)(x, u)) = 0 (4.51)

A function u = f(x) is a solution of C(g) if g satisfies (4.50b) and f satisfies (4.51). This means

that a solution of a system of differential equations in some class needs two functions to be

specified : g to determine which system and f to determine which solution.

Consider now all previous notions of vector fields, flows, local group of transformations, pro-

longations on the space M × A. Starting with point transformations (x, u, a) −→ (x̃, ũ, ã), we

particularly focus on augmented transformations,

x̃ = x̃ (x, u)

ũ = ũ (x, u)

ã = ã (x, u, a)

(4.52)

that is augmented by point transformations (x, u) −→ (x̃, ũ) on M . A vector field V defined on

M ×A generating an augmented transformation is expressed as

V = ξj(x, u)
∂

∂xj
+ ηi(x, u)

∂

∂ui
+ µh(x, u, a)

∂

∂ah

and its flow describes a one-parameter group of augmented transformations, which in turn is

expressed via exponentiation of V

x̃ = eεV(x)

ũ = eεV(u)

ã = eεV(a)

(4.53)
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Using its projection to M , meaning the vector field v = ξj(x, u)∂xj + ηi(x, u)∂ui , we can also

write

V = v + µh(x, u, a)
∂

∂ah

Next we want to see how this transformation must be extended in order to describe transfor-

mations of a class C of differential equations (4.50). Remember that two quite different space

extensions were needed to define C, the jet spaces M (n) and N (s). We begin with the auxiliary

system for which the s-th prolongation of V is required regarding x and u as independent vari-

ables and a as the dependent ones, V(s) = V+µZh (x, u, a, a(s))∂ahZ
. In order then to apply to the

primary system we need the usual n-th prolonagtion of v regarding x as the independent vari-

ables and u as the dependent ones, v + ηJi (x, u, u(n))∂uiJ
. Putting the two together, the (n, s)-th

prolongation of V on the corresponding space M (n) ×N (s) is given by the general formula

V(n,s) = V + ηJi (x, u, u(n))
∂

∂uiJ
+ µZh (x, u, a, a(s))

∂

∂ahZ
(4.54)

where ahZ is the κ-th derivative of ah with respect to κ of the variables (x, u) denoted by the

multi-index Z =
(
xj1 , . . . , xjκ1 , ui1 , . . . , uiκ2

)
for κ1+κ2 = κ, and µZh is given by the same formula

as ηJi only carefully keeping track the different roles of independent and dependet variables,

µZh (x, u, a, a(s)) = DZ

(
ah − ξj ∂a

h

∂xj
− ηi∂a

h

∂ui

)
+ ξj

∂ahZ
∂xj

+ ηi
∂ahZ
∂ui

Here DZ = Dj1Dj2 · · ·Djκ1
Di1Di2 · · ·Diκ2

, where Dj is the total derivative with respect to xj

and Di the total derivative with respect to ui, forgetting at this point the dependence of u in

terms of x. Note that (4.54) can also be written as

V(n,s) = v(n) + µh(x, u, a)
∂

∂ah
+ µZh (x, u, a, a(s))

∂

∂ahZ
(4.55)

Recursion relations similar to (4.26)-(4.27) can also be given, but we rather see an example in-

stead to get the hang of it, from which it will also be clear that µZh for augmented transformations

are not so difficult to calculate due to the a-independence of ξ and η.

Example 4.44. Consider for example that (t, x) ∈ R2 are the independent and u ∈ R the

dependent variables for the primary system, while a ∈ R is the arbitrary function. Let

V = τ(t, x, u)
∂

∂t
+ ξ(t, x, u)

∂

∂x
+ η(t, x, u)

∂

∂u
+ µ(t, x, u, a)

∂

∂a

From formula (4.55)

V(1,1) = v(1) + µ
∂

∂a
+ µt

∂

∂at
+ µx

∂

∂ax
+ µu

∂

∂au
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where v = τ∂t + ξ∂x + η∂u and its first prolongation v(1) is given in Example 4.16, while

µt =
dµ

dt
− dτ

dt
at −

dξ

dt
ax −

dη

dt
au = µt + (µa − τt) at − ξtax − ηtau

µx =
dµ

dx
− dτ

dx
at −

dξ

dx
ax −

dη

dx
au = µx + (µa − ξx) ax − τxat − ηxau

µu =
dµ

du
− dτ

du
at −

dξ

du
ax −

dη

du
au = µu + (µa − ηu) au − τuat − ξuax

Definition 4.45. Let C be a class of differential equations consisting of the primary system

∆
(
x, u, u(n); a, a(s)

)
= 0 and the auxiliary one δ

(
x, u, a, a(s)

)
= 0. A local group G of augmented

transformations (x, u, a) −→ (x̃, ũ, ã) acting on the space of the independent, dependent variables

and the arbitrary functions for the primary system with the property that if u = f(x) is a solution

of the system C(g), then ũ = f̃ (x̃) is a solution of the system C(g̃) of the same class is called an

equivalence group for the class. Equivalently G is an equivalence group of C if it is a symmetry

group for the auxiliary system and ∆
(
x, u, u(n); a, a(s)

)
= 0⇒ ∆

(
x̃, ũ, ũ(n); ã, ã(s)

)
= 0, i.e. the

equations of the class are invariant under the action of the group.

Example 4.46. Consider again the class for the Fokker-Planck equation of Example 4.43 and

in particular for b = a′, which results to

ut = (aux)x

at = au = 0
(4.56)

Obviously solutions of the auxiliary system are a = g(x). For any parameter ε, we can easily see

that (t̃, ã) = (εt, a/ε) is an equivalence transformation : if a = g(x) is a solution of at = au = 0

then so is ã = g(x)/ε, and ut = (aux)x divided by ε results in ut̃ = (ãux)x.

An intriguing example given in [75] shows that equivalence transformations for Hamilton’s

equations in canonical form (C.1) are actually canonical transformations.

According to the previous definition, an equivalence transformation maps a member of a class

of differential equations to another one in the same class. As with the symmetry definition,

this one, too, is in most cases not practical to employ. Therefore, a corresponding infinitesimal

criterion is of use given by the next theorem. Like Theorem 4.19, the converse of the next one

holds only under certain nondegeneracy conditions that ensure the complete group of equivalence

transformations (in the above sense of point augmented transformations) is found. Again, these

are the maximal rank and the local solvability conditions, now referred to both the auxiliary
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system and the class of differential equations as a whole; see [75], section 3.2 and subsection

3.3.2 for more details and proof of the next theorem, too, which more or less follows a scheme

very close to that of Theorem 4.19.

Theorem 4.47. Let C be a nondegenerate class of differential equations consisting of the pri-

mary system ∆
(
x, u, u(n); a, a(s)

)
= 0 and the auxiliary one δ

(
x, u, a, a(s)

)
= 0. A vector field

V is a generator of an equivalence group for the class if and only if V(n,s)(δ) = V(n,s)(∆) = 0

whenever δ = ∆ = 0.

Example 4.48. The generator of the equivalence transformation (t̃, ã) = (εt, a/ε) for the class

of differential equations (4.56) we saw in the previous example is V = t∂t− a∂a and its (2, 1)-th

prolongation (leaving out the components of ∂/∂utt and ∂/∂utx which are not needed) is

V(2,1) = t
∂

∂t
− a ∂

∂a
− ut

∂

∂ut
− 2at

∂

∂at
− ax

∂

∂ax
− au

∂

∂au

as recovered from Examples 4.16 and 4.44. As we can see, starting from the auxiliary system

and then continuing with the primary one, V satisfies the infinitesimal equivalence criterion,

V(2,1)(at) = −2at = 0, V(2,1)(au) = −2au = 0 when at = au = 0

V(2,1)(ut − axux − auxx) = −ut + axux + auxx = 0 when at = au = ut − axux − auxx = 0

Example 4.49. Let us go back to section 1.5 and see how the two systems of charged particle

motion of §1.5.1 and §1.5.2 are related. Consider a homogeneous electromagnetic field and let

(xn, xβ, x‖) be denoted here simply as (x, y, z). Therefore, B =
(
0, 0, B3

)
and E =

(
E1, E2, E3

)
are constant vectors and the equations of motion in the form (1.2) are

ẍ = ẏB3 + E1

ÿ = −ẋB3 + E2

z̈ = E3

(4.57)

Having the four components of the electromagnetic field as arbitrary constants, the above equa-

tions play the role of the primary system and can be enlarged by the auxiliary equations

B3
t = B3

xj = Eit = Eixj = 0 (4.58)

Consider then augmented infinitesimal transformations generated by a vector field given as a

linear combination

V = (c4x− c1t)
∂

∂x
+ (c4y − c2t)

∂

∂y
+
(
c4z − c3t

2
) ∂
∂z

+

+
(
c4E

1 + c2B
3
) ∂

∂E1
+
(
c4E

2 − c1B
3
) ∂

∂E2
+
(
c4E

3 − 2c3

) ∂

∂E3
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where ci, i = 1, . . . , 4 are arbitrary constants. One can easily show that the (2, 1)-th prolongation

of V leaves invariant the auxiliary system (4.58) (since its components in the (B,E)-space are

really constants on solutions of the system). Therefore we focus on the usual second prolongation

of the projection v = (c4x− c1t) ∂x + (c4y − c2t) ∂y +
(
c4z − c3t

2
)
∂z,

v(2) = v + (c4ẋ− c1)
∂

∂ẋ
+ (c4ẏ − c2)

∂

∂ẏ
+ (c4ż − 2c3t)

∂

∂ż
+ c4ẍ

∂

∂ẍ
+ c4ÿ

∂

∂ÿ
+ (c4z̈ − 2c3)

∂

∂z̈

that is only required in applying V(2,1) on the primary system (4.57), and we easily see that the

infinitesimal equivalence criterion of Theorem 4.47 is satisfied, i.e.

V(2,1)
(
ẍ− ẏB3 − E1

)
= c4ẍ− (c4ẏ − c2)B3 − c4E

1 − c2B
3 = c4

(
ẍ− ẏB3 − E1

)
= 0

V(2,1)
(
ÿ + ẋB3 − E2

)
= c4ÿ + (c4ẋ− c1)B3 − c4E

2 + c1B
3 = c4

(
ÿ + ẋB3 − E2

)
= 0

V(2,1)
(
z̈ − E3

)
= c4z̈ − 2c3 − c4E

3 + 2c3 = c4

(
z̈ − E3

)
= 0

on solutions of the system.

Therefore V generates a 4-parameter group of equivalence transformations that can be ex-

pressed altogether as

t̃ = t

x̃ = ε4 (x− ε1t)

ỹ = ε4 (y − ε2t)

z̃ = ε4
(
z − ε3t2

)

B̃3 = B3

Ẽ1 = ε4
(
E1 + ε2B

3
)

Ẽ2 = ε4
(
E2 − ε1B3

)
Ẽ3 = ε4

(
E3 − 2ε3

)
(4.59)

where εi, i = 1, . . . , 4 are arbitrary constants with ε4 6= 0. Now let us see how knowledge of

the equivalence group can be exploited in this case : If we choose ε1 = E2/B3, ε2 = −E1/B3,

ε3 = E3/2 and ε4 = 1 then solutions (x(t), y(t), z(t)) of the original system (4.57) are mapped

to the solutions (x̃(t), ỹ(t), z̃(t)) of another member of this class, the equivalent system

¨̃x = ˙̃yB3

¨̃y = − ˙̃xB3

¨̃z = 0

(4.60)

where the magnetic field is the same, but the electric field Ẽi = 0 has vanished! Thus we can

solve the much simpler system (4.60), and then the solution to the original one (4.57) can be

retrieved by the inverse transformation (x, y, z) =
(
x̃+ ε1t, ỹ + ε2t, z̃ + ε3t

2
)
. This is actually

what (1.70) describes; ε1 and ε2 are the components vn and vβ, respectively, of the perpendicular

velocity (1.60) and ε3 = E‖/2 accordingly. And the transformation in the xy-plane is nothing

more than the Galilean boost (1.59) in the perpendicular plane.
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Of course if we want to find all the equivalence transformations of a class of differential

equations, we have to enforce the condition of the above theorem and work our way back. The

program followed is the analogue of the procedure for finding symmetries : i) Apply the two

conditions V(n,s)(δ) = 0 and V(n,s)(∆) = 0 of Theorem 4.47, ii) starting with the auxiliary

system, substitute the restrictions δ = 0, then move on to the primary system, substitute

the restrictions δ = ∆ = 0 and write the two equivalence conditions as a polynomial in the

derivatives of u, a and the derivatives of a, iii) equate the coefficients of the related monomials

to zero, iv) solve the resulting system of equations to find the most general form of the vector

field V, and finally v) construct the equivalence group for the class. The equations derived in the

third step of the above algorithm determining the Lie algebra of the equivalence group are also

linear, homogeneous and in most cases overdetermined. Interestingly enough, even for classes

of first-order ODEs these may be overdetermined too, as shown by example in [75], p. 57.

From Definition 4.45, one realizes that among the equivalence transformations of a certain

class there may be some which map solutions of a member of the class to solutions of the same

member, and hence by definition are symmetries for that system. In other words, the equivalence

group for a class contains as subgroups symmetry groups for different systems of the class. The

next proposition tells us when.

Proposition 4.50. Let V be a generator of a one-parameter equivalence group for a class C of

differential equations. Then the projection v is a symmetry generator for the primary system

C(g) if and only if a = g(x, u) is a group invariant solution for the auxiliary system, meaning

V(a− g(x, u)) = 0 whenever a = g(x, u) is a solution of the auxiliary system.

Proof. If a = g(x, u) is an invariant solution for the auxiliary system, then the group of transfor-

mations generated by V maps the solution a to itself ã = a, and consequently the member C(g)

of the class to itself. Hence according to Definition 4.45 the group of transformations generated

by v maps a solution of the system C(g) to a solution of the same system C(g), and thus it is

a symmetry group. On the other hand if v is a symmetry group for C(g), then the system is

invariant C(g̃) = C(g) under the action of the group generated by V and so g̃(x̃, ũ) = g(x, u) or

ã = a, that is a = g(x, u) is a group invariant solution.

The intersection of all the symmetry algebras of each system C(g) is called the principal Lie

algebra. It consists of all the vector fields v that generate symmetries admitted by all systems

C(g) for any g, and which can be found by the next corollary of the above proposition.
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Corollary 4.51. The projection v of an equivalence generator V is a symmetry generator of

the primary system with arbitrary functions a if and only if V(a − g(x, u)) = 0 is satisfied for

any solution g(x, u) of the auxiliary system.

Now, let us return back to our discussion at the beginning of this section and see how the

use of equivalence transformations can lead to a symmetry classification. For the latter becomes

necessary, since one cannot list all the invariant solutions of the auxiliary system, i.e. all the

members of the class admitting symmetry groups. To this end, two systems or, in general, two

subclasses of a class of differential equations will be considered distinct if they are not related

through an equivalence transformation; otherwise their symmetry group is essentially the same.

Such a distinction can be expressed back in terms of Lie subgroups of the equivalence group and

accordingly to Lie subalgebras of the equivalence algebra : Two equivalence subalgebras will be

considered similar if they are isomorphic under an equivalence transformation. Following [90],

these isomorphisms are called inner automorphisms of the equivalence algebra; see sections 14.3,

14.4 and 14.7 therein for more on these matters.

From the above arguments it becomes evident that we need to determine the inner automor-

phisms of the generators Vi, i = 1, . . . , r of an r-parameter equivalence group G. Recalling from

(4.18) the Lie algebra structure, we see that any element W = ciVi of the equivalence algebra

g under the action of the Lie bracket is mapped to an element [Vj ,W] = [Vj , ckVk] = cijkckVi

of g, where ckij are the structure constants. The linear mapping ciVi 7 −→ cijkckVi denoted as

ad Vj and defined in general for any Lie algebra as

ad V (W) = [V,W]

is called the adjoint action or representation, given in infinitesimal form. The inner automor-

phisms of the Lie algebra to itself are given by the related adjoint transformations,

Ad
(
eεV

)
(W) = eε adV(W)

= W + ε [V,W] +
ε2

2
[V, [V,W]]− · · · (4.61)

which form the so-called adjoint group of the corresponding Lie group. For simplicity, note

that every element V = ciVi of an r-dimensional Lie algebra can be represented by the vector

c = (c1, . . . , cr). Thus, instead of the above mapping one can consider the adjoint action on the

constants ci generated by the vector fields [51],

Cj = cijkck
∂

∂ci
(4.62)
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and determine the adjoint group of the equivalence group from their exponentiation. It is also

worth mentioning that the center of a Lie algebra, commuting with every other of its elements,

is the kernel of the adjoint map ad [90].

In conclusion, the whole problem of symmetry classification of a class of differential equations

is reduced to a classification of its equivalence algebra. Under the above considerations, the

equivalence algebra is decomposed into subalgebras which are not connected by an inner auto-

morphism, meaning classification is made under the adjoint action. The goal is to arrive at an

optimal system of the least possible subalgebras, in which no two subalgebras are similar and

every other subalgebra is similar to one of the subalgebras in the optimal system. In this clas-

sification the center of the equivalence algebra cannot be changed in any way, and thus directly

included in any subalgebra. Unfortunately, besides perhaps the use of invariants of the adjoint

group in some cases, no systematic method is available for constructing the optimal system. See

[90], section 14.8 for the case of low-dimensional subalgebras.

Nonetheless, there could be symmetries lying outside the equivalence group. Therefore, the

symmetry classification described above is only partial or preliminary, as it is often called. In

many cases though that is all one can do, not to mention the severe decrease in the amount

of labor to do so. On the other hand, the equivalence information can be handled in different

ways to arrive at a complete symmetry classification. For example, one can employ equivalence

transformations to classify the determining equations deduced from the symmetry condition

before solving them.

Final notes

The notion of symmetry in differential equations has been generalized in lots of ways extending

further its applicability. A first example are generalized symmetries also known as Lie-Bäcklund

transformations that besides the independent and dependent variables they also include trans-

formations of the derivatives. True generalized symmetries first considered by Noether herself

can only be defined as transformations on the infinite-dimensional function space of solutions

(see [89], p. 297) (for ordinary differential equations many authors also use the term dynami-

cal or internal symmetries). Lie and Bäcklund on the other hand probably considered genuine

geometrical transformations on a jet space of finite order; when n = 1 these are called contact

symmetries. For partial differential equations, however, a transformation on an n-jet space can

always be recovered by the n-th prolongation of a transformation on the base space.
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Other generalizations are nonlocal symmetries (a special case of which are potential sym-

metries [10]) that describe symmetries which depend on functions that are connected with the

dependent variables through differential relations, or conditional symmetries that are symmetries

of the original system of interest, which also leave invariant an attached system of differential

equations. One may also consider symmetries for problems with initial-boundary conditions,

which are admitted, apart from the system, by the initial-boundary conditions and the initial-

boundary surface. Approximate symmetries for perturbed systems have also been introduced,

which are symmetries that depend on the perturbation parameter, leaving invariant the system

through first order of perturbation. Several if not most parts of the machinery of the point

symmetries considered in this chapter, such as group structure, generators, prolongations, in-

finitesimal criterion, reduction of order, Noether’s theorem, are sustained in many cases at least

under suitable modifications. For example, approximate Noether symmetries correspond to adi-

abatic invariants. On the other hand some features may be lost, as for instance generalized

symmetries for second-order ODEs suffer the same problem (see Remark 4.24) that point sym-

metries do for first-order ones, or conditional symmetries no longer enjoy the linearity of the

corresponding determining equations and are hard to find.

Among the advantages of symmetry methods is that they are amenable to computer program-

ming. The five-step algorithm for finding symmetry (or equivalence) groups can be executed

using computer algebra programs, which can automate all the tedious calculations involved.

Recall from Example 4.16 how cumbersome can be the construction of the required prolonga-

tion for high-order equations. Nevertheless, the algorithmic nature of prolonging a vector field

allows a computer implementation. Moreover and more importantly, the linear system of the

determining equations may turn out so large that pencil and paper are almost impractical. To

this end, more advanced methods have also been developed based on the works of Riquier and

Janet, using the so-called Janet bases that bring linear homogeneous systems of PDEs into a

simple form and which were lately revived by Reid and Schwarz [97]; see also [7], chapter 10.

In conclusion, the main goal is to have a program that given a differential equation as input

it will produce the symmetry group as output. In this way the margin of human error, not to

mention time and effort, is less. Examples in a user-friendly environment such as Mathematica

are “MathLie” by Baumann [7] and more recently “Sym” by Dimas [29, 30].

The handling of the determining equations is actually again related to the symmetry classifi-

cation problem, for which Reid’s method exploiting all the compatability conditions can extract

the size and structure of the symmetry algebra without even solving them. On the other hand
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lies essentially the work of Cartan who employed the equivalence group to break down the class

of differential equations into canonical forms. Lisle in his thesis [75] explores the combination

of Cartan-Tresse geometrical methods with Reid’s analytic algorithm, suggesting his approach

that includes both of them as limits in opposite cases.



Chapter 5

Symmetries of Charged Particle

Motion

In this chapter, we investigate the symmetry properties of the three-dimensional Newtonian

motion of charged particles given by the Lorentz force law (1.1). Assuming a Cartesian frame of

reference, we consider arbitrary, time-independent electromagnetic fields B =
(
B1, B2, B3

)
and

E =
(
E1, E2, E3

)
as smooth functions of the position x alone. The system, consisting of three

second-order, autonomous ordinary differential equations, is repeated here from the component

form (1.2)

ẍi = εijkẋ
jBk(x) + Ei(x), (5.1)

where all indices throughout this chapter and the next one take values from 1 to 3, unless stated

otherwise. We also recall the well-known Lagrangian formulation of (5.1), previously described

in detail in chapter 1.

ForB = 0, the above system reduces to a classical problem in mechanics, for which a complete

symmetry group classification can be found in [25, 107] in two dimensions and [26, 27, 108] in

three. A symmetry analysis for the two-dimensional case of system (5.1), where the magnetic

field has a constant direction in space, has also been made [43, 44], even for time-dependent

electromagnetic fields. Therefore this case, along with trivial ones of less physical interest, where

either one of the fields is homogeneous, will not be considered here. Our intention is to cover

a variety of applications, in which the electromagnetic field may be quite complicated, such as

those occuring in plasma physics and fusion devices. A series of simpler problems for particular

choices of the functions B and E is presented in [92].

135
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5.1 Lie point symmetries

We consider infinitesimal point transformations generated by the vector field

v = ξ(t,x)
∂

∂t
+ ηi(t,x)

∂

∂xi
. (5.2)

According to Theorem 4.19 the symmetry condition reads

v(2)(ẍi − εijkẋjBk(x)− Ei(x)) = 0, (5.3)

whenever equations (5.1) hold, where v(2) is the second prolongation of v given by Proposition

4.15. Applying formula (4.25) we have

v(2) = v + ηti(t,x, ẋ)
∂

∂ẋi
+ ηtti (t,x, ẋ, ẍ)

∂

∂ẍi
(5.4)

and from the recursion relation (4.26),

ηti = Dtη
i − ẋiDtξ = ηit + ηixj ẋ

j − ξtẋi − ξxj ẋiẋj

ηtti = Dtη
t
i − ẍiDtξ = ηitt + 2ηitxj ẋ

j + ηixjxk ẋ
j ẋk + ηixj ẍ

j − ξttẋi − 2ξtxj ẋ
iẋj − 2ξtẍ

i−

− ξxjxk ẋiẋj ẋk − 2ξxj ẋ
j ẍi − ξxj ẋiẍj

After substituting the second derivatives, equations (5.3) take the form of polynomials of third

degree in terms of the first derivatives ẋi,

0 = ηtti − εijkηtjBk − εijkẋjηlBk
xl − η

lEixl

= ηitt + 2ηitxj ẋ
j + ηixjxk ẋ

j ẋk + ηixlεljkẋ
jBk + ηixjE

j − ξttẋi − 2ξtxj ẋ
iẋj − 2ξtεijkẋ

jBk−

− 2ξtE
i − ξxjxk ẋiẋj ẋk − 2ξxj ẋ

jεiklẋ
kBl − 2ξxj ẋ

jEi − ξxj ẋiεjkmẋkBm − ξxj ẋiEj −

− εijkηjtBk − εilkηlxj ẋ
jBk + εijkξtẋ

jBk + εijlξxk ẋ
j ẋkBl − εijkẋjηlBk

xl − η
lEixl (5.5)

Being identities for all t, xi and ẋi, they finally break up into a larger set of partial differential

equations, the so-called determining equations,

ξxjxk = 0 (5.6a)

2ηixjxk − εijlξxkB
l + εilkξxjB

l − δij (2ξtxk − εlmkξxlBm)− δik (2ξtxj + εljmξxlB
m) = 0 (5.6b)

2ηitxj + εljkη
i
xl
Bk − εijkξtBk − 2ξxjE

i − εilkηlxjB
k − εijkηlBk

xl
− δij(ξtt + ξxlE

l) = 0 (5.6c)

ηitt + ηixjE
j − 2ξtE

i − εijkηjtBk − ηjEixj = 0 (5.6d)
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Dropping Kronecker’s deltas and Levi-Civita symbols, the above system in more detail is given

by the equations listed below. Equations (5.6a), (5.6b) and (5.6d) are repeated exactly the same.

Equations (5.6c) on the other hand are slightly manipulated for convenience : equations (5.6c1)

are (5.6c) for i = j, just as (5.6c2) are the half of (5.6c) for i 6= j. Finally, (5.6c3) are replacing

the rest of (5.6c) by adding the ij- and ji-equations in pairs for i 6= j.

ξxx = 0

ξyy = 0

ξzz = 0

ξxy = 0

ξxz = 0

ξyz = 0

(5.6a)

η1
yy − ξyB3 = 0

η1
zz + ξzB

2 = 0

η2
zz − ξzB1 = 0

η2
xx + ξxB

3 = 0

η3
xx − ξxB2 = 0

η3
yy + ξyB

1 = 0

2η1
yz − ξzB3 + ξyB

2 = 0

2η2
xz − ξxB1 + ξzB

3 = 0

2η3
xy − ξyB2 + ξxB

1 = 0

η1
xx − 2ξtx − ξzB2 + ξyB

3 = 0

η2
yy − 2ξty − ξxB3 + ξzB

1 = 0

η3
zz − 2ξtz − ξyB1 + ξxB

2 = 0

2η1
xy − 2ξty − 2ξxB

3 + ξzB
1 = 0

2η1
xz − 2ξtz + 2ξxB

2 − ξyB1 = 0

2η2
yz − 2ξtz − 2ξyB

1 + ξxB
2 = 0

2η2
xy − 2ξtx + 2ξyB

3 − ξzB2 = 0

2η3
xz − 2ξtx − 2ξzB

2 + ξyB
3 = 0

2η3
yz − 2ξty + 2ξzB

1 + ξxB
3 = 0

(5.6b)
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2η1
tx − ξtt −

(
η1
y + η2

x

)
B3 +

(
η1
z + η3

x

)
B2 − 2ξxE

1 − ξxiEi = 0

2η2
ty − ξtt −

(
η2
z + η3

y

)
B1 +

(
η2
x + η1

y

)
B3 − 2ξyE

2 − ξxiEi = 0

2η1
tz − ξtt −

(
η3
x + η1

z

)
B2 +

(
η3
y + η2

z

)
B1 − 2ξzE

3 − ξxiEi = 0

(5.6c1)

2η1
ty +

(
η1
x − η2

y

)
B3 − η1

zB
1 + η3

yB
2 − ξtB3 − 2ξyE

1 − ηiB3
xi = 0

2η1
tz +

(
η3
z − η1

x

)
B2 + η1

yB
1 − η2

zB
3 − ξtB2 − 2ξzE

1 − ηiB2
xi = 0

2η2
tz +

(
η2
y − η3

z

)
B1 − η2

xB
2 + η1

zB
3 − ξtB1 − 2ξzE

2 − ηiB1
xi = 0

(5.6c2)

2
(
η1
ty + η2

tx

)
−
(
η1
z + η3

x

)
B1 +

(
η2
z + η3

y

)
B2 + 2

(
η1
x − η2

y

)
B3 − 2ξyE

1 − 2ξxE
2 = 0

2
(
η1
tz + η3

tx

)
+
(
η1
y + η2

x

)
B1 −

(
η2
z + η3

y

)
B3 + 2

(
η3
z − η1

x

)
B2 − 2ξzE

1 − 2ξxE
3 = 0

2
(
η2
tz + η3

ty

)
−
(
η1
y + η2

x

)
B2 +

(
η1
z + η3

x

)
B3 + 2

(
η2
y − η3

z

)
B1 − 2ξzE

2 − 2ξyE
3 = 0

(5.6c3)

η1
tt + η1

xiE
i − 2ξtE

1 + η3
tB

2 − η2
tB

3 − ηiE1
xi = 0

η2
tt + η2

xiE
i − 2ξtE

2 + η3
tB

1 − η1
tB

3 − ηiE2
xi = 0

η3
tt + η3

xiE
i − 2ξtE

3 + η2
tB

1 − η1
tB

2 − ηiE3
xi = 0

(5.6d)

Starting from the top, the first set of equations shows that ξxi are functions only of t. Moving

on to the second one, first observe that mixed second order partial derivatives ηi
xjxk

and ηi
xkxj

are already considered equal. Imposing further integrability conditions on (5.6b), meaning

ηi
xjxkxl

= ηi
xlxjxk

, we find, after some investigation, that ξxi = 0 unless B is constant, which in

turn means that E is linear from (5.6c), and so consequently system (5.1) is altogether linear

and not of much physical interest. Thus, for nonlinear systems ξxi = 0 and hence ηi
xjxk

= 0, i.e.

ξ = ξ(t), (5.7)

ηi = fij(t)x
j + fi(t) (5.8)

where ξ, fij , fi are arbitrary functions of t. After substitution of the above expressions, equations

(5.6c1) take the form

2ḟ11 − ξ̈ + (f13 + f31)B2 − (f12 + f21)B3 = 0,

2ḟ22 − ξ̈ + (f12 + f21)B3 − (f23 + f32)B1 = 0,

2ḟ33 − ξ̈ + (f23 + f32)B1 − (f13 + f31)B2 = 0,

(5.9)

while (5.6c3), which is the other set of equations (5.6c) not containing any derivatives of Bi,

become

2 (ḟ12 + ḟ21)− (f13 + f31)B1 + (f23 + f32)B2 + 2 (f11 − f22)B3 = 0,

2 (ḟ13 + ḟ31) + (f12 + f21)B1 − (f23 + f32)B3 + 2 (f33 − f11)B2 = 0,

2 (ḟ23 + ḟ32)− (f12 + f21)B2 + (f13 + f31)B3 + 2 (f22 − f33)B1 = 0.

(5.10)
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Before proceeding with the rest of (5.6c), direct inspection of systems (5.9) and (5.10) shows

that unless

fij = −fji, i 6= j (5.11)

hold, then the magnetic field is at best of constant direction, a case excluded from our study as

it has already been investigated in [44]. Inserting this skew-symmetry back to (5.9), we find

2f11 = 2f22 = 2f33 = ξ̇ + k. (5.12)

where k is a constant.

Then, the rest of the third set of the determining equations, system (5.6c2), place inevitably

restrictions upon B,

(fjkx
k + fj)

∂Bi

∂xj
= (k − fjj)Bi + fijB

j + εijkḟjk, (5.13)

The latter show that, for a time-independent magnetic field, the functions fij , fi must be con-

stants. This can be seen, if we differentiate the last three equations with respect to xi, and then

treat fij , fi and c as the unknowns. Hence, we arrive at an algebraic system of nine equations

in eight unknowns (considering (5.11)-(5.12)), which is also linear and homogeneous. In the

generic case the rank of this system is seven, and therefore we can solve for fij and fi in terms

of k, which is an absolute constant, and the derivatives of the magnetic field. Since B does not

depend explicitly on time, all these solutions have to be constants. And, from (5.14), as a result

ξ is a linear function of t. Therefore,

f1(t) = c1

f2(t) = c2

f3(t) = c3

ξ(t) = c8t+ c0

f11(t) = c7

f12(t) = − c4

f13(t) = c5

f23(t) = − c6

(5.14)

where ci, i = 0, . . . , 8 are all constants, and the remaining of the determining equations, systems

(5.13) and (5.6d)

(η · ∇)B = Q1B,

(η · ∇)E = Q2E
(5.15)

where η is the vector with entries ηi and Q1 = − c8I+Q, Q2 = (c7 − 2c8) I+Q are 3×3 square

matrices, I being the unit matrix and Q the skew-symmetric matrix

Q =


0 − c4 c5

c4 0 − c6

− c5 c6 0

 . (5.16)
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In conclusion, when system (5.1) is nonlinear and the magnetic field is not straight, then

(summarizing relations (5.7), (5.8), (5.11), (5.12) and (5.14)) the most general form of the

symmetry generator is

ξ = c8t+ c0,

η1 = c7x− c4y + c5z + c1,

η2 = c7y + c4x− c6z + c2,

η3 = c7z − c5x+ c6y + c3.

(5.17)

when the electromagnetic field satisfies (5.15). We should note, however, that at this stage

only c0 is completely arbitrary, while all other constants are related through (5.15). Thus, the

symmetry algebra is spanned by v0 = ∂t and a symmetry generator of the general form

v =

8∑
i=1

civi (5.18)

which is actually a sum of translations, rotations and dilatations

v1 = ∂x

v2 = ∂y

v3 = ∂z

v4 = x∂y − y∂x

v5 = z∂x − x∂z

v6 = y∂z − z∂y

v7 = x∂x + y∂y + z∂z

v8 = t∂t

(5.19)

While the former, expected for every autonomous system, appears whatever the (stationary)

fields B and E may be, the latter is admitted only when B and E satisfy equations (5.15).

The dimension of the symmetry algebra, in general, will be determined from the number of

independent constants ci, i = 1, . . . , 8 inserted in (5.18).

So, leaving the anticipated v0 aside, we focus on the existence of the general symmetry v

(5.18). The next task to complete the symmetry analysis is to find the form of the electromag-

netic field, respecting the symmetry condition, i.e. solve equations (5.15).
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5.2 The form of the electromagnetic field

The solutions to (5.15) describe the general form the vector functions B and E must have

in order system (5.1) to admit symmetry (5.18). In physics, however, the electromagnetic

field obeys Maxwell’s equations (1.4a)-(1.4b). And while Gauss’s and Ampére’s laws (1.4b)

simply determine the source of the electric and magnetic field respectively, i.e. the charge and

current densities, the first two (1.4a) represent conditions that B and E have to satisfy, and are

inextricably connected with every real problem (5.1). Instead of imposing these conditions, we

recall their solution in terms of the vector potential A = (A1, A2, A3) and the scalar one Φ.

Replacing the solutions (1.5)-(1.6) in (5.15), provides us then with the restrictions that now

A and Φ must satisfy in order to respect the Lie point symmetry condition. The equations we

end up with, after integration, can be cast into the following form

(η · ∇)A = Q3A+∇f, (5.20)

(η · ∇)Φ = 2 (c7 − c8) Φ + c9, (5.21)

where Q3 = (c7 − c8) I +Q, f is an arbitrary function of x and c9 some constant. Furthermore,

the gauge invariance A −→ A + ∇g of the vector potential (see Remark 1.1) can, in fact,

guarantee the existence of an equivalent A, such that

(η · ∇)A = Q3A (5.22)

for g satisfying the relation

η · ∇g + (c8 − 2c7) g = f, (5.23)

Thus, in case of true electromagnetic fields, that certainly have to comply with Maxwell’s equa-

tions (1.4a), the solutions to (5.22)-(5.21) describe through (1.5) and (1.6) the ones for which

system (5.1) has the symmetry (5.18).

Consequently, we can either treat B and E only as functions entering the system, or we can

view them as part of a bigger physical problem, that also includes Maxwell’s equations (1.4a). In

what follows we focus on that second case and give the solutions A and Φ of (5.21)-(5.22). For

reasons that will be apparent, the potentials that the electromagnetic field comes from, besides

carrying more information, are more convenient to use in this situation. The form of B and

E can then be found through (1.5)-(1.6). If, however, one wishes to determine them without

taking into account (1.4a), the task would be similar. The two systems in (5.15) can be solved

independently of each other, and obviously by the same means as (5.22) can. Either one of them
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is a system of three coupled first order linear partial differential equations, and they all have

almost the exact same form, since the matrices Qi are all of the same structure differing only by

a minor factor. Thus, we present in detail a way of solving (5.22), whose explicit form is given

below along with (5.21), and then either set of (5.15) can be treated accordingly.

(c7x− c4y+ c5z+ c1)
∂A1

∂x
+ (c7y+ c4x− c6z+ c2)

∂A1

∂y
+ (c7z− c5x+ c6y+ c3)

∂A1

∂z
= (c7 − c8)A1 − c4A2 + c5A3

(c7x− c4y+ c5z+ c1)
∂A2

∂x
+ (c7y+ c4x− c6z+ c2)

∂A2

∂y
+ (c7z− c5x+ c6y+ c3)

∂A2

∂z
= (c7 − c8)A2 + c4A1 − c6A3

(c7x− c4y+ c5z+ c1)
∂A3

∂x
+ (c7y+ c4x− c6z+ c2)

∂A3

∂y
+ (c7z− c5x+ c6y+ c3)

∂A3

∂z
= (c7 − c8)A3 − c5A1 + c6A2

(c7x− c4y + c5z + c1)
∂Φ

∂x
+ (c7y + c4x− c6z + c2)

∂Φ

∂y
+ (c7z − c5x+ c6y + c3)

∂Φ

∂z
= 2 (c7 − c8) Φ + c9

First of all we want to uncouple the system. The form of the equations allows one to do

so, when Q3 is diagonalizable. The above matrix however is not, since it has two complex

eigenvalues, λ1,2 = c7 − c8 ± ic, and only one real, λ3 = c7 − c8, where c =
(
c2

4 + c2
5 + c2

6

) 1
2 .

Nevertheless, we can still separate one equation from the other two, by setting A = P Ā, where

P = (u v e) is the matrix of the eigenvectors u ± iv, e of Q3 corresponding to the eigenvalues

λ1,2, λ3, respectively. Then, left multiplication of equation (5.22) with the inverse of P , leads to

(η · ∇)Ā = Q̄3Ā, (5.24)

where Q̄3 = P−1Q3P = (c7 − c8) I + Q̄ and Q̄ = P−1QP is the normal form of the skew-

symmetric matrix Q,

Q̄ =


0 −c 0

c 0 0

0 0 0

 . (5.25)

Thus, the third of equations (5.24) for Ā3 is detached from the others. To uncouple the rest two

we need a nonlinear transformation. Their form, as it can be seen from the matrix Q̄, naturally

implies taking polar coordinates in the Ā1Ā2-plane. In conclusion, the following transformation

in the dependent variables, i.e. the components of the vector potential,

Ã1 =
√
Ā2

1 + Ā2
2

Ã2 = arctan

(
Ā2

Ā1

)
and Ā = P−1A,

Ã3 = Ā3

(5.26)
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where P is defined through the eigenvectors of Q, uncouples system (5.22). Indeed, the latter

now takes the form

(c7x− c4y + c5z + c1)
∂Ã1

∂x
+ (c7y + c4x− c6z + c2)

∂Ã1

∂y
+ (c7z − c5x+ c6y + c3)

∂Ã1

∂z
= (c7 − c8) Ã1

(c7x− c4y + c5z + c1)
∂Ã2

∂x
+ (c7y + c4x− c6z + c2)

∂Ã2

∂y
+ (c7z − c5x+ c6y + c3)

∂Ã2

∂z
= c

(c7x− c4y + c5z + c1)
∂Ã3

∂x
+ (c7y + c4x− c6z + c2)

∂Ã3

∂y
+ (c7z − c5x+ c6y + c3)

∂Ã3

∂z
= (c7 − c8) Ã3

Now, each equation can be solved independently by the method of characteristics. Even more

conveniently, all three of them are essentially (the first and third exactly) the same.

This means that three out of four characteristic equations for the above equations are common

in each case, forming a linear dynamical system,

dx

ds
= Cx+ c, (5.27)

where the 3 × 3 square matrix C = c7I + Q and the column vector c = (c1, c2, c3). Since the

matrices Q3 and C share the same eigenvectors, the homogeneous counterpart of the above

equations can be easily resolved, very similarly to (5.22). Only now, due to c, we need to make

a slight adjustment. More specifically, consider new independent variables,

x̃ =
√
x̄2 + ȳ2

ỹ = arctan
( ȳ
x̄

)
and x̄ = P−1 (x− k) ,

z̃ = z̄

(5.28)

where P is the same as before and k = (k1, k2, k3) is a constant vector soon to be defined case

by case. Then, transformations (5.26) and (5.28) bring system (5.22) into a much simpler form,

c7x̃
∂Ã1

∂x̃
+ c

∂Ã1

∂ỹ
+ (c7z̃ + c̃3)

∂Ã1

∂z̃
= (c7 − c8) Ã1,

c7x̃
∂Ã2

∂x̃
+ c

∂Ã2

∂ỹ
+ (c7z̃ + c̃3)

∂Ã2

∂z̃
= c,

c7x̃
∂Ã3

∂x̃
+ c

∂Ã3

∂ỹ
+ (c7z̃ + c̃3)

∂Ã3

∂z̃
= (c7 − c8) Ã3.

(5.29)

where c̃3 is also a constant depending on each case. The solution of this system can now be

found easily. Notice that x̃, ỹ, z̃ describe cylindrical coordinates in the x̄ȳz̄-space, which in turn

is a linear transformation of the original space.
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Summing up, transformation (5.26) uncouples the equations of the system, the same way

(5.28) yields its characteristics. Under these two changes of variables we arrive at system (5.29)

and then solve it. After the solution is found, the inverse transformations of (5.26), (5.28) give

the solution of the original system (5.22). Though this treatment is general, we distinguish four

characteristic cases, depending on the form of the matrix P , the vector k and the constant c̃3,

as well as a last and more trivial one, where no transformation is necessary at all.

5.2.1 The case c7 6= 0 and c5 or c6 6= 0

In this general case, owing to the skew-symmetry of Q the matrix P consisting of the eigenvectors

of Q3 can be orthogonal, P−1 = P T . If we let ε4 = arctan(c5/c6) and ε5 = arctan
(√

c2
5 + c2

6/c4

)
,

then P = R3(ε4)R2(ε5), where R3 and R2 are the rotation matrices around the z- and y-axes,

respectively. More explicitly

P =
1

c
(
c2

5 + c2
6

) 1
2


c4c6 −cc5 c6

(
c2

5 + c2
6

) 1
2

c4c5 cc6 c5

(
c2

5 + c2
6

) 1
2

−
(
c2

5 + c2
6

)
0 c4

(
c2

5 + c2
6

) 1
2

 , (5.30)

while k = −C−1c, making (5.27) homogeneous in terms of x̄, ȳ, z̄. So, the new independent

variables, according to (5.28), are

x̃ =
[
(x− k1)2 + (y − k2)2 + (z − k3)2 − z̃ 2

] 1
2

ỹ = arctan

(
c [c6 (y − k2)− c5 (x− k1)]

c4c6 (x− k1) + c4c5 (y − k2)−
(
c2

5 + c2
6

)
(z − k3)

)
z̃ =

1

c
[c6 (x− k1) + c5 (y − k2) + c4 (z − k3)]

(5.31)

Together with (5.26), they transform system (5.22) into (5.29) for c̃3 = 0. Its solution is now

easily found to be Ã1,3 = z̃
1− c8

c7 F̃1,3(u1, u2) and Ã2 = ỹ + F̃2(u1, u2), where F̃1, F̃2 and F̃3 are

arbitrary functions of the characteristics

u1 =
z̃

x̃
,

u2 = c ln z̃ − c7ỹ.

(5.32)

Taking the inverse transformation of (5.26), the previous solution can be expressed back in

the original components of the vector potential, arriving at

A (x̃, ỹ, z̃) = z̃
1− c8

c7 PR3(ỹ)F (u1, u2) , (5.33)
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where F = (F1, F2, F3) is an arbitrary vector function of u1 and u2, coming from the previous

F̃ = (F̃1, F̃2, F̃3). In terms of the original coordinates, solution (5.33) is further reduced, though

some of the transformed variables are still kept for simplicity,

A1 = z̃
− c8
c7 [(c(x− k1)− c6z̃)F1 + (c5(z − k3)− c4(y − k2))F2 + c6z̃ F3]

A2 = z̃
− c8
c7 [(c(y − k2)− c5z̃)F1 + (c4(x− k1)− c6(z − k3))F2 + c5z̃ F3]

A3 = z̃
− c8
c7 [(c(z − k3)− c4z̃)F1 + (c6(y − k2)− c5(x− k1))F2 + c4z̃ F3]

(5.34)

Equation (5.21) on the other hand is very similar to either one of system (5.29), and can be

solved likewise. So, the scalar potential is

Φ =

z̃
2
(

1− c8
c7

)
G, c8 6= c7

c9

c
ỹ +G, c8 = c7

(5.35)

up to some additive constant, where G is too an arbitrary of u1 and u2.

Since ki’s are quite complicated expressions of ci’s, i = 1, 2, 3, it is preferable in this case for

practical purposes to consider the latter in terms of the former, and thus, to conclude that the

potentials of the form (5.34)-(5.35) yield symmetry (5.18) for ci = −Cijkj , i = 1, 2, 3.

5.2.2 The case c7 = 0 and c5 or c6 6= 0

Here we may use again the matrix P given in (5.30), but, since C is no longer invertible, we define

k = c−2Cc differently, k1 = (c5c3 − c4c2) /c2, k2 = (c4c1 − c6c3) /c2 and k3 = (c6c2 − c5c1) /c2.

The new coordinates resemble the ones of the previous case,

x̃ =
[
(x− k1)2 + (y − k2)2 + (z − k3)2 − z̃ 2

] 1
2

ỹ = arctan

(
c [c6 (y − k2)− c5 (x− k1)]

c4c6 (x− k1) + c4c5 (y − k2)−
(
c2

5 + c2
6

)
(z − k3)

)
z̃ =

1

c
(c6x+ c5y + c4z) ,

(5.36)

but now c̃3 = (c6c1 + c5c2 + c4c3) /c. Thus, Ã1,3 = e−
c8
c
ỹ F̃1,3(u1, u2) and Ã2 = ỹ + F̃2 (u1, u2),

where the arbitrary functions F̃1, F̃2, F̃3 now depend on the characteristics

u1 = x̃,

u2 = cz̃ − c̃3ỹ,
(5.37)

that actually being the essential difference with the first case. Thus, the vector potential in the

original components is

A (x̃, ỹ, z̃) = e−
c8
c
ỹPR3(ỹ)F (u1, u2) , (5.38)
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or more simply

A1 = e−
c8
c
ỹ [(c(x− k1)− c6z̃)F1 + (c5(z − k3)− c4(y − k2))F2 + c6 F3]

A2 = e−
c8
c
ỹ [(c(y − k2)− c5z̃)F1 + (c4(x− k1)− c6(z − k3))F2 + c5 F3]

A3 = e−
c8
c
ỹ [(c(z − k3)− c4z̃)F1 + (c6(y − k2)− c5(x− k1))F2 + c4 F3]

(5.39)

and the scalar one,

Φ =

e
− 2c8

c
ỹ G, c8 6= 0

c9

c
ỹ +G, c8 = 0

(5.40)

where F and G are now arbitrary functions of u1 and u2 (5.37).

5.2.3 The case c7 6= 0 and c5 = c6 = 0

Now the third equation of system (5.22) is already isolated and so it can be solved independently,

yielding A3 directly. This means that simply P = I, which is actually the only difference with

the first case. All the results obtained there can be reproduced here by simply making this

substitution. In particular, setting again k = −C−1c and c̃3 = 0, the form of system (5.29) in

the new variables

x̃ =

√
(x− k1)2 + (y − k2)2

ỹ = arctan

(
y − k2

x− k1

)
z̃ = z − k3

(5.41)

is exactly as in the first case and consequently its solution remains the same. Therefrom, we

end up with the following expression for the vector potential

A (x̃, ỹ, z̃) = z̃
1− c8

c7R3(ỹ)F (u1, u2) , (5.42)

where the arbitrary function F depends again on u1 and u2 following the description (5.32), but

for the variables x̃, ỹ, z̃ defined above, noting that c = c4 in this case, i.e.

u1 =
z − k3√

(x− k1)2 + (y − k2)2
,

u2 = c4 ln (z − k3)− c7 arctan

(
y − k2

x− k1

)
,

(5.43)
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where k1 = − (c7c1 + c4c2) /
(
c2

7 + c2
4

)
, k2 = (c4c1 − c7c2) /

(
c2

7 + c2
4

)
and k3 = −c3/c7. Thus, in

terms of the original coordinates the above solution is written as

A1 = (z − k3)
− c8
c7 [(x− k1)F1 − (y − k2)F2]

A2 = (z − k3)
− c8
c7 [(y − k2)F1 + (x− k1)F2]

A3 = (z − k3)
1− c8

c7 F3

(5.44)

The scalar potential accordingly is

Φ =


(z − k3)

2
(

1− c8
c7

)
G, c8 6= c7

c9

c7
ln (z − k3) +G, c8 = c7

, (5.45)

where G is an arbitrary function of u1 and u2 given in (5.43), as well.

When c4 = 0, then the characteristic u2 is just ỹ. Thus, solution (5.42) simply reduces to

A = (z − k3)
1− c8

c7 F (u1, ỹ). In other words there is no need for transformation (5.26) or (5.28)

at all, because the system (5.22) in this case is completely uncoupled.

5.2.4 The case c5 = c6 = c7 = 0, c4 6= 0

This is actually a combination of the last two cases. The new variables are now defined for

P = I, as in the previous case, but k = c−2Cc as in the second case, meaning

x̃ =

√
(x− k1)2 + (y − k2)2

ỹ = arctan

(
y − k2

x− k1

)
z̃ = z

(5.46)

where k1 = −c2/c4, k2 = c1/c4 and k3 = 0. The transformed system (5.29) has the same form

with the one of the second case for c = c4 and c̃3 = c3. Thus, the vector potential is

A (x̃, ỹ, z̃) = e
− c8
c4
ỹ
R3(ỹ)F (u1, u2) , (5.47)

or again

A1 = e
− c8
c4
ỹ

[(x− k1)F1 − (y − k2)F2]

A2 = e
− c8
c4
ỹ

[(y − k2)F1 + (x− k1)F2]

A3 = e
− c8
c4
ỹ
F3

(5.48)
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and the scalar one,

Φ =


e
− c8
c4
ỹ
G, c8 6= 0

c9

c4
ỹ +G, c8 = 0

, (5.49)

where F and G are arbitrary functions of the characteristics, which can be defined again through

(5.37), but for the variables introduced in this case, meaning

u1 =

√
(x− k1)2 + (y − k2)2,

u2 = c4z − c3 arctan

(
y − k2

x− k1

)
.

(5.50)

5.2.5 The case c4 = c5 = c6 = c7 = 0, c1 6= 0

Now no transformation is needed at all. Equations (5.22) are uncoupled, and each one of them

can be solved independently. The solution for the vector potential is

A = e
− c8
c1
x
F (c2x− c1y, c3x− c1z) , (5.51)

while for the scalar

Φ =


e
−2

c8
c1
x
G (c2x− c1y, c3x− c1z) , c8 6= 0

c9

c1
x+G (c2x− c1y, c3x− c1z) , c8 = 0

(5.52)

for some arbitrary vector function F and a scalar one G.

Remark 5.1. In all of the above cases, the constants ci, i = 1, . . . , 8 that appear in the

symmetry v (5.18), are also present in the expressions for A and Φ. In this way they define

both the electromagnetic field and at the same time the symmetry admitted by system (5.1). In

other words, the cases presented in this section represent families of potentials, which, apart from

time translations, are compatible with Lie point symmetries of the form (5.18). So, v generates

at least one symmetry, and along with v0 they span n-dimensional symmetry algebras, n ≥ 2 for

each case respectively. Further restrictions on the arbitrariness of A and Φ can specify exactly

n, but these cases will be considered in the next chapter.

5.3 Noether point symmetries

In retrospect, the introduction of the potentials of the electromagnetic field leads immediately

to a different viewpoint regarding equations (5.1) as an Euler-Lagrange system, stemming from

the function (1.7) repeated here

L (x, ẋ) =
1

2
ẋ2 + ẋ ·A(x)− Φ(x). (5.53)
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Subsequently, the question of Noether symmetries, providing us with first integrals of motion,

naturally arises. Unlike the case of Lie point ones, now Maxwell’s equations (1.4a) are obviously

implied from the beginning.

Considering that Noether point symmetries are a subset of the Lie point ones, already found,

we don’t have to employ a new query from the beginning. We may check instead if and when

the general form (5.17) of the symmetry generator is of variational type. Applying Theorem

4.37, the vector field (5.2) defines a Noether point symmetry if and only if it satisfies condition

(4.39), or equivalently if a function F (t,x) exists, such that

ξ
∂L

∂t
+ ηi

∂L

∂xi
+

(
dηi

dt
− dξ

dt
ẋi
)
∂L

∂ẋi
+ L

dξ

dt
=
dF

dt
. (5.54)

Substituting the time-independent Lagrangian given in (5.53) and the components of the

generator from (5.17), results in a second degree polynomial in terms of the velocity components,

ηiẋj
∂Aj
∂xi
− ηi ∂Φ

∂xi
+ ηixj ẋ

iẋj + ηixj ẋ
jAi −

1

2
ξtẋ

iẋi − ξtΦ = Ft + Fxi ẋ
i

This equation must hold identically for all t, xi, ẋi and so every coefficient of this polynomial

must vanish, yielding the following five equations

2c7 − c8 = 0, (5.55a)

(η · ∇)A+ (c7I −Q)A = ∇F, (5.55b)

−(η · ∇)Φ− c8Φ = Ft. (5.55c)

The first equation clearly rules the scalings v7 and v8 out as Noether symmetry candidates,

allowing only v7 + 2v8. On the other hand, the integrability conditions of (5.55b) and (5.55c),

Fxixj = Fxjxi and Ftxi = Fxit, which guarantee the existence of F , expressed in terms of B and

E, lead back to (5.15) again for c8 = 2c7. Furthermore, from (5.55b) and (5.55c), we can easily

deduce that

F (t,x) = − c9t+ f(x)

where c9 is a constant and f arbitrary. Thus, we recover the restrictions (5.20) and (5.21), for

c8 = 2c7, which, going the other way round, were derived, when (5.15) were integrated.

Remark 5.2. It is worth noting that the spatial part f of the so-called gauge term F for the

Noether symmetry condition was able to be absorbed by the gauge equivalence A −→ A+∇g

of the vector potential through (5.23).
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So, the Noether symmetry condition in essence involves just (5.55a) and no other constraint.

Of course the very expression of the Lagrange function, requires Maxwell’s equations (1.4a) from

the start. For a real physical problem these would be implemented in the Lie symmetry case, as

well. On this ground, the conditions placed upon the electromagnetic field, in terms of A and

Φ, are the previous ones for c8 = 2c7. Once again the gauge invariance of the vector potential

can be used as in section 5.2, where the restriction (5.23) for c8 = 2c7 now reduces to η ·∇g = f .

In conclusion, equations (5.1) admit Noether point symmetries of the general form

ξ = 2c7t+ c0,

η1 = c7x− c4y + c5z + c1,

η2 = c7y + c4x− c6z + c2,

η3 = c7z − c5x+ c6y + c3

(5.56)

for electromagnetic fields coming from the potentials described earlier in the previous section,

by setting c8 = 2c7. We emphasize again that only c0 is completely arbitrary, corresponding

to the symmetry v0 of time translations. The rest of the constants define a general Noether

symmetry,

v =

6∑
i=1

civi + c7 (v7 + 2v8) , (5.57)

which the system has for a particular form of the electromagnetic field, specified again by them.

While the invariant that corresponds to the first symmetry v0 is the well known Hamiltonian of

the system, other integrals of motion may arise from v.

5.4 Integrals of motion

According to Theorem 4.39, the integral of motion, which corresponds to a symmetry of (5.53),

is given by relation (4.43). Inserting the Lagrangian for the system in the latter yields

I = η · (ẋ+A)− ξ
(

1

2
ẋ2 + Φ

)
− F. (5.58)

Equations (5.55b) and (5.55c) for η = 0 and ξ = 1 trivially result in a constant function F .

Thus, from the symmetry v0, we recover through (5.58) the well-known Hamiltonian function

(1.12) of the system, expressing the particle’s energy. Before finding the integral that corresponds

to the symmetry (5.57), we comment that another constant of motion would be of real value,

if it is functionally independent of the Hamiltonian H and in involution with it with respect to

the corresponding Poisson bracket. For this to be the case we require F to be time-independent,
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that is c9 = 0, and set c8 = 0 that also leads through (5.55a) to c7 = 0. Then, using the gauge

transformation A −→ A+∇g of section 5.2, F = f will not enter at all in (5.58), since equation

(5.23) for c8 = 2c7 yields η · ∇g = F . Thus, we restrict our attention to linear integrals,

I (x, ẋ) = η · (ẋ+A) , (5.59)

either in terms of the velocities or the canonical momentums pi = Lẋi = ẋi+Ai. This is actually a

generalisation of the relevant two-dimensional results in [31] and [48], and not included in Lewis’s

search for quadratic invariants [72]. It is worth noticing that in this way the scalar potential

defines the form of the Hamiltonian, while the vector potential the form of the second integral.

We distinguish the following three cases, which correspond to the second, fourth and fifth one

described in section 5.2 for c8 = c9 = 0.

5.4.1 The case c7 = 0 and c5 or c6 6= 0

The vector and scalar potential in this case are given in (5.39) and (5.40), respectively, for

c8 = c9 = 0. The corresponding integral is

I = (− c4y + c5z + c1) ẋ+ (c4x− c6z + c2) ẏ + (− c5x+ c6y + c3) ż + c2x̃ 2F2 + c c̃3 F3 (5.60)

defined only by two of the arbitary functions of the vector potential, F2,3 = F2,3 (x̃, c̃3ỹ − cz̃),

where x̃, ỹ, z̃ are given in (5.36).

5.4.2 The case c5 = c6 = c7 = 0, c4 6= 0

The vector and scalar potential in this case are given in (5.48) and (5.49), respectively, for

c8 = c9 = 0. The corresponding integral is

I = (− c4y + c1) ẋ+ (c4x+ c2) ẏ + c3ż + c4x̃
2F2 + c3F3 (5.61)

defined only by two of the arbitary functions of the vector potential, F2,3 = F2,3 (x̃, c3ỹ − c4z̃),

where x̃, ỹ, z̃ are given in (5.46).

5.4.3 The case c4 = c5 = c6 = c7 = 0, c1 6= 0

The vector and scalar potential in this case are given in (5.51) and (5.52), respectively, for

c8 = c9 = 0. The corresponding integral is

I = c1ẋ+ c2ẏ + c3ż + c1F1 + c2F2 + c3F3 (5.62)
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where F1,2,3 = F1,2,3 (c2x− c1y, c3x− c1z) are the arbitrary functions entering the vector poten-

tial.

Remark 5.3. In all of the above cases the scalar potential reduces to an arbitrary function of

the related characteristics. For each case there also exists a suitable coordinate system, where

the vector potential is an arbitrary function of the corresponding characteristics, as well.

There is another justification for focusing on these types of integrals, which can be apparent

when investigating the dynamics of the magnetic field itself. The latter offer a better insight

into the magnetic fields found in section 5.2.

5.5 Magnetic field lines

In this section we compare, in terms of symmetries, system (5.1), which describes the particle’s

orbits, with the system of equations (1.18)

dxi

ds
= Bi(x), (5.63)

which describes the magnetic field lines. Recall that the independent variable s in the above

equations is related to the line element of these curves. From the physical point of view, since t

and s carry very different meanings, such a comparison can only be made on the ground of spatial

symmetries independent of them, i.e. generated by a vector field of the form v = ηi(x)∂xi .

For system (5.1) these can be recovered from section 5.1 for ξ = 0, meaning c0 = c8 = 0. So,

in this case, the coefficients ηi result from the beginning to the form (5.17), while the conditions

(5.15) for the magnetic field are

(η · ∇)B = QB . (5.64)

On the other hand, by prolonging v up now to the first derivatives dxi/ds, the symmetry

condition for system (5.63), v(1)
(
dxi/ds−Bi

)
= 0 on its solutions, leads simply to

(η · ∇)B = (B · ∇)η, (5.65)

without predefining the form of the symmetries. In order to compare these two equations, note

that QB = −c7B + (B · ∇)η for η given in (5.17).

From the above we conclude that, for an inhomogeneous, curved magnetic field, which satisfies

equations (5.64), the symmetries of (5.1) cannot meet the requirements (5.65) for system (5.63)

when c7 6= 0. On the other hand, for c7 = 0, where conditions (5.64) and (5.65) are identical,
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system (5.63) may have more symmetries than the linear ones of system (5.1). Thus, in general,

for inhomogeneous, curved magnetic fields not every symmetry of the charged particle motion

is a symmetry of the magnetic field lines and vice versa. If, however, we limit our choices to

symmetries of the form

v =

6∑
i=1

civi, (5.66)

then these are admitted by both systems for the same magnetic field B.

Actually, we have already encountered v : it is a Noether symmetry of (5.1), that corresponds

to the integral (5.59) described in the previous section. However, recall that (5.63) is an Euler-

Lagrange system, too, coming from the Lagrangian function (1.20) L (x,x′) = x′ ·A(x). The

Noether symmetry condition for these equations,

ηi
∂L
∂xi

+
dηi

ds

∂L
∂xi′

=
df

ds
, (5.67)

is also satisfied by v, giving fs = 0 and the previous constraints on the vector potential, i.e.

equations (5.20) for c7 = c8 = 0. Using the same gauge transformation to determine A, the

corresponding integral, ηiLxi′ − f , for system (1.18) becomes

I = η ·A (5.68)

This is a projection of the integral (5.59) on the original configuration space R3, and therefore,

according to the form of the symmetry and the vector potential, it, too, is seperated into three

cases, which are the ones of the previous section without the velocities. In conclusion,

Corollary 5.4. Whenever the motion of the charged particle is confined in the hypersurface

η · (ẋ+A) = const., the magnetic field lines lie on the surface η ·A = const., where η = Qx+c.

In this case both systems enjoy a symmetry of the form (5.66).

Remark 5.5. The system of the magnetic field lines is integrable, when it admits a symmetry

v (5.66), as shown, for example, in [35]. Its Hamiltonian formulation in this case has also been

studied in [84, 106]. Further results on the reduction of divergence-free vector fields, like the

magnetic field, with divergence-free symmetries, like the above, can be found in [45] for the

three-dimensional case and in [49, 121] for the n-dimensional one.

Remark 5.6. Note that the symmetries (5.66) consist only of translations and rotations, which

are the Killing vector fields of R3 that leave invariant its metric : For example, if we switch to

a coordinate system, in which the metric tensor is independent of one of the coordinates, say x̃,

then the vector field ∂x̃ is a Killing vector field.
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5.6 Discussion

We have found five classes of stationary electromagnetic fields in terms of the potentials, which

yield Lie point symmetries, besides time translations, for the three-dimensional autonomous

non-relativistic charged particle motion. The analysis showed that when the system is nonlinear

and in particular in the case of inhomogeneous and curved magnetic fields the only possible

symmetries are linear, consisting of translations, rotations and dilatations. Rotations and trans-

lations have proven to be of Noether type, as well, while time and space dilatations can only

survive the Noether symmetry condition as a specific linear combination. In any case no fur-

ther restrictions on the potentials of the electromagnetic field were required. The corresponding

invariants have been constructed, in particular focusing on three cases, where the integrals are

functionally independent of the Hamiltonian and in involution with it. Thus, a total reduction

of four can be made, and then further investigate the system in only two variables.

Another aspect of these three cases is that the same symmetry is also admitted by the system

of the magnetic field lines, yielding an integral of motion for the latter, too. Time-independent

magnetic fields lying on a surface, with some geometrical (usually axial or helical) symmetry are

very often used to describe the equilibrium state of plasma configurations in the context of ideal

Magnetohydrodynamics. The results obtained in this work may be useful for the determination

of such symmetric magnetic surfaces, by finding new solutions of the Grad-Shafranov equation,

for example. In addition, the comparison between the two integrals, (5.59) and (5.68), could

also relate the behaviour, and possibly the confinement, of the charged particle to the dynamics

of the magnetic field. This relation could be further analysed, after reduction of the particle’s

trajectories and integration of the magnetic field lines.

Finally, in order to see where do these results stand let us revisit axisymmetric systems

and helical perturbations encountered in chapter 2. An axisymmetric magnetic field would be

independent of the angle φ = arctan(y/x) and therefore admitting the symmetry ∂φ = x∂y−y∂x.

This is just a simple subcase of the ones found in section 5.2 and in particular 5.2.4, where all

ci are zero except c4. It corresponds accordingly just to v4 of (5.66), which is of Noether type

for both the magnetic field lines and the charged particle motion, and so results in first integrals

for both of them, as well. Then consider a helical perturbation first in the cylindrical geometry

that is often used in applications as an approximation to the toroidal one. A helical cylindrical

magnetic field of helicity (m,n) admits the symmetry nv3 + mv4, which still belongs to the

case 5.2.4 for c3 = n and c4 = m and all else ci equal to zero. Hence it is again admitted by

both systems and also of the Noether kind for both of them too. Now let us come to helical
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perturbations in the actual toroidal geometry, where most of these features are lost, mainly

because (the determinant of) the metric defined by the toroidal coordinates depends on the

poloidal angle θ1. For instance, in terms of the Hamiltonian system (2.3) for the magnetic field

lines observe that since the metric enters the symplectic structure of the system, even when the

Hamiltonian function is independent of θ, this does not mean that θ is an ignorable variable.

Another implication is that even when the vector potential A (in covariant components) is

independent of θ, the magnetic field B (in contravariant components) is not. Thus we need to

be specific about which components we are referring to, when we helically perturb a magnetic

field in a toroidal configuration. The usual case for toroidal magnetic fields is considered in the

unit base that is feasible for applications. In terms of this base, a “helical” toroidal magnetic

field in the sense that its physical components depend on the poloidal and toroidal angles only

through expressions of the form mθ − nφ does not have helical symmetry; the system of the

magnetic field lines involves contravariant components and will still depend on θ. So, “helical”

perturbations in the unit base do not actually reflect helical symmetry n∂θ +mv4. This is the

very reason why the intrinsic poloidal angle θin was introduced in the first place in chapter 2,

which behaves very similarly to θ. And as shown in section 2.2 helical perturbations in terms of

θin and φ instead of θ and φ do result in symmetry n∂θin +mv4 corresponding to the invariance

of the effective Hamiltonian h. Moreover in contrast with the cylindrical case, neither one of

these two symmetries is admitted by the charged particle motion judging by the nonlinear form

of either ∂θ or worse ∂θin as opposed to the linear ones (5.18).

From the above, we conclude that the symmetry analysis presented in this chapter does not

lie far from applications. Although the symmetries found were only linear, they seem to capture

a non-negligible part of the considerations used in real problems. In any case, it can be used as a

base to draw first conclusions. Furthermore, for the unperturbed systems we see that compared

to axisymmetric systems and the single symmetry v4 there is room for more general magnetic

fields among the cases of 5.2.2 and 5.2.4 and the more general symmetry v (5.66) admitted again

by both the magnetic field lines and the charged particle motion as a Noether symmetry. And

under the aforementioned or similar perturbations symmetries may still survive with cylindrical

models standing a better chance than toroidal ones.

The results presented in this chapter have also been published in [63].

1. In light of Remark 5.6, this already rules out ∂θ from (5.66); on the contrary note that φ either used as polar

angle in cylindrical coordinates or toroidal angle in toroidal ones does not enter the corresponding metric.





Chapter 6

Group Classification of Charged

Particle Motion

In the previous chapter and particularly section 5.2, we have found the form of electromagnetic

fields allowing at least one additional symmetry besides time translations for the autonomous

charged particle motion. Their description, however, is specified by the symmetry as if the latter

was given. But instead it is preferable to have the fields determining the symmetries in order to

tell whether a particular system, i.e. for a given field, admits any extra symmetries or not. On

the other hand, from the cases presented one cannot detect whether a given electromagnetic field

belongs to more than one subcase and therefore resulting in two or more extra symmetries. A

complete answer to both of these questions would require a vast list of every single case involved.

This obstacle can be overcome with the aid of equivalence transformations, which can be used to

identify systems that are mapped to each other and therefore can be grouped together. So, in this

chapter we find first the equivalence group for the class of the three-dimensional nonrelativistic

motion of charged particles in time-independent electromagnetic fields. And then using the

equivalence transformations we give a symmetry group classification for this class. Finally, we

arrive at some first results regarding the integrability of the system.

6.1 Equivalence transformations in terms of fields

We start by rewriting system (5.1) as a class of differential equations enlarged by the auxiliary

equations expressing the time-independence of the fields,

Bi
t = 0

Eit = 0
(6.1a)

ẍi − εijkẋjBk − Ei = 0 (6.1b)

157
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and we consider augmented equivalence transformations for the class (6.1) generated by the

vector field

V = ξ(t,x)
∂

∂t
+ ηi(t,x)

∂

∂xi
+ µi(t,x,B,E)

∂

∂Bi
+ νi(t,x,B,E)

∂

∂Ei
. (6.2)

Following formula (4.55), we prolong V up to second-order derivatives in terms of xi and first-

order ones in terms of Bi and Ei,

V(2,1) = v(2) + µi
∂

∂Bi
+ νi

∂

∂Ei
+ µti

∂

∂Bi
t

+ µx
j

i

∂

∂Bi
xj

+ νti
∂

∂Eit
+ νx

j

i

∂

∂Ei
xj

(6.3)

(actually spatial derivatives for the fields are not required here, but we include them anyway for

future reference), where v = ξ∂t + ηi∂xi is as always the projection of V and so v(2) is again

given by equation (5.4), while

µti = Dtµ
i −Bi

tDtξ −Bi
xjDtη

j

νti = Dtν
i − EitDtξ − EixjDtη

j

µx
j

i = Dxjµ
i −Bi

tDxjξ −Bi
xkDxjη

k

νx
j

i = Dxjν
i − EitDxjξ − EixkDxjη

k

Applying then Theorem 4.47, the vector field V is a generator of equivalence transformations

if and only if

V(2,1)(Bi
t) = 0

V(2,1)(Eit) = 0

V(2,1)(ẍi − εijkẋjBk − Ei) = 0

(6.4)

whenever (6.1) hold. After substitution of the latter, the above conditions (6.4) for the auxiliary

and the primary system,

0 = µit − η
j
tB

i
xj

0 = νit − η
j
tE

i
xj

0 = ηitt + 2ηitxj ẋ
j + ηixjxk ẋ

j ẋk + ηixlεljkẋ
jBk + ηixjE

j − ξttẋi − 2ξtxj ẋ
iẋj − 2ξtεijkẋ

jBk−

− 2ξtE
i − ξxjxk ẋiẋj ẋk − 2ξxj ẋ

jεiklẋ
kBl − 2ξxj ẋ

jEi − ξxj ẋiεjkmẋkBm − ξxj ẋiEj −

− εijkηjtBk − εilkηlxj ẋ
jBk + εijkξtẋ

jBk + εijlξxk ẋ
j ẋkBl − εijkẋjµk − νi

(6.5)

are now viewed as polynomials in terms of the derivatives of both xi and Bi, Ei as well. There-

fore, as identities for all t, xi, Bi, Ei, ẋi, Bi
xj

and Ei
xj

they break up into a larger set of partial
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differential equations again. These are the equations that determine the equivalence algebra,

coming now from the coefficients of the monomials in the first derivatives of x, B and E,

ηit = 0

µit = 0

νit = 0

ξxjxk = 0

ηixjxk = 0

ξtxi = 0

ξxi = 0

ξtt = 0

ηitxj = 0

ηixj + ηj
xi

= 0 for i 6= j

εljkη
i
xl
Bk − εijkξtBk − εilkηlxjB

k − εijkµk = 0 for i 6= j

ηitt + ηixjE
j − 2ξtE

i − εijkηjtBk − νi = 0

(6.6)

It is worth mentioning that at the beginning the equivalence condition is not entirely different

from the symmetry condition; note the resemblance between (5.5) and the third of equations

(6.5). Thus, for example, the terms of (5.6b) appear here also exactly the same way. But while Bi

and Ei are treated there as functions of t and x, here at this stage they are considered as variables

independent of them. This is why equations (5.6b) now split even further to the fifth, sixth

and seventh of equations (6.6) listed above. Note how the different treatment of the arbitrary

functions Bi and Ei simplified things, compared to the symmetry condition. Continuing, system

(6.6) is easily reduced to

ξtt = 0

ξxi = 0

ηit = 0

ηixjxk = 0

ηixj + ηj
xi

= 0 for i 6= j

ηixj − η
l
xk = 0 for i = j, l = k

−
(
η1
x + ξt

)
Bi + ηixjB

j − µi = 0

−2ξtE
i + ηixjE

j − νi = 0

(6.7)
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Again, one cannot help noticing how conditions (5.7), (5.8), (5.11), (5.12) and ḟij = 0 for inho-

mogeneous, curved magnetic fields yielded there after detailed investigation have now emerged

most of them directly and in any case much more simply. From (6.7) we deduce the form of the

equivalence generator

ξ = c8t+ c0

η1 = c7x− c4y + c5z + c1

η2 = c7y + c4x− c6z + c2

η3 = c7z − c5x+ c6y + c3

µ1 = − c8B
1 − c4B

2 + c5B
3

µ2 = − c8B
2 + c4B

1 − c6B
3

µ3 = − c8B
3 − c5B

1 + c6B
2

ν1 = (c7 − 2c8)E1 − c4E
2 + c5E

3

ν2 = (c7 − 2c8)E2 + c4E
1 − c6E

3

ν3 = (c7 − 2c8)E3 − c5E
1 + c6E

2

(6.8)

where ci, i = 0, . . . , 8 are arbitrary constants. Hence the group of equivalence transformations

for the class (6.1) is generated by a 9-dimensional Lie algebra spanned by the vector fields

V0 = ∂t

V1 = ∂x

V2 = ∂y

V3 = ∂z

V4 = x∂y − y∂x +B1∂B2 −B2∂B1 + E1∂E2 − E2∂E1

V5 = z∂x − x∂z +B3∂B1 −B1∂B3 + E3∂E1 − E1∂E3

V6 = y∂z − z∂y +B2∂B3 −B3∂B2 + E2∂E3 − E3∂E2

V7 = x∂x + y∂y + z∂z + E1∂E1 + E2∂E2 + E3∂E3

V8 = t∂t −B1∂B1 −B2∂B2 −B3∂B3 − 2E1∂E1 − 2E2∂E2 − 2E3∂E3

(6.9)

As we can see the projections of (6.9) are none other than vi, i = 0, . . . , 8 encountered in section

5.1. From Corollary 4.51, we see that V(Bi − Bi(x)) = V(Ei − Ei(x)) = 0 for any solution

(B(x),E(x)) of the auxiliary system (6.1a) if and only if ηi = µi = νi = 0. Thus, the principal

Lie algebra generating symmetries admitted by the primary system (6.1b) for any B and E is

just the well expected v0 = ∂t. Note that for the rest equivalence algebra V8 is the center.
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6.2 The homogeneous Maxwell’s equations as auxiliary condi-

tions

Now let us focus again to electromagnetic fields respecting Maxwell’s equations (1.4a), as well.

The latter can also be inserted as auxiliary equations, further enlarging the auxiliary system

and thus restricting the original class (6.1) to

Bi
t = 0

Eit = 0
(6.10a)

Bi
xi = 0

εijkE
k
xj = 0

(6.10b)

ẍi − εijkẋjBk − Ei = 0 (6.10c)

Here, the equivalence condition for this class apart from (6.4) now also includes

V(2,1)(Bi
xi) = 0

V(2,1)(εijkE
k
xj ) = 0

(6.11)

whenever (6.10a)-(6.10b) hold. Substituting at first (6.10a), relations (6.11) add to system (6.5)

accordingly the set of equations

µixi + µiBjB
j
xi

+ µiEjE
j
xi
− ηj

xi
Bi
xj = 0

εijk(ν
i
xj + νiBlB

l
xj + νiElE

l
xj − η

l
xjE

i
xl) = 0

and followed by replacements of spatial derivatives using (6.10b), they yield in turn additional

equations, supplementary to the original ones (6.7) and interestingly enough without altering

them,

µixi = 0

µiBj − η
i
xj = 0 for i 6= j

µiBj − η
i
xj − µ

l
Bk + ηlxk = 0 for i = j, l = k

µiEj − µ
j
Ei

= 0 for i 6= j

µiEj = 0 for i = j

νixj − ν
j
xi

= 0 for i 6= j

νiBj = 0

νiEj + ηj
xi

= 0 for i 6= j

νiEj + ηj
xi
− νlEk − η

k
xl = 0 for i = j, l = k

(6.12)
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It is easily verified that the latter satisfy the solution (6.8) of the former without any further

restrictions whatsoever. In other words, we conclude that :

The class of differential equations (6.1) admits the same equivalence group with the subclass

(6.10).

In retrospect, recalling Definition 4.45, note that Vi for i = 0, . . . , 6 are indeed well-known

symmetry generators of Maxwell’s equations altogether in vacuum (meaning system (1.4) for

σ = J = 0) that belong to the Lie algebra of the Lorentz group (see for example [55]). However,

that system only admits the linear combination V7 + V8, contrary to (1.4a) which as we can

see admits both V7 and V8 separately.

On the other hand, the above conclusion is rather unusual in the following sense : additional

constraints may either lead to new equivalence transformations, known as conditional, or they

can further restrict the equivalence generator resulting in an equivalence subgroup. From this

point of view, it is worthy of noting that the equivalence group stayed the same.

6.3 Equivalence transformations in terms of potentials

Since Maxwell’s equations (1.4a) did not change the scenery, it is preferable to express the

equivalence problem for charged particle motion in terms of the potentials of the electromagnetic

field. The reason is that although a classification can be given in terms of the fields, solutions

of the auxiliary part (6.10b) can only be given in terms of the potentials. Therefore, we express

the class (6.10) equally as

Ait = 0

Φt = 0
(6.13a)

ẍi − ẋj(Aj
xi
−Aixj ) + Φxi = 0 (6.13b)

for which we consider augmented equivalence transformations generated by the vector field

V = ξ(t,x)
∂

∂t
+ ηi(t,x)

∂

∂xi
+ µi(t,x,A,Φ)

∂

∂Ai
+ ν(t,x,A,Φ)

∂

∂Φ
. (6.14)

As previously shown, we prolong V again up to second-order derivatives for xi and first-order

temporal ones for Ai and Φ, and apply the equivalence condition

V(2,1)(Ait) = 0

V(2,1)(Φt) = 0

V(2,1)(ẍi − ẋj(Aj
xi
−Aixj ) + Φxi) = 0

(6.15)



6.3 Equivalence transformations in terms of potentials 163

whenever equations (6.13) hold. After substitutions the equations coming from (6.15) that

determine the equivalence algebra are reduced to the system

ξtt = 0

ξxi = 0

ηit = 0

ηixjxk = 0

ηixj + ηj
xi

= 0 for i 6= j

ηixj − η
l
xk = 0 for i = j, l = k

µit = 0

µiΦ = 0

µixj − µ
j
xi

= 0 for i 6= j

µiAj + ηj
xi

= 0 for i 6= j

µiAj − η
i
xj + ξt = 0 for i = j

νt = 0

νxi = 0

νAi = 0

νΦ − 2
(
ηixj − ξt

)
= 0 for i = j

(6.16)

Their solution yields the following form for the equivalence generator for the class of differential

equations (6.13)

ξ = c8t+ c0

η1 = c7x− c4y + c5z + c1

η2 = c7y + c4x− c6z + c2

η3 = c7z − c5x+ c6y + c3

µ1 = (c7 − c8)A1 − c4A
2 + c5A

3 + fx

µ2 = (c7 − c8)A2 + c4A
1 − c6A

3 + fy

µ3 = (c7 − c8)A3 − c5A
1 + c6A

2 + fz

ν = 2 (c7 − c8) Φ + c9

(6.17)

where ci, i = 0, . . . , 9 are arbitrary constants and f is an arbitrary function of x. Thus the Lie

algebra of equivalence transformations consists of the 10-dimensional subalgebra spanned by the
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vector fields

V0 = ∂t

V1 = ∂x

V2 = ∂y

V3 = ∂z

V4 = x∂y − y∂x +A1∂A2 −A2∂A1

V5 = z∂x − x∂z +A3∂A1 −A1∂A3

V6 = y∂z − z∂y +A2∂A3 −A3∂A2

V7 = x∂x + y∂y + z∂z +A1∂A1 +A2∂A2 +A3∂A3 + 2Φ∂Φ

V8 = t∂t −A1∂A1 −A2∂A2 −A3∂A3 − 2Φ∂Φ

V9 = ∂Φ

(6.18)

and the infinite-dimensional one Vf = ∇f · ∂A. We see again that the symmetry generators

included in the equivalence algebra are the same vi, i = 0, . . . , 8 of section 5.1, while the

principal Lie algebra consists only of v0. Accordingly, the equivalence group consists of the

transformations

t̃ = ε8t+ ε0

x̃ = ε7R1(ε6)R2(ε5)R3(ε4)x+ ε

Ã = ε7ε
−1
8 R1(ε6)R2(ε5)R3(ε4)A+∇g

Φ̃ = ε27ε
−2
8 Φ + ε9

(6.19)

where εi, i = 0, . . . , 9, are arbitrary constants for ε7,8 6= 0, g is an arbitrary function of x,

ε = (ε1, ε2, ε3), and Ri are the rotation matrices around xi, respectively. Besides the well-known

gauge equivalence, one also recognizes the linear part of the transformations (5.26) and (5.28)

used in the previous chapter as a subgroup of (6.19) (see (5.30) for P−1). Note also that the

reflections (t̃ = − t, x̃ = −x) and (t̃ = − t, Ã = −A) yield discrete equivalence transformations.

6.4 Classifying equations

Having found the equivalence transformations, we proceed with the symmetry analysis of the

class (6.13) for particular forms of the electromagnetic field. Consider the linear combination

V =

9∑
i=1

ciVi, (6.20)
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of the equivalence generators (6.18) leaving aside the principal generator V0. As previously

noted, the projection v of V = V + Vf to the (t,x)-space is the linear combination of the

symmetries vi (5.19),

v =
8∑
i=1

civi (6.21)

Applying Proposition 4.50, the vector field v is a symmetry generator for the primary system

(6.13b) for specific values

Ai = Ai(x)

Φ = Φ(x)
(6.22)

if and only if (6.22) are invariant solutions for the auxiliary system (6.13a), that is V itself is

admitted by system (6.22),

V
(
Ai −Ai(x)

)
= 0

V (Φ− Φ(x)) = 0
(6.23)

Noting that, in general, µi and ν from (6.17) are just the right-hand sides of (5.20)-(5.21), the

above conditions (6.23) lead back again to restrictions (5.20)-(5.21) encountered in the previous

chapter, also repeated here,

(η · ∇)A = (c7 − c8)A+QA+∇f,

(η · ∇)Φ = 2(c7 − c8)Φ + c9

(6.24)

where η denotes again the vector with entries ηi listed here in (6.17) and Q is the matrix (5.16).

Of course, the general solution to the above system for the electromagnetic potential expressed

in terms of the symmetry generator has been found in the previous chapter and classified in five

characteristic cases in section 5.2. There A and Φ were described as general functions of the

constants ci, i = 1, . . . , 9 that determine the general form of the symmetry generator (6.21). In

other words, the vector and scalar potentials were treated as the unknowns as if the symmetries

admitted were given. Now this treatment is reversed : preferably we want to know given an

electromagnetic field if and which symmetries are admitted. In a manner of speaking we want

to solve (6.24) for the symmetry generator in terms of the potentials, and ultimately classify

these solutions in terms of symmetries. The classification severely reduces the amount of labor

to a few cases that correspond to systems that cannot be mapped to one another through an

equivalence transformation (6.19).
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One way to begin with would be to classify the solutions of (6.24) already found in section

5.2 under (6.19), i.e. separate them into classes of electromagnetic fields that cannot be mapped

to one another through (6.19). Their highly-complicated form leaves quite a space for human

error though. An alternative would be to make the classification first, before solving them.

However, employing (6.19) directly to (6.24) and separating it to disjoint subcases still involves

a great amount of work. Instead we can take the equivalence algebra and decompose it into

disjoint subalgebras, as described towards the end of section 4.8. Starting with one-dimensional

subalgebras, we can continue to higher-dimensional ones that will provide us with cases of

potentials corresponding to more than one additional symmetry, which could be very difficult

to identify from the solutions of section 5.2.

6.5 Classification of equivalence subalgebras

In order to put into action the classification scheme outlined at the end of section 4.8, we

start off with the finite-dimensional subalgebra and find first the Lie brackets of the equivalence

generators Vi given by the next table.

[ , ] V1 V2 V3 V4 V5 V6 V7 V8 V9

V1 0 0 0 V2 −V3 0 V1 0 0

V2 0 0 0 −V1 0 V3 V2 0 0

V3 0 0 0 0 V1 −V2 V3 0 0

V4 −V2 V1 0 0 V6 −V5 0 0 0

V5 V3 0 −V1 −V6 0 V4 0 0 0

V6 0 −V3 V2 V5 −V4 0 0 0 0

V7 −V1 −V2 −V3 0 0 0 0 0 −2V9

V8 0 0 0 0 0 0 0 0 2V9

V9 0 0 0 0 0 0 2V9 −2V9 0

Table 6.1: Lie brackets between the equivalence generators.
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From the above matrix we can construct the generators (4.62) of the adjoint action on the

parameters ci, i = 1, . . . , 9, which can be put into form

C1 = c7∂c1 + c4∂c2 − c5∂c3

C2 = − c4∂c1 + c7∂c2 + c6∂c3

C3 = c5∂c1 − c6∂c2 + c7∂c3

C4 = c2∂c1 − c1∂c2 − c6∂c5 + c5∂c6

C5 = − c3∂c1 + c1∂c3 + c6∂c4 − c4∂c6

C6 = c3∂c2 − c2∂c3 − c5∂c4 + c4∂c5

C7 = − c1∂c1 − c2∂c2 − c3∂c3

C8 = c9∂c9

C9 = (c7 − c8)∂c9

(6.25)

The corresponding one-parameter groups of (6.25), which express the inner automorphisms of

the 9-dimensional equivalence algebra, are listed below :

1. c̃1 = c1 + ε1c7, c̃2 = c2 + ε1c4, c̃3 = c3 − ε1c5 (6.26a)

2. c̃1 = c1 − ε2c4, c̃2 = c2 + ε2c7, c̃3 = c3 + ε2c6 (6.26b)

3. c̃1 = c1 + ε3c5, c̃2 = c2 − ε3c6, c̃3 = c3 + ε3c7 (6.26c)

4. c̃1 = c1 cos ε4 + c2 sin ε4, c̃5 = c5 cos ε4 − c6 sin ε4,

c̃2 = c2 cos ε4 − c1 sin ε4, c̃6 = c6 cos ε4 + c5 sin ε4 (6.26d)

5. c̃1 = c1 cos ε5 − c3 sin ε5, c̃4 = c4 cos ε5 + c6 sin ε5,

c̃3 = c3 cos ε5 + c1 sin ε5, c̃6 = c6 cos ε5 − c4 sin ε5 (6.26e)

6. c̃2 = c2 cos ε6 + c3 sin ε6, c̃4 = c4 cos ε6 − c5 sin ε6,

c̃3 = c3 cos ε6 − c2 sin ε6, c̃5 = c5 cos ε6 + c4 sin ε6 (6.26f)

7. c̃1 = ε7c1, c̃2 = ε7c2, c̃3 = ε7c3 (6.26g)

8. c̃9 = ε8c9 (6.26h)

9. c̃9 = (c7 − c8)ε9 + c9 (6.26i)

where εi, i = 1, . . . , 9 are arbitrary constants with ε7,8 6= 0. From (6.26), we easily identify

c7 and c8 as invariants of the adjoint group action, while a third one exists as well, namely

c =
(
c2

4 + c2
5 + c2

6

) 1
2 . Note also that when c7 = c8 the adjoint algebra changes, since C9 is zero,

meaning V9 cannot be removed.
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Now, let us come to the infinite-dimensional algebra Vf . In this case, we cannot follow relation

(4.62), but must resort to the more general formula (4.61). First of all, note that in light of

(6.16) the commutator of any Vg = ∇g · ∂A with any equivalence generator,

[V,Vg] =
[
V,Vg

]
=

(
ηi

∂2g

∂xi∂xj
− ∂g

∂xi
∂µj

∂Ai

)
∂

∂Aj

=

[
∂

∂xj

(
ηi
∂g

∂xi

)
−
(
∂ηi

∂xj
+
∂µj

∂Ai

)
∂g

∂xi

]
∂

∂Aj

=

[
∂

∂xj

(
ηi
∂g

∂xi

)
− (2c7 − c8)δij

∂g

∂xi

]
∂

∂Aj
=

∂

∂xj

[
ηi
∂g

∂xi
+ (c8 − 2c7) g

]
∂

∂Aj

= ∇ (η · ∇g + (c8 − 2c7) g) · ∂A (6.27)

gives another vector field of the same form, i.e. in the infinite-dimensional algebra. Following

(4.61) we have Ad Vg (V) = V + Vf −∇ (η · ∇g + (c8 − 2c7) g) · ∂A, meaning under the adjoint

action of Vg the generator V + Vf is mapped to V + V
f̃
, where

f̃ = f − η · ∇g − (c8 − 2c7) g (6.28)

The latter relation is an inner automorphism just like the rest nine this time for the infinite-

dimensional equivalence algebra.

Now, using (6.26) and (6.28) we can decompose the equivalence algebra generated by Vi,

i = 1, . . . , 9 and Vf starting with one-dimensional subalgebras.

6.5.1 One-dimensional equivalence subalgebras

In this section, we give the optimal system of one-dimensional equivalence subalgebras. In other

words, we consider the equivalence generator V and employing the above transformations, we

try to reduce as many parameters ci, i = 1, . . . , 9 and also f as much as possible. In this way

we arrive at a generator Y that cannot be reduced furthermore.

Starting with the part V that belongs to the finite-dimensional equivalence algebra, this

procedure breaks down to subcases depending on the elimination of ci, i = 1, . . . , 9. Considering

first the invariant c we distinguish two large classes of subalgebras to begin with. Then, using

the other two invariants, c7 and c8, we work our way down, where each of the previous classes

is separated into two subcases, each of which splits further to two more.

i) c 6= 0. In this case, at least one of c4, c5 or c6 is nonzero. Without loss of generality

let c4 6= 0 and for simplicity assume c4 = 1. Then using (6.26e) for ε5 = arctan c6 we can

eliminate c6, and likewise using (6.26f) next for ε6 = − arctan c5 we eliminate c5. Moving
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on, from (6.26a) and (6.26b) applied successively for ε1 = −(c7c1 + c2)/(c2
7 + 1) and ε2 =

(c1 − c7c2)/(c2
7 + 1) we cancel c1 and c2 too. This case now is separated into two subcases

depending on c7, each of which splits into two more depending on c7 − c8 : If a) c7 6= 0, then

using (6.26c) for ε3 = − c3/c7 we can eliminate c3. Furthermore, if a1) c7 6= c8 we can also

eliminate c9 using (6.26i) for ε9 = (c8 − c7)/c9. Thus the equivalence operator can be expressed

as Y1 = V4 + k1V7 + k2V8, k2 6= k1 6= 0. On the other hand, a2) c7 = c8 results in the

equivalence operator Y2 = V4 + k (V7 + V8 + λV9), k 6= 0. On the contrary, if b) c7 = 0 and

b1) c8 6= 0, then c9 can be removed using (6.26i) for ε9 = c8/c9 and we arrive at the equivalence

operator Y3 = V4 + k1V3 + k2V8, k2 6= 0. If b2) c8 = 0 as well then the equivalence operator

is simply Y4 = V4 + kV3 + λV9.

ii) c = 0. Now in this case c4 = c5 = c6 = 0. Note that if c7 = 0, then at least one of c1, c2 or

c3 must be nonzero, for otherwise (6.24) yield A = Φ = 0 for c8 6= 0, and if c8 = 0 then we have

no symmetry. Accordingly we consider the following subcases : If a) c7 6= 0, say c7 = 1, then

using (6.26a)-(6.26c) for εi = − ci we can eliminate ci for i = 1, 2, 3. Furthermore, if a1) c7 6= c8

we can also eliminate c9 using (6.26i) for ε9 = (c8 − c7)/c9 and thus the equivalence operator is

Y5 = V7 +kV8, k 6= 1. On the other hand, for a2) c7 = c8 we arrive at the equivalence operator

Y6 = V7 + V8 + λV9. In the opposite case, if b) c7 = 0, then as explained above let c3 6= 0,

say c3 = 1. Next, using (6.26e) for ε5 = arctan c1 we can eliminate c1, and from (6.26f) for

ε6 = − arctan c2 we eliminate c2, as well. If b1) c8 6= 0, then same as before c9 can be removed

using (6.26i) for ε9 = c8/c9. Thus, the equivalence operator is Y7 = V3 + kV8, k 6= 0. If b2)

c8 = 0 too, then the equivalence operator is Y8 = V3 + λV9.

For each of the above cases, the infinite-dimensional algebra Vf , if included as in Y + Vf ,

then it can always be removed using (6.28) and a suitable function g such that f̃ = 0. The

latter is nothing more than (5.23), which was used in the previous chapter to eliminate f from

(5.20) and arrive at (5.22). Same usage here, this is always possible since (5.23) is a first-order

linear partial differential equation with η also linear and independent of the dependent variable

(see (6.17)). Of course, Vf themselves, which are the only remaining vector fields outside the 9-

dimensional algebra, are not projected to any symmetries. Consequently the above classification

of one-dimensional subalgebras under the adjoint group based on the finite-dimensional algebra

represented by V is essentially the same for the infinite-dimensional one V + Vf .

In conclusion, the optimal system of one-dimensional equivalence subalgebras comprises of

the operators Yi, i = 1, . . . , 8 collected in the next table.
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1-dimensional subalgebras

1 V4 + k1V7 + k2V8, k2 6= k1 6= 0

2 V4 + k (V7 + V8 + λV9), k 6= 0

3 V4 + k1V3 + k2V8, k2 6= 0

4 V4 + kV3 + λV9

5 V7 + kV8, k 6= 1

6 V7 + V8 + λV9

7 V3 + kV8, k 6= 0

8 V3 + λV9

Table 6.2: Optimal system of one-dimensional equivalence subalgebras.

6.5.2 Two-dimensional equivalence subalgebras

For the construction of the optimal system of two-dimensional equivalence subalgebras, we follow

the method outlined in [90], section 14.8 and also in [53]. Basically first one considers that the

two-dimensional subalgebras are spanned by one of the operators Y of the optimal system of

one-dimensional subalgebras and the general generator V. Then their Lie bracket must lie again

in the subalgebra, meaning for arbitrary constants α and β the following relation must hold,

[Y,V] = αY + βV (6.29)

Same as before, we also start here with the part V of V in the finite-dimensional equivalence

subalgebra. In this case, using the commutator table 6.1, the above equation becomes an

algebraic system in terms of α, β and the coefficients ci, i = 1, . . . , 9 of V, which can be

solved accordingly. After each solution is found, we can use again transformations (6.26) to

reduce further V without changing Y. Let Z stand for the reduced operator V and
{
Y,Z

}
the

resulting two-dimensional algebra spanned by Y and Z.

In this process, many cases may be repeatedly appear. Below we give an outline, avoiding

tedious details (especially for repeated (sub)cases), which although may not seem so obvious are

rather trivial. Following the order of the one-dimensional subalgebras obtained in the previous

subsection, we select one by one the operators presented in Table 6.2 and put them to the above

test for Y.
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i) Consider Y = V4 + k1V7 + k2V8, k2 6= k1 6= 0. Condition (6.29) yields c1 = c2 = c5 =

c6 = 0, and α = 0. If β = 0 then c3 = c9 = 0 and we recover subcases of
{
Y,Z

}
4

soon

considered. Therefore we take β 6= 0, which implies c7 = c8 = 0 and β = −k1 in turn. If

a) c9 = 0, then the second generator is Z = V3 and therefore we obtain the two-dimensional

equivalence subalgebra
{
Y,Z

}
1

= {V4 + k1V7 + k2V8,V3}, k2 6= k1 6= 0. If b) c9 6= 0 meaning

Z = V3 + λV9, then k1 = 2k2 and thus we obtain the two-dimensional equivalence subalgebra{
Y,Z

}
2

= {V4 + k (2V7 + V8) ,V3 + λV9}, k 6= 0.

ii) Consider Y = V4 + k (V7 + V8 + λV9), k 6= 0. Only slightly different from the previous

case, now condition (6.29) results in c1 = c2 = c5 = c6 = 0 and α = 0 again. If β = 0 then

c3 = λ(c7− c8) = 0, and for λ = 0 we recover a subcase of
{
Y,Z

}
4

and for c7 = c8 case
{
Y,Z

}
6

given below. For β 6= 0 then c7 = c8 = c9 = 0 and consequently β = −k. Hence Z = V3 and we

obtain the two-dimensional subalgebra
{
Y,Z

}
3

= {V4 + k (V7 + V8 + λV9) ,V3}, k 6= 0.

iii) Consider Y = V4 + k̄1V3 + k̄2V8, k̄2 6= 0. Condition (6.29) gives c1 = c2 = c5 = c6 = c9 = 0,

α = β = 0 and k̄1c7 = 0. Let k̄1 = 0 : If a) c7 6= 0, say c7 = 1, then using transformation

(6.26c) for ε3 = − c3 we remove c3. Therefore Z = V7 +k2V8 and the resulting two-dimensional

subalgebra is
{
Y,Z

}
4

= {V4 + k1V8,V7 + k2V8}, k1 6= 0. If b) c7 = 0, then Z = V3+k1V8 and

thus the two-dimensional subalgebra obtained is
{
Y,Z

}
5

= {V4 + k2V8,V3 + k1V8}, k2 6= 0.

For k̄1 6= 0 we end up with subcases of
{
Y,Z

}
5
.

iv) Consider Y = V4 + kV3 + λV9. Condition (6.29) yields c1 = c2 = c5 = c6 = 0, α = β = 0,

kc7 = 0 and λ(c7 − c8) = 0. For k = 0 and c7 = c8 we have the next two cases : If a)

c7 6= 0, say c7 = 1, then using transformation (6.26c) for ε3 = − c3 we eliminate c3. Thus

the second generator is Z = V7 + V8 + λ2V9 and we obtain the two-dimensional equivalence

subalgebra
{
Y,Z

}
6

= {V4 + λ1V9,V7 + V8 + λ2V9}. If b) c7 = 0, then Z = V3 + λ1V9 and

the two-dimensional equivalence subalgebra obtained is
{
Y,Z

}
7

= {V4 + λ2V9,V3 + λ1V9}.

If k = λ = 0, then for c7 6= 0 we arrive at a subcase of
{
Y,Z

}
4

and for c7 = 0 at a subcase of{
Y,Z

}
7
. For c7 = c8 we also recover

{
Y,Z

}
7
, and for c7 = λ = 0 a subcase of

{
Y,Z

}
5
.

v) Consider Y = V7 + kV8, k 6= 1. Now, condition (6.29) yields at first α = 0 and next we

separate cases depending on β. If a) β = 0, then c1 = c2 = c3 = c9 = 0, and therefore one of

c4, c5 or c6 must be nonzero. Let c4 6= 0, say c4 = 1. Then, as previously shown, c6 and c5

can be cancelled using (6.26e) for ε5 = arctan c6 and (6.26f) for ε6 = − arctan c5, respectively.

Thus Z = V4 + k1V8 and the two-dimensional subalgebra obtained is
{
Y,Z

}
4

again but now

for k2 6= 1. If b) β 6= 0, then c4 = c5 = c6 = c8 = 0, which in turn also means β = −1.
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Consequently one of c1, c2 or c3 must be nonzero. Let c3 6= 0, say c3 = 1. Thus c1 and c2

can be cancelled using (6.26e) for ε5 = arctan c1 and (6.26f) for ε6 = − arctan c2, respectively.

Then if b1) c9 = 0 we have Z = V3 and we obtain the two-dimensional equivalence subalgebra{
Y,Z

}
8

= {V7 + kV8,V3}, k 6= 1. If b2) c9 6= 0 then Z = V3 + λV9 and the resulting

two-dimensional equivalence subalgebra is
{
Y,Z

}
9

= {2V7 + V8,V3 + λV9}.

vi) Consider Y = V7 + V8 + λV9. Condition (6.29) gives α = 0 again. If β = 0, then

c1 = c2 = c3 = λc8 = 0 and for λ = 0 we recover a subcase of
{
Y,Z

}
4

and for c8 = 0 of{
Y,Z

}
6
. Therefore we consider β 6= 0, which implies c4 = c5 = c6 = c8 = 0, and c9 = 0,

β = −1 accordingly. Once again one of c1, c2 or c3 must be nonzero. Let c3 6= 0, say c3 = 1.

Thus c1 and c2 can be cancelled using (6.26e) for ε5 = arctan c1 and (6.26f) for ε6 = − arctan c2,

respectively. Then we obtain the equivalence generator Z = V3 and accordingly the two-

dimensional subalgebra
{
Y,Z

}
10

= {V7 + V8 + λV9,V3}.

vii) Consider Y = V3 + kV8, k 6= 0. Condition (6.29) yields α = β = 0 and consequently

c5 = c6 = c7 = c9 = 0. If a) c4 6= 0, say c4 = 1, then using transformation (6.26a) for ε1 = − c2

we eliminate c2, and likewise from (6.26b) for ε2 = c1 we eliminate c1 too. Thus Z = V4 + k2V8

and we obtain again the two-dimensional subalgebra
{
Y,Z

}
5

but now for k1 6= 0. If b) c4 = 0,

then one of c1 or c2 must be nonzero. Let c2 6= 0, say c2 = 1. Thus we can remove c1 using

(6.26d) for ε4 = − arctan c1. Hence Z = V2 + k1V8 and we arrive at the two-dimensional

subalgebra
{
Y,Z

}
11

= {V2 + k1V8,V3 + k2V8}, k2 6= 0.

viii) Finally consider Y = V3 +λV9. Condition (6.29) gives β = 0, and α = c7, λ(c7− 2c8) = 0

in turn. Here many previous (sub)cases are repeated : If λ = 0 and c4 6= 0, then if c8 6= c7 6= 0

case
{
Y,Z

}
1

reappears or if c8 6= c7 = 0 a subcase of
{
Y,Z

}
5
, while if c7 = c8 6= 0 we find

again case
{
Y,Z

}
3
. If λ = c4 = 0, then if c8 6= c7 6= 0 we recover case

{
Y,Z

}
8

or if c8 6= c7 = 0

a subcase of
{
Y,Z

}
11

, while if c7 = c8 6= 0 case
{
Y,Z

}
10

reappears. On the other hand if

c7 = 2c8 6= 0 then if c4 6= 0 we have case
{
Y,Z

}
2

again, while if c4 = 0 case
{
Y,Z

}
9
. Finally

if c7 = c8 = 0 then if c4 6= 0 we end up with case
{
Y,Z

}
7

again, while for c4 = c7 = c8 = 0 we

obtain the generator Z = V2 + λ1V9 and therefore the two-dimensional equivalence subalgebra{
Y,Z

}
12

= {V2 + λ1V9,V3 + λ2V9}.

Now, let us also take into account the infinite-dimensional algebra Vf . Just like before, any

two-dimensional equivalence subalgebras lying completely outside the 9-dimensional algebra will

not project to two-dimensional symmetry algebras. Therefore inclusion of Vf is only made in

the already existing two-dimensional subalgebras found above. In other words, we consider



6.5 Classification of equivalence subalgebras 173

subalgebras spanned by Y again and now the generator Z + Vf instead of Z. Then, in addition

to the previous algebraic relations, condition (6.29) yields [Y,Vf ] = βVf . Using (6.27), the

latter gives a differential equation for f , i.e.

η · ∇f + (c8 − 2c7) f = βf + λ̄ (6.30)

where the constants ci, i = 1, . . . , 9 correspond to the operator Y, while λ̄ is an arbitrary

constant. Note that β is already determined for each case.

The question rises whether for every function f satisfying (6.30) there exists a function g

which under the inner automorphism (6.28) leaves Y unaltered, that is

η · ∇g + (c8 − 2c7) g = d1 (6.31)

where d1 is a constant, and at the same time eliminates Vf from Z + Vf , meaning

η̄ · ∇g + (c̄8 − 2c̄7) g = d2 + f (6.32)

where d2 is a constant, while the constants c̄i, i = 1, . . . , 9 now correspond to the operator Z and

in an obvious way the entries η̄i of the vector η̄ are ηi (6.17) for c̄j . Rephrasing the question,

is system (6.31)-(6.32) compatible for any solution f of (6.30)? The answer is in the affirmative

for the subalgebras
{
Y,Z

}
i
, i = 1, 2, 4 for (k1, k2) 6= (0, 2), 5, 6, 8, 9, 11. Thus, these algebras

are representatives in the classification under the adjoint group even if the infinite-dimensional

equivalence algebra is used.

For the rest two-dimensional subalgebras
{
Y,Z

}
i
, i = 3, 7, 10, 12, 13, where

{
Y,Z

}
13

stands

from now on for
{
Y,Z

}
4

for k1 = 0, k2 = 2, the answer is negative and therefore these algebras

need to be replaced by
{
Y,Z + Vf

}
i

in the classification scheme. Still, we find that in all of

these cases there always exists a function g satisfying (6.31) and (6.32) for the general solution f

of the homogeneous counterpart of equation (6.30), i.e. for λ̄ = 0. Hence, owing to the linearity

of Vf with respect to f , the generator Z+Vf can always be reduced under (6.28) to Z = Z+V
f̃

without affecting Y, where f̃ is any particular solution of the inhomogeneous equation (6.30).

Thus, we have f̃ = λ̄φ for i = 3, 7, 13, f̃ = λ̄ ln z for i = 10 and f̃ = λ̄z for i = 12.

In conclusion, the optimal system of two-dimensional equivalence subalgebras comprises of

the algebras
{
Y,Z

}
i
, i = 1, 2, 4, 5, 6, 8, 9, 11,

{
Y,Z + λ̄Vφ

}
i
, i = 3, 7, 13,

{
Y,Z + λ̄Vln z

}
10

and
{
Y,Z + λ̄Vz

}
12

, where Vφ = ρ−2(x∂A2 − y∂A1), Vln z = z−1∂A3 and Vz = ∂A3 , while

ρ =
√
x2 + y2 and φ = arctan(y/x) are polar coordinates in the xy-plane. Not preferably in the

same order these are collected in the next table.
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2-dimensional subalgebras

1 V3, V4 + k1V7 + k2V8, 2k2, k2 6= k1 6= 0

2 V3 + λV9, V4 + k(2V7 + V8), k 6= 0

3 V3 + λ1Vφ, V4 + k (V7 + V8 + λ2V9), k 6= 0

4 V3 + k1V8, V4 + k2V8, k1 6= 0 or k2 6= 0

5 V3 + λ1V9 + λ3Vφ, V4 + λ2V9

6 V4 + k1V8, V7 + k2V8, k1 6= 0 or k2 6= 1, 2

7 V4 + λ1V9, V7 + V8 + λ2V9

8 V4, V7 + 2V8 + λVφ

9 V3, V7 + kV8, k 6= 1/2, 1

10 V3 − λ1Vln z, V7 + V8 + λ2V9

11 V3 + λV9, 2V7 + V8

12 V2 + k1V8, V3 + k2V8, k2 6= 0

13 V2 + λ1V9 + λ3Vz, V3 + λ2V9

Table 6.3: Optimal system of two-dimensional equivalence subalgebras.

6.5.3 Three-dimensional equivalence subalgebras

Three-dimensional equivalence subalgebras could follow accordingly from two-dimensional ones.

In other words, we consider three-dimensional algebras spanned by Y, Z and the general gen-

erator V, containing a two-dimensional subalgebra {Y,Z} of the optimal system in Table 6.3.

Necessary and sufficient conditions (see [90], p. 189) for these cases are

[Y,V] = α1Y + β1Z + γ1V

[Z,V] = α2Y + β2Z + γ2V
(6.33)

As usual, we deal first with generators from the finite-dimensional algebra, meaning we take

Z and V instead of Z and V, respectively. Now, equations (6.33) result in an algebraic system

for the unknowns α1, α2, β1, β2, γ1, γ2 and ci, i = 1, . . . , 9. Solving this system in each case,

we can then use the inner automorphisms (6.26) to reduce V, without changing either Y or Z.

Let W denote the reduced V, and
{
Y,Z,W

}
the algebra obtained spanned by Y, Z and W.
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Following the order of Table 6.3, below we give a synopsis of the procedure described above

case by case, avoiding too many details.

i − v) From the first five cases of Table 6.3, we recover one of the next three-dimensional

subalgebras.

vi) Consider
{
Y,Z

}
= {V4 + k1V8,V7 + k2V8}, k1 6= 0 or k2 6= 1, 2. Conditions (6.33) yield

first α1 = α2 = β1 = β2 = 0 and c1 = c2 = c5 = c6 = 0. γ1 = 0 must also hold which implies

k1c9 = 0, as well as γ2 6= 0 which yields in turn γ2 = −1, c8 = 0 and (2k2 − 1)c9 = 0. For a)

c9 = 0 we find
{
Y,Z,W

}
1

= {V4 + k1V8,V7 + k2V8,V3}, k1 6= 0 or k2 6= 1, 2. For b) k1 = 0,

k2 = 1/2 we obtain
{
Y,Z,W

}
2

= {V4, 2V7 + V8,V3 + λV9}.

vii) Consider
{
Y,Z

}
= {V4 + λ1V9,V7 + V8 + λ2V9}. Conditions (6.33) yield first α1 = α2 =

β1 = β2 = 0 and c1 = c2 = c5 = c6 = 0. γ1 = 0 again must also hold which now implies λ1c8 = 0,

as well as γ2 6= 0 which yields in turn γ2 = −1, c8 = 0 and c9 = 0 accordingly. Thus we obtain{
Y,Z,W

}
3

= {V4 + λ1V9,V7 + V8 + λ2V9,V3}.

viii) Consider
{
Y,Z

}
= {V4,V7 + 2V8}. Similar to vib) we obtain the three-dimensional

subalgebra
{
Y,Z,W

}
4

= {V4,V7 + 2V8,V3}.

ix) Consider
{
Y,Z

}
= {V3,V7 + kV8}, k 6= 1, 1/2. Conditions (6.33) give α1 = α2 = β1 =

β2 = 0, and again γ1 = 0, which results in c5 = c6 = 0. For γ2 = 0 we recover
{
Y,Z,W

}
1
. On

the other hand for γ2 6= 0 we have c4 = c8 = 0, γ2 = −1 and consequently c9 = 0. Then one of c1

or c2 must be nonzero. Let c2 6= 0, say c2 = 1. Using (6.26d) for ε4 = − arctan c1 we can cancel

c1. Thus we arrive at the three-dimensional subalgebra
{
Y,Z,W

}
5

= {V3,V7 + kV8,V2},

k 6= 1, 1/2.

x) Consider
{
Y,Z

}
= {V7 + V8 + λV9,V3}. Conditions (6.33) give α1 = α2 = β1 = β2 = 0

and also γ2 = 0, which implies c5 = c6 = 0. For γ1 = 0 we recover again
{
Y,Z,W

}
3

and a

subcase of
{
Y,Z,W

}
1
. For γ1 6= 0 we have c4 = c8 = 0, γ1 = −1 and consequently c9 = 0.

Same as before one of c1 or c2 must then be nonzero; we assume c2 6= 0, say c2 = 1. Likewise,

using (6.26d) for ε4 = − arctan c1 we remove c1 and arrive at the three-dimensional subalgebra{
Y,Z,W

}
6

= {V7 + V8 + λV9,V3,V2}.

xi) Consider
{
Y,Z

}
= {V3 + λV9, 2V7 + V8}. Conditions (6.33) give α1 = α2 = β1 = β2 = 0

and also γ1 = 0, which implies c5 = c6 = 0 and λc8 = 0. Same as before, for γ2 = 0 we

recover again
{
Y,Z,W

}
2

and a subcase of
{
Y,Z,W

}
1
. For γ2 6= 0 we have c4 = c8 = 0 and
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γ2 = −2. Once again one of c1 or c2 must then be nonzero. Assuming c2 6= 0, say c2 = 1, then

using (6.26d) for ε4 = − arctan c1 we can remove c1. Hence we obtain the three-dimensional

subalgebra
{
Y,Z,W

}
7

= {V3 + λ1V9, 2V7 + V8,V2 + λ2V9}.

xii) Consider
{
Y,Z

}
= {V2 + k2V8,V3 + k3V8}, k3 6= 0. Conditions (6.33) give γ1 = γ2 = 0,

which yield c4 = c5 = c9 = 0. As a result, we have c6 = c7 = 0 and α1 = α2 = β1 = β2 = 0.

Therefore we obtain the subalgebra
{
Y,Z,W

}
8

= {V2 + k2V8,V3 + k3V8,V1 + k1V8}.

xiii) Consider
{
Y,Z

}
= {V3 + λ3V9,V2 + λ2V9}. Conditions (6.33) give γ1 = γ2 = 0, which

now yield c4 = c5 = 0. Then we have c6 = −α1 = β2, c7 = α2 = β1, c6(λ2
2 + λ2

3) = 0

and (c7 − 2c8)(λ2
2 + λ2

3) = 0. If a) c6 = c7 − 2c8 = 0 and a1) c7 6= 0, then we recover the

subalgebra
{
Y,Z,W

}
7
, while if a2) c7 = 0, then we obtain the three-dimensional subalgebra{

Y,Z,W
}

9
= {V3 + λ3V9,V2 + λ2V9,V1 + λ1V9}. On the other hand, if b) λ2 = λ3 = 0,

we can first of all, for convenience, use transformation (6.26e) for ε5 = π/2 and replace c6 with

c4 and c1 with c3. The latter also means that instead of the original subalgebra {V3,V2} we

begun with, we now have {V1,V2}. We consider c4 6= 0, say c4 = 1, for otherwise we recover

previous subcases. If b1) c7 6= 0, we can eliminate c3 using (6.26c) for ε3 = −c3/c7. Furthermore

if b1i) c8 6= c7 then we can also eliminate c9 using (6.26i) for ε9 = (c8−c7)/c9. Thus we arrive at

the equivalence subalgebra
{
Y,Z,W

}
10

= {V1,V2,V4 + k1V7 + k2V8}, k2 6= k1 6= 0. If b1ii)

c7 = c8 then we obtain
{
Y,Z,W

}
11

= {V1,V2,V4 + k (V7 + V8 + λV9)}, k 6= 0. Accordingly

if b2) c7 = 0 then if b2i) c8 6= 0 then we can eliminate c9 using (6.26i) for ε9 = c8/c9 and hence

obtain the equivalence subalgebra
{
Y,Z,W

}
12

= {V1,V2,V4 + k1V3 + k2V8}, k2 6= 0. While

if b2ii) c8 = 0 then we arrive at
{
Y,Z,W

}
13

= {V1,V2,V4 + kV3 + λV9}.

So far we have considered three-dimensional algebras that originate from two-dimensional

ones. The only exception to this rule (see [90], p .190) is so(3) generated by the rotations V4,

V5 and V6, which does not contain any two-dimensional subalgebras. Therefore to the above

three-dimensional equivalence subalgebras we must also add
{
Y,Z,W

}
14

= {V4,V5,V6}.

Same as before, we finally include the infinite-dimensional one Vf . As already explained the

latter itself does not correspond to any symmetries. Therefore instead of the previous subalgebras{
Y,Z,W

}
found, we only need to consider three-dimensional equivalence subalgebras spanned

by Y, Z = Z + Vf1 and W + Vf2 . Apart from
{
Y,Z,W

}
14

, the functions f1 for each case have

already been determined in the previous subsection and presented in Table 6.3. Now, conditions

(6.33) yield additionally [Y,Vf2 ] = β1Vf1 + γ1Vf2 and [Z,Vf2 ] + [Vf1 ,W] = β2Vf1 + γ2Vf2 .
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In light of (6.27), the latter relations are expressed as

η · ∇f2 + (c8 − 2c7) f2 = β1f1 + γ1f2 + λ̄1

η̄ · ∇f2 + (c̄8 − 2c̄7) f2 − ¯̄η · ∇f1 − (¯̄c8 − 2¯̄c7) f1 = β2f1 + γ2f2 + λ̄2

(6.34)

where λ̄1 and λ̄2 are arbitrary constants, while β1, β2, γ1 and γ2 have already been found for each

case. Following the notation of the previous subsection, the constants ci, i = 1, . . . , 9 correspond

to the operator Y, c̄i, i = 1, . . . , 9 correspond to the operator Z and ¯̄ci, i = 1, . . . , 9 to W, and

in an obvious way the entries η̄i of the vector η̄ are ηi (6.17) for c̄j and the entries ¯̄ηi of ¯̄η are

ηi (6.17) for ¯̄cj .

Again we want to know given f1 whether for every function f2 satisfying (6.34) there exists a

function g, which under the inner automorphism leaves Y and Z unchanged, meaning

η · ∇g + (c8 − 2c7) g = d1

η̄ · ∇g + (c̄8 − 2c̄7) g = d2

(6.35)

where d1, d2 are constants, and at the same time eliminates Vf2 from W + Vf2 , that is

¯̄η · ∇g + (¯̄c8 − 2¯̄c7) g = d3 + f2 (6.36)

where d3 is also a constant. In other words, is system (6.35)-(6.36) compatible for any solution

f2 of (6.34)? We find that the answer is in the affirmative for the subalgebras
{
Y,Z,W

}
i
,

i = 1, 2, 4, 5 for k 6= 0, 7, 8, 10 for k2 6= 0, 11, 12. Thus, these algebras are still representatives in

the classification under the adjoint group when the infinite-dimensional equivalence algebra is

also included. We also need to stress that the compatability conditions of (6.34) require f1 = 0

in the last three cases, that is for i = 10 for k2 6= 0, 11, 12.

For the three-dimensional subalgebras
{
Y,Z,W

}
i
, i = 3, 6, 9, 13, 15, 16, where

{
Y,Z,W

}
15

denotes
{
Y,Z,W

}
5

for k = 0 and
{
Y,Z,W

}
16

stands for
{
Y,Z,W

}
10

for k2 = 0, the an-

swer is negative and therefore these algebras must be substituted by
{
Y,Z,W + Vf2

}
i

in the

classification scheme. However, we find that in all of these cases there always exists a function

g satisfying (6.35) and (6.36) for the general solution f2 of the homogeneous counterpart of

equations (6.34), i.e. for λ̄1 = λ̄2 = f1 = 0. Hence, owing to the linearity of Vf with respect

to f , the generator W + Vf2 can always be reduced under (6.28) to W = W + V
f̃2

without

altering Y or Z, where f̃2 is any particular solution of the inhomogeneous system (6.34). Thus,

we find f̃2 = λ̄1φ − λ̄2 ln z for i = 3, f̃2 = λ̄1 ln y for i = 6, f̃2 = λ̄1z + λ̄2y for i = 9, f̃2 = λ̄1z

for i = 15 and f̃2 = λ1(x2 − y2)/2 for i = 13, 16. Note that in the latter cases the constant λ1

from the function f1 reappears.
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Finally, the treatment of the subalgebra
{
Y,Z,W

}
14

not only changes but becomes much

more difficult. First of all, the commutator relations among the three generators require now,

besides (6.34), a third relation, namely [Y,Vf1 ] = Vf2 . Moreover we want to reduce Z+Vf1 and

W + Vf2 simultaneously to Z = Z + V
f̃1

and W = W + V
f̃2

, respectively, without predefining

f1. After quite lengthy calculations we find that f1 and f2 can be replaced by f̃1 = λyr/ρ2 and

f̃2 = λxr/ρ2.

In conclusion, the optimal system of three-dimensional equivalence subalgebras comprises of

the algebras listed in the next table (again not in the same order as they were previously derived).

3-dimensional subalgebras

1 V3, V4 + k1V8, V7 + k2V8, k1 6= 0 or k2 6= 1/2, 1, 2

2 V3 + λV9, V4, 2V7 + V8

3 V3 + λ1Vφ − λ2Vln z, V4 + λ3V9, V7 + V8 + λ4V9

4 V3, V4, V7 + 2V8 + λVφ

5 V4, V5 + λVyr/ρ2 , V6 + λVxr/ρ2

6 V1, V2, V4 + k1V7 + k2V8, k1k2 6= 0, k1 6= k2

7 V1, V2 + λVx, V4 + kV7 + λV(x2−y2)/2, k 6= 0

8 V1, V2, V4 + k (V7 + V8 + λV9), k 6= 0

9 V1, V2, V4 + k1V3 + k2V8, k1k2 6= 0

10 V1, V2 + λ1Vx, V4 + kV3 + λ2V9 + λ1V(x2−y2)/2, k 6= 0

11 V2, V3, V7 + kV8, k 6= 0, 1/2, 1

12 V2 + λVz, V3, V7

13 V2 + λ1V9, V3 + λ2V9, 2V7 + V8

14 V2 − λ2Vln y, V3 − λ3Vln z, V7 + V8 + λ1V9

15 V1 + k1V8, V2 + k2V8, V3 + k3V8, k3 6= 0

16 V1 + λ1V9 + λ4Vy + λ5Vz, V2 + λ2V9 + λ6Vz, V3 + λ3V9

Table 6.4: Optimal system of three-dimensional equivalence subalgebras.
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6.6 Symmetry Classification

Once the classification of the equivalence algebra is made, now we can return to section 6.4 and, in

particular, the classifying equations (6.24). As explained there, the projection of the equivalence

subalgebras spanned by any V of the form (6.20) yield symmetry subalgebras spanned by v

(6.21) if and only if the potentials A and Φ satisfy the corresponding subsystem of (6.24). The

symmetry algebras obtained are extensions of the principal Lie algebra consisting only of the

generator v0 of time translations.

6.6.1 Systems with two Lie point symmetries

Consider the symmetry generators X coming from the optimal system of one-dimensional subal-

gebras of Table 6.2, which yield a second symmetry for system (6.13b) besides time translations.

Solutions of equations (6.24) in this case can be recovered from section 5.2 of the previous chap-

ter. The results are shown in the next table, where Fi = Fi(u1, u2) and G = G(u1, u2) are

arbitrary functions, while F = (F1, F2, F3) is an arbitrary vector function of the same form.

For brevity, we also use cylindrical coordinates (ρ, φ, z) in many cases. Finally k’s and λ’s are

constants, the difference being that the former also define the symmetry.

Symmetry generator Electromagnetic potential

1
X = v4 + k1v7 + k2v8

k2 6= k1 6= 0

A1 = z
− k2
k1 (xF1 − yF2)

A2 = z
− k2
k1 (yF1 + xF2)

A3 = z
1− k2

k1 F3

Φ = z
2
(

1− k2
k1

)
G

u1 = ρ/z

u2 = ln z − k1φ

2
X = v4 + k (v7 + v8)

k 6= 0

A1 = z−1 (xF1 − yF2)

A2 = z−1 (yF1 + xF2)

A3 = F3

Φ = λ ln z +G

u1 = ρ/z

u2 = ln z − kφ

3
X = v4 + k1v3 + k2v8

k2 6= 0

A1 = e−k2φ (xF1 − yF2)

A2 = e−k2φ (yF1 + xF2)

A3 = e−k2φF3

Φ = e−2k2φG

u1 = ρ

u2 = z − k1φ
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4 X = v4 + kv3

A1 = xF1 − yF2

A2 = yF1 + xF2

A3 = F3

Φ = λφ+G

u1 = ρ

u2 = z − kφ

5 X = v7 + kv8, k 6= 1
A = x1−kF

Φ = x2(1−k)G

u1 = y/x

u2 = z/y

6 X = v7 + v8

A = F

Φ = λ ln z +G

u1 = y/x

u2 = z/y

7 X = v3 + kv8, k 6= 0
A = e−kzF

Φ = e−2kzG

u1 = x

u2 = y

8 X = v3

A = F

Φ = λz +G

u1 = x

u2 = y

Table 6.5: Vector and scalar potentials of the electromagnetic field for two-parameter symmetry

groups generated by v0 and X.

6.6.2 Systems with three Lie point symmetries

Now, we consider the symmetry algebras spanned by X1 and X2 coming from the optimal

system of two-dimensional subalgebras of Table 6.3, which give two more symmetries for system

(6.13b) besides time translations. In this case, taking one of the equivalence generators we

arrive at a solution of equations (6.24), i.e. one of the potentials listed in Table 6.5. Then

each of these solutions is replaced back to the subsystem of (6.24) corresponding to the second

generator. Solutions to the latter equations are rather easily found usually by eliminating one

of the variables u1 or u2 of the potentials. The results are shown in the next table, using the

same notation with the previous table only now Fi = Fi(u) and G = G(u).

Symmetry generators Electromagnetic potential

1

X1 = v3

X2 = v4 + k1v7 + k2v8

2k2, k2 6= k1 6= 0

A1 = e−k2φ (xF1 − yF2)

A2 = e−k2φ (yF1 + xF2)

A3 = e(k1−k2)φF3

Φ = e2(k1−k2)φG

u = ln ρ− k1φ
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2

X1 = v3

X2 = v4 + k (2v7 + v8)

k 6= 0

A1 = e−kφ (xF1 − yF2)

A2 = e−kφ (yF1 + xF2)

A3 = ekφF3

Φ = λz + e2kφG

u = ln ρ− 2kφ

3

X1 = v3

X2 = v4 + k (v7 + v8)

k 6= 0

A1 = ρ−1
[
xF1 − y

(
F2 + λ1zρ

−1
)]

A2 = ρ−1
[
yF1 + x

(
F2 + λ1zρ

−1
)]

A3 = F3

Φ = λ2 ln ρ+G

u = ln ρ− kφ

4

X1 = v3 + k1v8

X2 = v4 + k2v8

k1 6= 0 or k2 6= 0

A1 = e−(k1z+k2φ) (xF1 − yF2)

A2 = e−(k1z+k2φ) (yF1 + xF2)

A3 = e−(k1z+k2φ)F3

Φ = e−2(k1z+k2φ)G

u = ρ

5
X1 = v3

X2 = v4

A1 = xF1 − yF2 − λ3yzρ
−2

A2 = yF1 + xF2 + λ3xzρ
−2

A3 = F3

Φ = λ1z + λ2φ+G

u = ρ

6

X1 = v4 + k1v8

X2 = v7 + k2v8

k1 6= 0 or k2 6= 1, 2

A1 = z−k2e−k1φ (xF1 − yF2)

A2 = z−k2e−k1φ (yF1 + xF2)

A3 = z1−k2e−k1φF3

Φ = z2(1−k2)e−2k1φG

u = ρ/z

7
X1 = v4

X2 = v7 + v8

A1 = z−1 (xF1 − yF2)

A2 = z−1 (yF1 + xF2)

A3 = F3

Φ = λ1φ+ λ2 ln z +G

u = ρ/z

8
X1 = v4

X2 = v7 + 2v8

A1 = ρ−2 [xF1 − y (F2 + λ ln ρ)]

A2 = ρ−2 [yF1 + x (F2 + λ ln ρ)]

A3 = z−1F3

Φ = z−2G

u = ρ/z

9

X1 = v3

X2 = v7 + kv8

k 6= 1, 1/2

A = x1−kF

Φ = x2(1−k)G
u = y/x
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10
X1 = v3

X2 = v7 + v8

A1 = F1

A2 = F2

A3 = λ1 ln y + F3

Φ = λ2 ln y +G

u = y/x

11
X1 = v3

X2 = 2v7 + v8

A =
√
xF

Φ = λz + xG
u = y/x

12
X1 = v2 + k1v8

X2 = v3 + k2v8, k2 6= 0

A = e−(k1y+k2z)F

Φ = e−2(k1y+k2z)G
u = x

13
X1 = v2

X2 = v3

A1 = 0

A2 = F2

A3 = λ3y + F3

Φ = λ1y + λ2z +G

u = x

Table 6.6: Vector and scalar potentials of the electromagnetic field for three-parameter symmetry

groups generated by v0, X1 and X2.

Remark 6.1. Note that the sixth case of the above table for k1 = 0, k2 = 3, F1 = F3 = 0 and

F2(u) = (u2 + 1)−3/2 recovers the vector potential of the magnetic dipole described earlier in

Example 4.42. Interestingly enough this means that, besides the additional Noether symmetry

generated by X1 = v4 corresponding to the integral I (4.46), the system for the magnetic dipole

admits another symmetry generated by X2 = v7 +3v8. Violating the Noether condition (5.55a),

the latter is not a Noether symmetry and neither preserves I nor H. (Related to this, see [13] for

an extended notion of integrability demonstrated too by an example of charged particle motion

on the surface of a torus.) Nonetheless X2 is still admitted by the reduced system using either

X1 (as we can see from (4.48)) or v0. Worthy of mention then are the commutation relations

[X1,X2] = [v0,X1] = 0 and [v0,X2] = 3v0.

6.6.3 Systems with four Lie point symmetries

Finally, consider the symmetry algebras spanned by X1, X2 and X3 that originate from the

optimal system of three-dimensional subalgebras of Table 6.4, which give three more symmetries

for system (6.13b) besides time translations. Now each of the solutions of the previous subsection

is replaced back to the subsystem of (6.24) for the third generator. Solutions to the latter

equations yield the results shown in the next table, where ai, i = 1, . . . , 4 are arbitrary constants.
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Symmetry generators Electromagnetic potential

1

X1 = v3

X2 = v4 + k1v8

X3 = v7 + k2v8

k1 6= 0 or k2 6= 1/2, 1, 2

A1 = e−k1φρ−k2 (a1x− a2y)

A2 = e−k1φρ−k2 (a1y + a2x)

A3 = a3e
−k1φρ1−k2

Φ = a4e
−2k1φρ2(1−k2)

2

X1 = v3

X2 = v4

X3 = 2v7 + v8

A1 =
√
ρ−1 (a1x− a2y)

A2 =
√
ρ−1 (a1y + a2x)

A3 = a3
√
ρ

Φ = λz + a4ρ

3

X1 = v3

X2 = v4

X3 = v7 + v8

A1 = ρ−1
[
a1x− y

(
a2 + λ1zρ

−1)
)]

A2 = ρ−1
[
a1y + x

(
a2 + λ1zρ

−1)
)]

A3 = λ2 ln ρ

Φ = λ3φ+ λ4 ln ρ

4

X1 = v3

X2 = v4

X3 = v7 + 2v8

A1 = ρ−2 [a1x− y (a2 + λ ln ρ)]

A2 = ρ−2 [a1y + x (a2 + λ ln ρ)]

A3 = a3ρ
−1

Φ = a4ρ
−2

5

X1 = v4

X2 = v5

X3 = v6

A1 = λyzr−1ρ−2

A2 = −λxzr−1ρ−2

A3 = 0

Φ = G(r)

6

X1 = v1

X2 = v2

X3 = v4 + k1v7 + k2v8

k1k2 6= 0, k1 6= k2

A1 = a1z
1− k2

k1 cos (ln(z/k1) + a2)

A2 = a1z
1− k2

k1 sin (ln(z/k1) + a2)

A3 = 0

Φ = a4z
2
(

1− k2
k1

)

7

X1 = v1

X2 = v2

X3 = v4 + kv7

k 6= 0

A1 = a1z cos (ln(z/k) + a2) + λy

A2 = a1z sin (ln(z/k) + a2)

A3 = 0

Φ = a4z
2
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8

X1 = v1

X2 = v2

X3 = v4 + k (v7 + v8)

k 6= 0

A1 = a1 cos (ln(z/k) + a2)

A2 = a1 sin (ln(z/k) + a2)

A3 = 0

Φ = λ ln z

9

X1 = v1

X2 = v2

X3 = v4 + k1v3 + k2v8

k1k2 6= 0

A1 = a1e
− k2
k1
z

cos (z/k1 + a2)

A2 = a1e
− k2
k1
z

sin (z/k1 + a2)

A3 = 0

Φ = a4e
−2

k2
k1
z

10

X1 = v1

X2 = v2

X3 = v4 + kv3

k 6= 0

A1 = a1 cos (z/k + a2) + λ1y

A2 = a1 sin (z/k + a2)

A3 = 0

Φ = λ2z/k

11

X1 = v2

X2 = v3

X3 = v7 + kv8

k 6= 0, 1/2, 1

A1 = 0

A2 = a2x
1−k

A3 = a3x
1−k

Φ = a4x
2(1−k)

12

X1 = v2

X2 = v3

X3 = v7

A1 = 0

A2 = a2x

A3 = a3x+ λy

Φ = a4x
2

13

X1 = v2

X2 = v3

X3 = 2v7 + v8

A1 = 0

A2 = a2
√
x

A3 = a3
√
x

Φ = a4x+ λ1y + λ2z

14

X1 = v2

X2 = v3

X3 = v7 + v8

A1 = 0

A2 = λ2 lnx

A3 = λ3 lnx

Φ = λ1 lnx
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15

X1 = v1 + k1v8

X2 = v2 + k2v8

X3 = v3 + k3v8

k3 6= 0

A1 = a1e
−(k1x+k2y+k3z)

A2 = a2e
−(k1x+k2y+k3z)

A3 = a3e
−(k1x+k2y+k3z)

Φ = a4e
−2(k1x+k2y+k3z)

16

X1 = v1

X2 = v2

X3 = v3

A1 = 0

A2 = λ4x

A3 = λ5x+ λ6y

Φ = λ1x+ λ2y + λ3z

Table 6.7: Vector and scalar potentials of the electromagnetic field for four-parameter symmetry

groups generated by v0, X1, X2 and X3.

6.7 Classification in terms of Noether symmetries

In light of section 5.3 of the previous chapter, a Noether symmetry classification can also be

given and rather easily too. Since, as explained there, the Noether symmetry condition required

only the extra constraint c8 = 2c7. From the latter and the Tables 6.5, 6.6 we can thus classify

system (6.13b) in terms of Noether symmetries. Following the same notation, the results are

collected in the next two tables.

Noether symmetry Electromagnetic potential

1
X = v4 + k (v7 + 2v8)

k 6= 0

A1 = z−2 (xF1 − yF2), A3 = z−1F3

A2 = z−2 (yF1 + xF2), Φ = z−2G

u1 = ρ/z

u2 = ln z − kφ

2 X = v4 + kv3

A1 = xF1 − yF2, A3 = F3

A2 = yF1 + xF2, Φ = λφ+G

u1 = ρ

u2 = z − kφ

3 X = v7 + 2v8

A = x−1F

Φ = x−2G

u1 = y/x

u2 = z/y

4 X = v3

A = F

Φ = λz +G

u1 = x

u2 = y

Table 6.8: Vector and scalar potentials of the electromagnetic field for two-parameter Noether

symmetry groups generated by v0 and X.
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From formula (5.58) we can find the invariants that correspond to the Noether symmetries

in each represenative case. Thus, we can draw conclusions regarding the existence of additional

constants of motion.

Corollary 6.2. For inhomogeneous and curved magnetic fields, the autonomous system (6.13b)

of charged particle motion admits a first integral of motion I that corresponds to a Noether

point symmetry X, which is functionally independent of the Hamiltonian function H and in

involution with it, in two representative cases under the equivalence transformations (6.19) :

1. case 2 of Table 6.8 for λ = 0, where I = xẏ − yẋ+ kż + (x2 + y2)F2 + kF3,

2. case 4 of Table 6.8 for λ = 0, where I = ż + F3.

Noether symmetries Electromagnetic potential

1

X1 = v3

X2 = v4 + k (v7 + 2v8)

k 6= 0

A1 = e−2kφ (xF1 − yF2)

A2 = e−2kφ (yF1 + xF2)

A3 = e−kφF3

Φ = e−2kφG

u = ln ρ− kφ

2
X1 = v3

X2 = v4

A1 = xF1 − yF2 − λ3yzρ
−2

A2 = yF1 + xF2 + λ3xzρ
−2

A3 = F3

Φ = λ1z + λ2φ+G

u = ρ

3
X1 = v4

X2 = v7 + 2v8

A1 = ρ−2 [xF1 − y (F2 + λ ln ρ)]

A2 = ρ−2 [yF1 + x (F2 + λ ln ρ)]

A3 = z−1F3

Φ = z−2G

u = ρ/z

4
X1 = v3

X2 = v7 + 2v8

A = x−1F

Φ = x−2G
u = y/x

5
X1 = v2

X2 = v3

A1 = 0

A2 = F2

A3 = λ3y + F3

Φ = λ1y + λ2z +G

u = x

Table 6.9: Vector and scalar potentials of the electromagnetic field for three-parameter Noether

symmetry groups generated by v0, X1 and X2.
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Subsequently, we can start investigating aspects of complete integrability in terms of Noether

point symmetries. In other words, we study the construction of two additional first integrals of

motion I1 and I2, which are functionally independent of the Hamiltonian H and all three H, I1

and I2 are pairwise in involution, based on Noether point symmetries. First of all, the cases where

I1 and I2 correspond directly to point symmetries X1 and X2, respectively, would lie among the

potentials of Table 6.9 for three-dimensional Noether symmetry algebras. Higher-dimensional

classification results, as previously pointed out, would retrieve subcases of Table 6.9 except for

case 5 of Table 6.7, which does not contain any three-dimensional subalgebra. In the latter

case, (where the magnetic field represents the hypothetical magnetic monopole, B = λer/r
2) all

three symmetry generators X1, X2 and X3 are of Noether type. But the corresponding integrals

Ī1 = xẏ − yẋ− λz/r, Ī2 = zẋ− xż − λy/r and Ī3 = yż − zẏ − λx/r, following the structure of

the symmetry algebra, are not in involution,
{
Ī1, Ī2

}
= −Ī3,

{
Ī2, Ī3

}
= −Ī1 and

{
Ī1, Ī3

}
= Ī2.

However, similar to the classical central-force problem, taking I1 = Ī2
1 + Ī2

2 + Ī2
3 and any Īi

as I2, we have {I1, I2} =
{
Īj Īj , Īi

}
= 2Īj

{
Īj , Īi

}
= 2εijkĪj Īk = 0. Note that in this case I1

is quadratic in the velocities and corresponds to a contact symmetry generated by 2ĪiXi. By

construction though either I1 as a function of the integrals Īi that correspond to Xi, or 2ĪiXi

as a linear combination of Xi with coefficients the corresponding integrals is really coming from

the rotations generated by Xi, i.e. point symmetries. Under these considerations :

Corollary 6.3. For inhomogeneous and curved magnetic fields, the autonomous system (6.13b)

of charged particle motion is completely integrable via Noether point symmetries in three rep-

resentative cases under the equivalence transformations (6.19) :

1. case 2 of Table 6.9 for λi = 0, where I1 = ż + F3 and I2 = xẏ − yẋ+ (x2 + y2)F2,

2. case 5 of Table 6.9 for λi = 0, where I1 = ẏ + F2 and I2 = ż + F3,

3. case 5 of Table 6.7, where I1 = (xẏ − yẋ)2 + (zẋ − xż)2 + (yż − zẏ)2 and I2 = Īi for any

Ī1 = xẏ − yẋ− λz/r, Ī2 = zẋ− xż − λy/r, Ī3 = yż − zẏ − λx/r.

6.8 Discussion

We have found and classified one-, two- and three-parameter symmetry group extensions of time

translations admitted by the three-dimensional autonomous non-relativistic charged particle

motion. The classification was made under the action of the equivalence group, which also proved

to preserve the homogeneous Maxwell’s equations with no restrictions at all. Therefore each
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symmetry class is described in terms of the vector and scalar potentials of the electromagnetic

field in a representative form as simple as possible under equivalence transformations. In other

words, the members that belong to each case can be found by transforming the typical potentials

presented in the previous tables using (6.19). The corresponding Noether symmetry classification

has also led to some first conclusions about the existence of first integrals of motion besides the

well-known Hamiltonian.

As previously mentioned at the end of section 4.8, this type of classification is considered

preliminary in the sense that there could be more symmetries lying outside the equivalence

group. However, from the inspection of the determining equations resulting from the symmetry

condition in chapter 5, we concluded that, when the system is nonlinear and particularly for

inhomogeneous and curved magnetic fields, the only symmetries admitted are the ones that

belong to the equivalence group. Therefore, in this case Tables 6.5-6.7 can be considered as a

full classification in terms of point symmetries and up to three-parameter symmetry groups. Of

course, more symmetries can be expected when the potentials listed in the previous tables result

in magnetic fields of constant direction or even linear equations of motion, as for example in the

last case of Table 6.7.



Chapter 7

Conclusions and future work

In this chapter we take an overview of the outcome of this thesis, triggering potential extensions

of this work. More detailed and technical discussions on conclusions of individual results were

preferably given at the end of each of the chapters 2, 3, 5 and 6.

In this thesis we have approached the subject of charged particle motion from two different

angles. On one side, we investigated the problem from the point of view of applications and in

particular plasma fusion research. A current issue of interest especially in toroidal devices is the

appearance of magnetic islands and their effects as well as their control. For their investigation,

we presented first (chapter 2) an analytical description of an isolated island, coming from a helical

magnetic perturbation, which is often used for modelling. Then (chapter 3), we developed a

numerical code for large numbers of particles in order to study the wave-particle interaction in

electron cyclotron resonance inside and near the center of a magnetic island. In this treatment,

relativistic effects, collisions and the magnetic surface label of the previous chapter have been

included. From the simulations, we have determined the driven current and absorbed power

densities as well as other macroscopic quantities such as velocity distributions, etc.

On the other hand, we have set out a more theoretical study concerning the structure of the

equations of motion for charged particles. On this quest, we have employed symmetry group

methods, which have been widely used the last few decades. Considering the autonomous sys-

tem in general, we have found (chapter 5) the general form of electromagnetic fields admitting

more symmetries than time translations along with the general form of the symmetries them-

selves. Focusing on Lie point, i.e. geometrical, symmetries we have looked into Noether point

symmetries as well and deduced, in particular, integrals of motion that are in involution with

the Hamiltonian. Comparison in terms of symmetries with the system of the magnetic field lines

189
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is also made. Finally (chapter 6), recruiting the infinitesimal methods of equivalence transfor-

mations, which lately have spread out, we have made a symmetry classification for the system.

From the investigation of the symmetry condition in the previous chapter this partial classifi-

cation turns out to be complete (in terms of point symmetries) when the system is nonlinear

and genuinely considered in three dimensions. Restricting to Noether symmetries, we also give

a classification in terms of first integrals, from which integrable cases have been found.

Parts I and II, summarized in the previous two paragraphs, respectively, may sound discon-

nected at this point. And of course not all questions posed have been answered and not fully

either. However, the work presented in this thesis does not stop merely here, but the tools

developed may serve as a basis for future plans. Let us see how.

First of all, the symmetry analysis started here from the autonomous system could be con-

tinued for the general case of time-dependent electromagnetic fields. Although it seems unlikely

to carry out a general investigation of the symmetry condition like in chapter 5, the method of

equivalence transformations applied in chapter 6 could pay off. The resulting classification would

surface with less difficulties, having ruled out the wide class of the time-independent fields found

here. This investigation may yield more interesting cases that are more close to applications.

For instance, monochromatic plane or other polarised electromagnetic waves, like the ones used

in chapter 3, are likely candidates. In this context it is also worth noting the relation between

the charged-particle motion and the Vlasov equation and, in particular, that the first integrals

of the former are solutions of the latter.

Another extension would be to consider generalised symmetries, i.e. symmetry transforma-

tions more general than the geometrical explored in this work that also include derivatives of

the dependent variables. This idea comes naturally given that, in light of (5.58), the first inte-

grals from Noether point symmetries which are functionally independent of the Hamiltonian are

necessarily linear in the velocities. Of course for this treatment one must begin with an ansatz

for the order of derivatives involved, and in some cases, as in this one, the dependence of the

symmetry generators on these derivatives. However, since the system is of second order and

linear in the velocities, the most simple choice of first-order derivatives appearing linearly in the

generators seems already promising.

The usage of approximate symmetries might also open a new perspective to study the guiding-

center equations as a perturbation of the magnetic field lines that feature the particle’s motion.

In this viewpoint, one could inspect which symmetries of the magnetic field are stable, meaning

carried over as approximate symmetries to the guiding-center motion, and what is their relation
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with the corresponding symmetries of the original system. The adiabatic invariance of the

magnetic moment in the first place, which resulted in a reduction by two, originates from an

approximate symmetry with respect to the gyrophase. More symmetries could further reduce

the system, which may stand a better chance of finding solutions. This is actually the case for

axisymmetric systems, whose orbits could be classified in free and trapped (banana) ones, given

at least a qualitative if not full description. Helical magnetic fields exhibiting magnetic islands

perhaps could follow.

Last but not least, reduction of order, which is perhaps the ultimate goal of symmetry analysis,

and already previously suggested, could also be employed in continuation of either of the above

investigations, including the present one, for particular cases of interest. Even if not completely

integrable, a reduced system could prove important not only for further analytical investigation,

but numerical treatments as well. This is where the two parts of this thesis could meet. For under

a symmetry reduction, numerical simulations could be much improved with less computational

time and higher accuracy at the same time. In this way, the barrier of the very demanding

Lorentz force we encountered when following large numbers of particles could be overcome.





Appendix A

Curvilinear Coordinates

In this short description we are primarily concerned about the way vectors and a few vector

operations are expressed in curvilinear coordinates. Let (x, y, z) be Cartesian coordinates in the

Euclidean space R3 and
(
x1, x2, x3

)
a system of curvilinear coordinates. The former are related

to the latter by a set of relations

x = x
(
x1, x2, x3

)
, y = y

(
x1, x2, x3

)
, z = z

(
x1, x2, x3

)
, (A.1)

which are invertible, given that the determinant of the Jacobian matrix for the above transfor-

mation,

J =
∂ (x, y, z)

∂ (x1, x2, x3)
=



∂x

∂x1

∂x

∂x2

∂x

∂x3

∂y

∂x1

∂y

∂x2

∂y

∂x3

∂z

∂x1

∂z

∂x2

∂z

∂x3


(A.2)

is not zero, and thus leading to

x1 = x1(x, y, z), x2 = x2(x, y, z), x3 = x3(x, y, z). (A.3)

In terms of the Cartesian coordinates, a point in R3 can be denoted by (x, y, z) or its position

vector

r = x i+ y j + z k, (A.4)

where i, j and k are the unit vectors along the x-, y- and z-axes, respectively. The same point

in the curvilinear system is now denoted by
(
x1, x2, x3

)
, while if e1, e2 and e3 represent a vector

basis, then the position vector will be expressed as

r = x1e1 + x2e2 + x3e3. (A.5)
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Similarly to the x-, y- and z-axes, three coordinate curves are naturally induced in the curvi-

linear system, namely

r1

(
x1
)

=
{
x2 = c2, x

3 = c3

}
r2

(
x2
)

=
{
x1 = c1, x

3 = c3

}
r3

(
x3
)

=
{
x1 = c1, x

2 = c2

} (A.6)

where ci are constants. Since these are not straight lines, as opposed to the axes of the Cartesian

frame of refence, a vector basis can only be defined in terms of the tangent vectors of these curves.

Indeed, using the expression (A.5) for (A.6), we easily see that e1, e2 and e3 are the tangent

vectors to r1, r2 and r3, respectively,

dr1

dx1
= e1,

dr2

dx2
= e2,

dr3

dx3
= e3.

On the other hand, if we differentiate both (A.4) and (A.5) with respect to xi and equate the

two expressions, we have

ei =
∂r

∂xi
=

∂x

∂xi
i+

∂y

∂xi
j +

∂z

∂xi
k (A.7)

or in matrix form 

e1

e2

e3


=



∂x

∂x1

∂y

∂x1

∂z

∂x1

∂x

∂x2

∂y

∂x2

∂z

∂x2

∂x

∂x3

∂y

∂x3

∂z

∂x3





i

j

k


(A.8)

From (A.8), we clearly deduce that J being invertible guarantees that e1, e2 and e3 are linearly

independent.

Now, consider a vector A = Axi + Ayj + Azk. In the curvilinear coordinates this would be

expressed with respect to the tangent basis as

A = Aiei (A.9)

If we substitute (A.7) in the above relation, equate the two expressions and solve in terms of

Ai, we have 

A1

A2

A3


=



∂x1

∂x

∂x1

∂y

∂x1

∂z

∂x2

∂x

∂x2

∂y

∂x2

∂z

∂x3

∂x

∂x3

∂y

∂x3

∂z





Ax

Ay

Az


(A.10)
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i.e. the components Ai are related to the Cartesian components of A exactly the opposite way

that ei are related to the Cartesian basis vectors. Considering the inverse transformation (A.3),

we identify the matrix in (A.10) as J−1.

Since the tangent vectors ei do not constitute a unit basis, we also consider the normalised

vectors

êi =
ei
|ei|

, (no summation) (A.11)

which, unlike ei, they depend on xj , because of the denominators. These unit vectors are often

refered to as the natural or physical basis, in terms of which a vector field is expressed as

A = Â i êi, (A.12)

where from (A.9) and (A.11) we easily find Â i = Ai |ei| (no summation).

Let us comment that behind the identification of a point x to its position vector lies the

isomorphism of the tangent space TxR3 of R3 at every point x with R3 itself. There is, however,

another vector space that also coincides with R3, namely the dual space of the tangent space,

consisting of all the linear, real maps of TxR3. Without going in to further details, the dual

basis ei is defined by the relations

ei(ej) = ei · ej = δij . (A.13)

Since for every vector B = Biei we have ei · B = ei ·
(
Bjej

)
= Bjei · ej = Bjδij = Bi, and

A ·B = A ·
(
Biei

)
= (A · ei)Bi = (A · ei) ei ·B for any two vectors A = Aiei and B, then

A = (A · ei) ei, (A.14)

meaning every vector can be written as a linear combination of ei. Therefore, ei is a basis, in

terms of which the components of a vector A are Ai = A ·ei. Now, if we let A = ∇xi = ∂xi/∂r

in (A.14) then, recalling (A.7), we easily arrive at ∇xi · ej = δij and thus deduce that ei are

simply the gradients of the functions xi(x, y, z) in the Cartesian coordinates,

ei =
∂xi

∂r
=
∂xi

∂x
i+

∂xi

∂y
j +

∂xi

∂z
k (A.15)

or in matrix form 

e1

e2

e3


=



∂x1

∂x

∂x1

∂y

∂x1

∂z

∂x2

∂x

∂x2

∂y

∂x2

∂z

∂x3

∂x

∂x3

∂y

∂x3

∂z





i

j

k


(A.16)
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Complementary to this algebraic viewpoint, a geometrical interpretation is associated with the

coordinate surfaces, which can be considered as the counterparts of the yz-, xz- and xy-planes

in the Cartesian coordinates, and are defined as

r23

(
x2, x3

)
=
{
x1 = c1

}
r13

(
x1, x3

)
=
{
x2 = c2

}
r12

(
x1, x2

)
=
{
x3 = c3

} (A.17)

The vectors defined in (A.15) can now be viewed as the normal vectors to these surfaces giving

rise to a vector basis, as the tangent vectors to the coordinate curves did.

So, a vector A in R3 can also be written as

A = Aie
i (A.18)

where Ai = A · ei. Using Cartesian components in the last expression, we get

A1

A2

A3


=



∂x

∂x1

∂y

∂x1

∂z

∂x1

∂x

∂x2

∂y

∂x2

∂z

∂x2

∂x

∂x3

∂y

∂x3

∂z

∂x3





Ax

Ay

Az


(A.19)

We stress here the difference between the components Ai and Ai of a vector A in the curvi-

linear coordinate system. In light of (A.10) and (A.19) we see that they are related to the

Cartesian components of A in exactly the opposite way. This difference is further emphasized

by calling the upperscript components Ai contravariant and the lowerscript ones Ai covariant.

In fact, this terminology rule will be generalized, meaning that everything superscripted will be

called contravariant and everything subscripted will be called covariant. The justification of this

logic stems from the way geometrical objects transform. For example, since ei share the same

transformation matrix with Ai they will be refer to as the contravariant basis, while ei sharing

the same transformation matrix with Ai will be called the covariant basis (see also [28], p. 19).

Now if we want to directly transform from contravariant components Ai to covariant ones Ai,

we may combine (A.19) and the inversed (A.10) or simply recall Ai = A · ei to deduce

Ai = gijA
j , (A.20)

arriving at the notion of the metric tensor, expressed by the matrix G = JTJ with elements

gij = ei · ej =
∂x

∂xi
∂x

∂xj
+
∂y

∂xi
∂y

∂xj
+
∂z

∂xi
∂z

∂xj
, (A.21)
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which is clearly symmetric. Since g = |G| = |J|2 and J is invertible, therefore g 6= 0 (and in fact

positive), i.e. G is also invertible. Consistent with the above notation, the elements (A.21) of

G are the covariants components of the metric, while the elements of G−1 are the contravariant

given by

gij =
∂xi

∂x

∂xj

∂x
+
∂xi

∂y

∂xj

∂y
+
∂xi

∂z

∂xj

∂z
. (A.22)

These can be recovered in a similar way as the covariant had by use of (A.10) and the inversed

(A.19), yielding the inverse relation

Ai = gijAj . (A.23)

In order to proceed with the basic vector operations, we first note that
∣∣JT ∣∣ = |J| could

actually be written as the mixed product of e1, e2 and e3, just as the determinant
∣∣J−1

∣∣ = |J|−1

can be written as the mixed product of e1, e2 and e3, given (A.7) and (A.15). In terms of the

determinant of the metric tensor previously discussed, we have the following

e1 · (e2 × e3) =
√
g (A.24)

e1 · (e2 × e3) =
1
√
g

(A.25)

Next we observe that e1 · e2 = e1 · e3 = 0 means that e1 = c e2 × e3, where c is a constant. By

dot-multiplication of the last equation with the vector e1 we find c =
√
g, given (A.25). That is

e1 =
√
g e2 × e3 (A.26)

e1 =
1
√
g
e2 × e3 (A.27)

where the second equation can be derived in the same way. Of course (A.24)-(A.27) can be

completed with similar relations obtained by cyclic permutation.

Now we are ready to derive general formulas for the vector operations of interest, in which,

as we will see, contravariant or covariant components are more preferable than physical ones.

The dot or scalar product of two vectors A and B is

A ·B = Aiei ·Bjej = AiBjei · ej = AiBjgij = AiBi = AiB
i (A.28)

The cross or vector product of two vectors A and B is

A×B = Ajej ×Bkek = AjBkej × ek =
√
g εijkA

jBkei (A.29)

or A×B = Aje
j ×Bkek = AjBke

j × ek =
1
√
g
εijkAjBkei (A.30)
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where εijk = εijk is the Levi-Civita symbol that does not transform like tensors, but follows the

rules εijk = ggilgjmgknεlmn and εijk = g−1gilgjmgknε
lmn.

The gradient of a scalar field Φ
(
x1, x2, x3

)
is naturally induced in the contravariant basis

∇Φ =
∂Φ

∂x
i+

∂Φ

∂y
j +

∂Φ

∂z
k =

∂Φ

∂xi
∂xi

∂x
i+

∂Φ

∂xi
∂xi

∂y
j +

∂Φ

∂xi
∂xi

∂z
k =

∂Φ

∂xi
ei (A.31)

Perhaps the easiest derivation way of the divergence formula for a vector field A
(
x1, x2, x3

)
is the following, using basic vector properties. As previously mentioned in the definition of the

contravariant basis or easily verified by the above formula, ei = ∇xi hold. So,

∇ ·
(
ei√
g

)
= ∇ ·

(
εijk e

j × ek
)

= εijk∇ ·
(
∇xj ×∇xk

)
=

= εijk∇ ·
[
∇×

(
xj∇xk

)
− xj ∇×∇xk

]
= εijk∇ ·

[
∇×

(
xj∇xk

)]
= 0,

where the next to last equality follows from the property that the curl of a gradient is always

zero, and the last one from the property that the divergence of a curl is always zero. Therefore,

the divergence of a vector field A
(
x1, x2, x3

)
is

∇ ·A = ∇ ·
(
Aiei

)
= ∇ ·

(
√
gAi

ei√
g

)
=
√
gAi∇ ·

(
ei√
g

)
+
ei√
g
· ∇
(√
gAi
)

=
ei√
g
· ∇
(√
gAi
)

and using the gradient formula (A.31) we have

∇ ·A =
1
√
g

∂
(√
gAi
)

∂xi
(A.32)

Last but certainly not least, as it is of primer concern for the magnetic field, the curl of a

vector field A
(
x1, x2, x3

)
is

∇×A = ∇×
(
Ake

k
)

= Ak∇×ek +∇Ak×ek = Ak∇×∇xk +∇Ak×ek = ∇Ak×ek. (A.33)

We pause here for a moment our calculation in order to derive first a widely known expression

in the literature for magnetic fields,

∇×A = ∇Ak ×∇xk. (A.34)

Continuing from (A.33), we find

∇×A =
∂Ak
∂xj

ej × ek =
1
√
g
εijk

∂Ak
∂xj

ei (A.35)

We finally calculate the cross product of a vector field v
(
x1, x2, x3

)
with the curl of another

vector field A
(
x1, x2, x3

)
obviously because of its appearance in the Lorentz force. According
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to (A.29), (A.35) and the identity εijkε
lmk = δliδ

m
j − δmi δlj we have

v × (∇×A) =
√
g εijkv

j (∇×A)k ei =
√
g εijkv

j 1
√
g
εklm

∂Am
∂xl

ei = vj
∂Am
∂xl

εijkε
lmkei

= vj
∂Am
∂xl

(
δliδ

m
j − δmi δlj

)
ei

or

v × (∇×A) = vj
(
∂Aj
∂xi
− ∂Ai
∂xj

)
ei (A.36)

Remark A.1. So we see that while the contravariant basis comes naturally in the gradient of

a function, the covariant one is more appropriate for the curl of a vector. On the other hand,

while contravariant components of a vector are suitable for its divergence, covariant ones, on the

contrary, are more convenient for its curl. Disappointingly enough, the physical components in

any case, while necessary for real experiments, lack easy mathematical manipulation.

Remark A.2. In the case of Cartesian coordinates, the covariant, contravariant and physical

bases all coincide with i, j and k, while the metric is of course the unit matrix. Thus, there

is no need for distinguishing vector components with superscripts or subscripts, and so only

subscripts are used for Cartesian components in this thesis.





Appendix B

Differential Forms

In continuation of the previous appendix, the geometry of the magnetic field lines can be better

understood and further investigated when we move on to the notion of a differential form.

Borrowing the least possible notions from Differential Geometry, in order not to get carried

away, we merely touch few concepts on this wide subject for the purpose of just introducing the

so-called symplectic forms. The latter will prove quite helpful in particular for exhibiting the

intrinsic Hamiltonian nature of the magnetic field. Therefore in this short descriptive chapter

we continue our previous discussion from appendix A and bring in little of the artillery of

differentiable manifolds, passing from R3 to Rm (actually m = 2, 3, 6 will concern us in this

thesis).

B.1 Vector Fields

First, consider a vector in the Euclidean space Rm or more generally in an m-dimensional

differentiable manifold M in terms of the covariant basis at a particular point x =
(
x1, . . . , xm

)
,

denoted by vx = vixei. For any such vector, we can define a map, denoted again by vx, which

for any smooth function f(x) assigns the directional derivative of f along the vector vx,

vx(f) = vix
∂f

∂xi

∣∣∣∣
x

(B.1)

In fact, this relation gives rise to an isomorphism between tangent vectors and derivations for

any finite-dimensional differentiable manifold. Let C∞(M) denote the space of all smooth, real

functions defined on M .

Definition B.1. A derivation is a differential operator vx : C∞(U) −→ R defined on the space

201
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of smooth functions on a neighborhood U of M , which for every f, g ∈ C∞(U) and a, b ∈ R

satisfies the following properties :

1. vx(af + bg) = avx(f) + bvx(g) (linearity)

2. vx(fg) = f(x)vx(g) + g(x)vx(f) (Leibniz’ rule)

Therefore, in any finite-dimensional smooth manifold M , a tangent vector at a point x can also

be expressed as a derivation defined in some neighborhood U of x. For example, the covariant

basis vectors of the tangent space TxM if we consider equation (B.1) act as the partial derivatives

at the point x,

ei =
∂

∂xi

∣∣∣∣
x

(B.4)

for any function f on U . Note that in terms of this expression, relation (A.7) is just the chain

rule.

If, however, we are not interested at a particular point x, meaning if, for example, we consider

a vector function varying from point to point that needs to be defined globally, then we arrive

at the notion of a vector field.

Definition B.2. A vector field v on a smooth manifold M is a smooth map which at every

point x assigns a tangent vector vx of TxM ,

v(x) = vx (B.5)

Equivalently it can be defined as a derivation v : C∞(M) −→ C∞(M) determined by the map

v(f) : M −→ R with

v(f)(x) = vx(f) (B.6)

The reason that the mapping (B.5) takes place in the tangent space is that a manifold is

not in general equipped with the structure of a vector space, as in the case for example of the

Euclidean space Rm, while the tangent space is. According to the above definition, we have

again an isomorphism between vector fields and derivations on M , just like tangent vectors and

derivations at a point x of M . It is easy to see that the space X(M) of all vector fields defined

on M has the structure of a vector space over R, and it can be shown that the partial derivatives

∂/∂xi form a basis in X(M) in agreement with intuitively removing the index x from (B.4).

Thus, every vector field can be expressed as

v = vi(x)
∂

∂xi
(B.7)
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where vi(x) = vix = vx
(
xi
)

are smooth functions. Staying consistent with the notation adopted

here, the passage from tangent vectors (B.1) to vector fields (B.7) is reflected on simply dropping

the subscripts x denoting the local nature.

The above considerations for contravariant components and covariant basis vectors can be

carried over to covariant components and contravariant basis vectors.

B.2 1-Forms

Recall first from the previous section that at any point x every linear form of the tangent space,

called covector, is an element of the dual space, called the cotangent space T ∗xM , whose vector

basis ei was defined by the relations ei(ej) = δij that we saw earlier in (A.13) described by the

dot product for the case of R3. As with the covariant basis, the contravariant one can also be

interpreted by a differential operator.

Definition B.3. Let M be a differentiable manifold and f a smooth function defined in some

neighborhood U of a point x. Differential of f is a linear map (df)x : TxM −→ R, i.e. a covector,

defined by the relation

(df)x(vx) = vx(f) (B.8)

From the above definition and (B.1), we see that if f(x) = xi and vx = ej , then the differentials

of the local coordinates satisfy the definition of the dual basis,

(
dxi
)
x
(ej) = δij

In contrast to (B.4), this means that the contravariant basis for the cotangent space is

ei =
(
dxi
)
x

(B.9)

Contrary to the notation used in the previous appendix, where the tangent and cotangent

spaces were all isomorphic to R3, here covectors to be distinguished from tangent vectors will

be denoted by ωx, where the index x is used again to indicate the local nature. In terms of the

contravariant basis (B.9) every covector can be expressed as

ωx = ωix
(
dxi
)
x

(B.10)

and its action on vectors in general is given by the relation

ωx(vx) = ωixv
i
x (B.11)
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Returning to the differential of a function, for any tangent vector vx = vixei, we also have

(df)x(vx) = (df)x
(
vixei

)
= vix(df)x(ei) = δijv

j
x

∂f

∂xi

∣∣∣∣
x

=
∂f

∂xi

∣∣∣∣
x

vjx
(
dxi
)
x
(ej) =

=
∂f

∂xi

∣∣∣∣
x

(
dxi
)
x

(
vjxej

)
=

∂f

∂xi

∣∣∣∣
x

(
dxi
)
x
(vx)

Therefore, the differential of a function f is indeed expressed as a linear combination of the basis

vectors
(
dxi
)
x
,

(df)x =
∂f

∂xi

∣∣∣∣
x

(
dxi
)
x

(B.12)

in terms of which its (covariant) components are given by the components of the gradient of f

at the point x.

Similarly to the generalization from vectors to vector fields, again when we are not referring to

a fixed point on the manifold, covectors generalize to the notion of a field, called a (differential)

1-form.

Definition B.4. A 1-form on a differentiable manifold M is a smooth map ω which at every

point x assigns a cotangent vector ωx of T ∗xM ,

ω(x) = ωx (B.13)

Equivalently it can be defined as the smooth map ω : X(M) −→ C∞(M) determined from the

relation

ω(v)(x) = ωx(vx) (B.14)

It is not difficult to see that the space of 1-forms is a vector space, and just like (B.7), dropping

the index x, every 1-form can be written as

ω = ωi(x)dxi (B.15)

where ωi(x) = ωix = ωx(ei) are smooth functions. So, in local coordinates, the action (B.14) of

the 1-form (B.15) on the vector field (B.7) can be written as ω(v)(x) = ωi(x)vi(x) or

ω(v) = ωiv
i (B.16)

Besides the two naturally defined operations of the vector space structure, we introduce an-

other two giving rise to higher order forms and present their counterparts with the aid of a third

one for the particular case of R3.
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B.3 Form Operations

Wedge product

Starting constructively in terms of 1-forms, the wedge product ∧ is the unique map of any two

1-forms ω1 and ω2 that satisfies the relation1

ω1 ∧ ω2 (v1,v2) = det
(
ωi(vj)

)
= det

(
ωikv

k
j

)
. (B.17)

Noting the similarity to (B.14), which defines a 1-form ω as a map from a vector field v to

a smooth function, the result of the wedge product ω1 ∧ ω2 is actually a 2-form mapping two

vector fields v1 and v2 to a smooth function, i.e. a smooth map X(M) ×X(M) −→ C∞(M),

defined by (B.17) in this case. Considering a generalization of (B.17) for the case of k vector

fields v1, . . . ,vk, taking the wedge product of k 1-forms ω1, . . . , ωk, we can construct a k-form

ω1∧ · · · ∧ωk. The wedge product can be further generalized for any k1-form ω1 and k2-form ω2,

yielding a (k1+k2)-form, and satisfies the following fundamental properties :

1. ω1 ∧
(
aω2 + bω3

)
= aω1 ∧ ω2 + b ω1 ∧ ω3,(

aω1 + bω2
)
∧ ω3 = aω1 ∧ ω3 + b ω2 ∧ ω3 (bilinearity)

2. ω1 ∧ ω2 = (−1)k1k2ω2 ∧ ω1 (anticommutativity)

3. ω1 ∧
(
ω2 ∧ ω3

)
=
(
ω1 ∧ ω2

)
∧ ω3 (associativity)

for any a, b ∈ R. For 1-forms the above properties follow easily from (B.17) and the usual

properties of determinants.

We pause here for a moment to comment that, in general, k-forms on a manifold M are covari-

ant alternating k-tensor fields, and by a covariant k-tensor at a point x we mean a multilinear

(actually k-linear) form of the Cartesian product of TxM with itself k times, just as covectors

are linear forms of TxM , meaning covariant 1-tensors. The wedge product plays a fundamental

role in tensor analysis, since it provides a basis for the space of alternating tensors. Closing this

brief aside, for our puproses here, we only need to keep in mind that dx1 ∧ · · · ∧ dxk is a basis

for k-forms and every k-form ω can be expressed as

ω = ωi1i2···ikdx
i1 ∧ dxi2 ∧ · · · ∧ dxik (B.21)

where I = (i1, i2, . . . , ik) is any strictly increasing k-tuple, meaning 1 ≤ i1 < i2 < · · · < ik ≤ m.

Given the above local expression of a k-form and the definition of the wedge product, we can

1. Notice that superscripts on ω indicate different forms, while subscripts stand for their components.
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also derive the action, for example, of a 2-form ω = ωijdx
i ∧ dxj on two vector fields v = vi∂xi

and w = wi∂xi . For every i, j we have

ω(v,w) =
1

2
ωij dx

i ∧ dxj(v,w) =
1

2
ωij
[
dxi(v)dxj(w)− dxi(w)dxj(v)

]
=

1

2
ωij
(
viwj − wivj

)
=

1

2
viwj (ωij − ωji) = ωijv

iwj (B.22)

Exterior derivative

Another basic operation in the calculus of differentiable manifolds is the differential or exterior

derivative. Given away by its name, we have already encountered this operation in terms of the

covector (df)x. First we define the 1-form analogue of the latter, removing the local nature of

(B.8) and (B.12).

Definition B.5. Let M be a differentiable manifold and f a smooth function defined on M .

Differential of f is the 1-form df : X(M) −→ C∞(M) defined by the relation

df(v) = v(f) (B.23)

From the above definition, the components of df are easily found to be the partial derivatives

of f , meaning

df =
∂f

∂xi
dxi (B.24)

Now let ω = ωi(x)dxi be a 1-form on a smooth manifold M . The differential of ω is a 2-form

defined as

dω = dωi ∧ dxi (B.25)

where dωi is the differential of the component functions ωi in the sense of Definition B.5 and

when further analyzed according to (B.24),

dω =
∂ωi
∂xj

dxj ∧ dxi =
1

2

(
∂ωi
∂xj

dxj ∧ dxi +
∂ωi
∂xj

dxj ∧ dxi
)

=
1

2

(
∂ωj
∂xi

dxi ∧ dxj − ∂ωi
∂xj

dxi ∧ dxj
)

=
1

2

(
∂ωj
∂xi
− ∂ωi
∂xj

)
dxi ∧ dxj

for all i, j. Note, however, that in the last double summation the interchange of i and j yield

the same term, meaning we can write

dω =

(
∂ωj
∂xi
− ∂ωi
∂xj

)
dxi ∧ dxj , (B.26)

where i < j as usual, following the common practice for higher order forms.
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Going through the case of a 1-form with the least possible indices, one can perceive the

generalization to higher order forms. Differential of a k-form ω = ωi1···ikdx
i1 ∧ · · · ∧ dxik is a

(k+1)-form that can be defined as

dω = dωi1i2···ik ∧ dx
i1 ∧ dxi2 ∧ · · · ∧ dxik (B.27)

As the previous case for 1-forms showed, the implications of the above expression, when one tries

to write dω using a basis in terms of dxi, require certain caution regarding ordered indices. In the

proof of Proposition B.14 the differential of a 2-form is required, revealing how the complexity

of calculations increases as we move to higher order forms.

Remark B.6. If ω = ω1···ndx
1 ∧ · · · ∧ dxm is an m-form, then dω = 0, since dxi ∧ dxj = 0 for

any i = j due to the anticommutativity of the wedge product. Actually, the same argument

indicates that every (m+1)-form on an m-dimensional manifold vanishes, silently implied by the

restriction ik ≤ m on the local expression of k-forms in (B.21).

Although the above definition of the differential is given in local coordinates, the operator d

taking k-forms to (k+1)-forms is actually uniquely determined by the following properties :

1. d(aω1 + bω2) = a dω1 + b dω2 (linearity)

2. d(dω) = 0 (closure)

3. d
(
ω1 ∧ ω2

)
= dω1 ∧ ω2 + (−1)k1ω1 ∧ dω2 (antiderivation)

for any forms ω, ω1, ω2 and a, b ∈ R, where k1 is the order of ω1, along with Definition B.5

for the differential of a function, regarded as a 0-form. Linearity is straightforward, while

antiderivation is a direct consequence of Leibniz’ rule, that is, considering ω1 = fdxi1∧· · ·∧dxik1

and ω2 = g dxj1 ∧ · · · ∧ dxjk2 , then

d
(
ω1 ∧ ω2

)
= d

((
fdxi1 ∧ · · · ∧ dxik1

)
∧
(
g dxj1 ∧ · · · ∧ dxjk2

))
= d

(
fg dxi1 ∧ · · · ∧ dxik1 ∧ dxj1 ∧ · · · ∧ dxjk2

)
= d(fg) ∧ dxi1 ∧ · · · ∧ dxik1 ∧ dxj1 ∧ · · · ∧ dxjk2

= (gdf + fdg) ∧ dxi1 ∧ · · · ∧ dxik1 ∧ dxj1 ∧ · · · ∧ dxjk2

=
(
df ∧ dxi1 ∧ · · · ∧ dxik1

)
∧
(
g dxj1 ∧ · · · ∧ dxjk2

)
+

+ (−1)k1
(
fdxi1 ∧ · · · ∧ dxik1

)
∧
(
dg ∧ dxj1 ∧ · · · ∧ dxjk2

)
= dω1 ∧ ω2 + (−1)k1ω1 ∧ dω2



208 B. Differential Forms

To prove the second property, i.e. that dω is closed, it suffices to prove it for a 0-form, meaning

that df is closed,

d(df) = d

(
∂f

∂xj
dxj
)

=
∂2f

∂xi∂xj
dxi ∧ dxj (for all i, j)

=

(
∂2f

∂xi∂xj
− ∂2f

∂xj∂xi

)
dxi ∧ dxj (for i < j)

which simply reduces to mixed second-order partial derivatives being equal. Using d(df) = 0

and the third property, we can easily derive d(dω) = 0 for any k-form.

Remark B.7. Every k-form, say B, that comes from the differential of a (k -1)-form, say A,

meaning B = dA, is called exact, and the above second property verifies that every exact form

is closed. The converse of this statement is not always true, that is, every closed form is not

necessarily exact. The question of equivalent classes of closed forms is closely related to the

topological characteristics of the manifold considered, described by the so-called de Rham coho-

mology theory. However, the celebrated Poincare’s lemma assures us that in simply connected

manifolds, like R3 which we are mostly concerned with, every closed form is exact.

Before moving to the third and final operation, we briefly go through two necessary notions

to define it, which otherwise require whole chapters for their description.

Remark B.8. A counterpart notion to k-forms, are k-vector fields, which are contravariant

alternating k-tensor fields, contravariant k-tensors at a point x being k-linear forms of the

Cartesian product of T ∗xM with itself k times. Obviously k = 1 corresponds to the familiar

vector fields we encountered. The construction of k-vector fields follows a similar path to that

of k-forms through related operations, such as the wedge product, the exterior derivative, etc.

Just for comparison with k-forms, a k-vector field V for example is expressed as

V = V i1i2···ik ∂

∂xi1
∧ ∂

∂xi2
∧ · · · ∧ ∂

∂xik
(B.31)

where again 1 ≤ i1 < i2 < · · · < ik ≤ m. Limiting this remark here and mainly to the above

equation, we refer to classical textbooks of Differential Geometry for further study.

Remark B.9. An n-dimensional manifold M is said to be orientable if the Jacobian matrix

defined for any change of coordinate bases of TxM has the same sign at each point x ∈ M . It

turns out that a necessary and sufficient condition for orientation is the existence of a nowhere

vanishing n-form ω = fdx1 ∧ · · · ∧ dxm.
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Hodge star operator

So, finally, a useful operation that clarifies the geometrical description of the magnetic field

in R3 and its various expressions in different contexts is the Hodge star operator. Keeping in

mind the previous remarks, in an orientable manifold equipped with a nowhere vanishing form

ω = fdx1 ∧ · · · ∧ dxm, the Hodge star operation ∗ takes a k-form B = Bi1···ikdx
i1 ∧ · · · ∧ dxik to

an (m-k)-vector field ∗B with components

(∗B)ik+1···im =
1

f
εi1···ikik+1···imBi1···ik (B.32)

where εi1···im is the generalized Levi-Civita symbol, which is not a tensor (and for which sub-

or superscripts don’t make any difference and are only retained just to be consistent with our

summation rule), and let us stress again that i1 < i2 < · · · < ik. Following [96], the above

definition is given in local coordinates, without having the notion of Riemannian metric entering

the picture. In every manifold however there is an isomorphism between k-forms and (m-k)-

forms (as well as between k-vector fields and (m-k)-vector fields). For Riemannian manifolds

this isomorphism can be naturally defined in terms of the Hodge star operator. And since every

smooth manifold admits a Riemannian metric, in most textbooks, the ∗ operator is defined in

a coordinate-free fashion, taking a k-form to an (m-k)-form (or a k-vector field to an (m-k)-

vector field). This is by no means an ambiguity, since in Riemannian manifolds the isomorphism

between 1-vector fields and 1-forms allows to use the common practice of what is widely known

as lowering or raising indices and transform a k-vector field to a k-form and vice versa, leading

equivalently to the above definition adopted here. Note that for the same reason, one could

consider the Hodge star operator taking a k-vector field to an (m-k)-form. All the same, since

our target is basically the three-dimensional Euclidean space, definition (B.32) suffices, avoiding

to introduce the concept of the Riemannian metric in general. Instead, the special case of the

metric defined in the previous appendix in terms of curvilinear coordinates (see (A.21), (A.20)

and (A.23)) serves our purposes for R3 just as well, as we will see right after the next subsection.

Push-forward and Pull-back

For the needs of the next section and in particular the cotangent bundle construction, we close

this one by also describing how vectors and covectors are mapped between two manifolds.

The differential of a smooth map g : M −→ N between two manifolds M and N , in general, is

defined as the map (dg)x : TxM −→ Tg(x)N where (dg)x(vx) = vg(x) and vg(x)(f) = vx(f ◦g) for

any x ∈M and any smooth real function f defined on N . On the other hand, the codifferential of
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g, defined as the dual map to (dg)x, is the map (dg)∗x : T ∗g(x)N −→ T ∗xM where (dg)∗x(ωg(x)) = ωx.

The relation between the two expresses that either way we arrive at the same number,

ωx(vx) = ωg(x)(vg(x)) (B.33)

If we extend these pointwise maps for any point x, we arrive at the notion of the push-

forward and the pull-back maps. Starting with the codifferential, considering 1-forms instead

of covectors, the pull-back g∗ of a 1-form ω on N by g is the 1-form g∗(ω) on M defined as

(g∗(ω))x = ωx, where ωx is defined as above. Although no extra requirements are needed for the

definition of g∗, on the contrary, if g is not a diffeomorphism2 then vg(x) may not be assigned

for every point of N nor may be unique. Thus, if g is a diffeomorphism, the push-forward g∗ of

a vector field v on M by g is a vector field g∗(v) on N defined as (g∗(v))y = vy, for any point

y of N , where vy = (dg)g−1(y)(vg−1(y)). If y = g(x), equation (B.33) can then be expressed as

g∗(ω)(v)(x) = ω(g∗(v))(y) (B.34)

On this ground, these maps can be defined for any tensor field, for example the pull-back of

a 2-form ω on N can be constructed in terms of the push-forward of vector fields v and w on

M , as in

g∗(ω)(v,w)(x) = ω(g∗(v), g∗(w))(y) (B.35)

Some properties needed in the following are (f ◦ g)∗ = f∗ ◦ g∗, (f ◦ g)∗ = g∗ ◦ f∗ and commu-

tativity with the exterior derivative, d(g∗ω) = g∗(dω) for any k-form ω.

Last but not least, it is crucial at this point to retrieve many of the above notions and

summarize them for the case of R3, the ultimate goal being an easy passage from the usual

vector calculus to differential forms and back, where needed.

The Euclidean space R3

Consider a right-handed curvilinear coordinate system
(
x1, x2, x3

)
, giving R3 a (positive) orien-

tation related to a nonvanishing volume form

ω =
√
g dx1 ∧ dx2 ∧ dx3 (B.36)

Here g is the determinant of the metric matrix defined in (A.21), which as we saw in (A.24)

yields the volume of the parallelepiped spanned by the covariant basis vectors. Recall from

2. that is, besides smooth, onto (surjective) and 1-1 (injective) with a smooth inverse
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the previous appendix that we can switch easily from vector fields to 1-forms (see (A.20) and

(A.23)), following the notation of this appendix though, 1-forms won’t be denoted by bold letters

as opposed to the corresponding vector fields.

We start off by comparing (A.15) and (B.9) or (A.31) and (B.24), clearly indicating that the

gradient of a scalar function f is described by the differential of the 0-form f , meaning

∇f = df (B.37)

Interpreting the above equation backwards, every closed 1-form is the gradient of a function,

and every 1-form in general can be written as a linear combination of gradients.

Moving on to higher order forms, we can see that in terms of (B.36) every 2-form in R3

B = Bij dx
i ∧ dxj (B.38)

under the Hodge star operation can be mapped to a vector field B with components given by

(B.32)

Bk =
1
√
g
εijkBij (for i < j) (B.39)

(taking i < j implies no summation), that is

B = ∗B =
1
√
g
εijkBij

∂

∂xk
(for i < j) (B.40)

Now according to (B.51) given later on, the differential of the 2-form (B.38) is

dB =

(
∂B23

∂x1
+
∂B31

∂x2
+
∂B12

∂x3

)
dx1 ∧ dx2 ∧ dx3

and in terms of (B.39) vanishes whenever

∂B23

∂x1
+
∂B31

∂x2
+
∂B12

∂x3
= 0⇔

∂
(√
gB1

)
∂x1

+
∂
(√
gB2

)
∂x2

+
∂
(√
gB3

)
∂x3

= 0

Recalling then (A.32), we conclude that the closure of B is nothing more than the divergence-free

condition for B,

dB = 0⇔ ∇ ·B = 0 (B.41)

Actually we can take one more time the Hodge star operator to deduce that the divergence of a

vector function B is the Hodge star operation of the differential of the corresponding 2-form B,

∇ ·B = ∗ dB (B.42)
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Since we have seen where the differential of 0-forms and 2-forms leads to, it is only natural to

consider now a 1-form

A = Aidx
i

and take the differential of A given in (B.26),

B = dA =

(
∂Aj
∂xi
− ∂Ai
∂xj

)
dxi ∧ dxj (for i < j) (B.43)

Then the Hodge star operator maps B, again through relations (B.39), to the vector field

B = ∗B =
1
√
g
εijk

∂Ak
∂xj

∂

∂xi
(B.44)

Compared to (A.35), we easily identify the curl of a vector function A with the Hodge star

operation of the differential of the corresponding 1-form A,

∇×A = ∗ dA (B.45)

Let us close the this subsection by recovering one more useful correspondence in R3 between

the cross and the wedge product. First,

df ∧ dg =

(
∂f

∂xi
dxi
)
∧
(
∂g

∂xj
dxj
)

=
∂f

∂xi
∂g

∂xj
dxi ∧ dxj

=
1

2

(
∂f

∂xi
∂g

∂xj
dxi ∧ dxj +

∂f

∂xi
∂g

∂xj
dxi ∧ dxj

)
=

1

2

(
∂f

∂xi
∂g

∂xj
dxi ∧ dxj +

∂f

∂xj
∂g

∂xi
dxj ∧ dxi

)
=

1

2

(
∂f

∂xi
∂g

∂xj
− ∂f

∂xj
∂g

∂xi

)
dxi ∧ dxj

for all i, j. Then, returning to the usual form notation for i < j, and taking the Hodge star,

based once more on (B.39), results in

df ∧ dg =

(
∂f

∂xi
∂g

∂xj
− ∂f

∂xj
∂g

∂xi

)
dxi ∧ dxj ⇒ ∗ (df ∧ dg) =

1
√
g
εijk

∂f

∂xj
∂g

∂xk
∂

∂xi

So, in light of (A.30), we see that the cross product of the gradients of two functions f and g is

the Hodge star of the wedge product of the differentials of f and g,

∇f ×∇g = ∗ (df ∧ dg) (B.46)

Remark B.10. We finally comment that since the Hodge star operator is a 1-1 map, conse-

quently in all three relations (B.42), (B.45) and (B.46) we can switch straightaway from usual

vector operations to differential forms, e.g. from ∇f ×∇g to df ∧ dg.
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B.4 Symplectic and Presymplectic Forms

Based on the language of forms developed, we can now introduce the notion and some first

implications of a symplectic structure. Being a differential form, its description is given here

as a natural continuation of the previous sections. Its connection, however, with Hamiltonian

systems is left for the next appendix studied through Poisson structures, avoiding further tools

of Differential Geometry. We also define the less-known presymplectic forms, which fit perfectly

in the description of the magnetic field, differing from symplectic ones by the nondegeneracy

condition.

A 2-form ω is called nondegenerate if ω(v,w) = 0 for any vector field w implies v = 0.

This means that the kernel of the map ω[ defined as the 1-form ω[(v) = ω( ,v), meaning

ω[(v) = ωijv
jdxi,

kerω[ = {v : ω(v,w) = 0, ∀w} =
{
v : ωijv

j = 0
}
, (B.47)

(see also (B.22)), consisting of all the vector fields v that annihilate ω for any vector field w, is

empty.

Definition B.11. A closed, nondegenerate 2-form ω on a manifold M is called a symplectic

form, and M equipped with ω is called a symplectic manifold.

Proposition B.12. Every symplectic manifold is even-dimensional.

Proof. Let M be an m-dimensional symplectic manifold with ω = ωij(x)dxi ∧ dxj being the

symplectic form in local coordinates. Since ω is a 2-form, meaning an alternating 2-tensor

field, ωij = −ωji, and so the matrix Ω = (ωij) is skew-symmetric, i.e. Ω = −ΩT . Therefore,

|Ω| =
∣∣−ΩT

∣∣ = (−1)m
∣∣ΩT

∣∣ = (−1)m |Ω|. On the other hand, since ω is nondegenerate, we have

that ω(v, ∂xj ) = 0 ⇒ v = 0, or from (B.22) that Ω v = 0 ⇒ v = 0, meaning Ω is invertible,

|Ω| 6= 0. Thus, |Ω| = (−1)m |Ω| ⇒ 1 = (−1)m ⇒ m is even.

Example B.13. Recalling Remarks B.6 and B.9, we can show that every two-dimensional

orientable manifold is a symplectic manifold. Since in this case the closure condition is trivially

satisfied for any 2-form, while the nondegeneracy is guaranteed by the orientation. For, in local

coordinates, the latter means that there exists a 2-form ω = fdx1 ∧ dx2, where f
(
x1, x2

)
6= 0,

which is obviously nondegenerate and can therefore serve as a symplectic form. In particular, if

the manifold is a surface in R3 equipped with the area form induced by the Euclidean metric,

then we can always choose ω =
√
g dx1∧dx2, where g is the determinant of the surface’s metric.
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Proposition B.14. Let M be a 2n-dimensional differentiable manifold. A 2n×2n matrix Ω(x)

of functions of x ∈M defines a symplectic form on M , ω = ωij(x)dxi ∧ dxj , if and only if

1. |Ω| 6= 0 (nondegeneracy)

2. ωij = −ωji (skew-symmetry)

3.
∂ωij
∂xk

+
∂ωjk
∂xi

+
∂ωki
∂xj

= 0 (Jacobi identity)

The matrix Ω satisfying the above three properties will be called the symplectic structure matrix.

Proof. We have already seen that the first two properties express directly the nondegeneracy

and skew-symmetry of the symplectic form. Finally, the third one comes from the closure, for

all i, j and k we have

dω = d

(
1

2
ωijdx

i ∧ dxj
)

=
1

2

∂ωij
∂xk

dxk ∧ dxi ∧ dxj

=
1

6

(
∂ωij
∂xk

+
∂ωij
∂xk

+
∂ωij
∂xk

)
dxi ∧ dxj ∧ dxk

=
1

6

(
∂ωij
∂xk

dxi ∧ dxj ∧ dxk +
∂ωjk
∂xi

dxj ∧ dxk ∧ dxi +
∂ωki
∂xj

dxk ∧ dxi ∧ dxj
)

=
1

6

(
∂ωij
∂xk

+
∂ωjk
∂xi

+
∂ωki
∂xj

)
dxi ∧ dxj ∧ dxk

or, since there are six permutations of the three indices i, j, k, if we return to the typical ordered

triple i < j < k we get

dω =

(
∂ωij
∂xk

+
∂ωjk
∂xi

+
∂ωki
∂xj

)
dxi ∧ dxj ∧ dxk (B.51)

Therefore dω = 0 if and only if the latter 3-form vanishes, i.e. all of its components are zero.

One of the most characteristic examples of symplectic manifolds that often appears in many

problems of Classical Mechanics is the cotangent bundle of a smooth manifold.

Example B.15. The cotangent bundle. Let M be an m-dimensional smooth manifold. The

disjoint union of the cotangent spaces T ∗xM for every point x of M is called the cotangent bundle

T ∗M . A point on the manifold T ∗M is denoted by (x, vx), where x is a point of M and vx a

covector of M at x, and local coordinates are
(
x1, . . . , xm, v1x , . . . , vmx

)
. Note that the cotangent

bundle is (2m)-dimensional. This construction comes also equipped with the natural projection

π : T ∗M −→ M defined as π(x, vx) = x for every x ∈ M and vx ∈ T ∗xM . The cotangent
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bundle is naturally equipped with a symplectic structure, coming from the so called Liouville

or tautological 1-form ϑ defined on T ∗M as

ϑ(X)(w) = v(π∗(X))(x) (B.52)

for every vector field X on T ∗M , where w = (x, vx) and v(x) = vx. The above relation is

described in terms of the push-forward of the natural projection which assigns a vector field X

on T ∗M to a vector field on M . However, recalling (B.34), we can take instead the pull-back of

π which drags every 1-form v = vi dx
i of M to a 1-form in T ∗M . In other words, from (B.52)

we have ϑ(X)(w) = π∗(v)(X)(w) and therefore ϑ = π∗(v) or in local coordinates

ϑ = vi dx
i, (B.53)

Taking then the differential of the Liouville 1-form ϑ, the resulting 2-form is obviously closed

and nondegenerate,

ω = dϑ = dvi ∧ dxi (B.54)

and therefore symplectic. In conclusion, the cotangent bundle of every manifold carries naturally

a canonical (soon to be defined) symplectic structure expressed directly in local coordinates.

Alhough the more popular symplectic forms were defined here first, presymplectic ones actu-

ally precede them, relaxing the nondegeneracy restriction.

Definition B.16. A closed 2-form B on a manifold M is called a presymplectic form, and M

equipped with B is called a presymplectic manifold.

Remark B.17. Note that without the nondegeneracy condition presymplectic manifolds need

not to be even-dimensional. However, using the same argument as in the proof of Proposition

B.12, we conclude that the rank of a presymplectic form (which may not be constant) is even.

A natural question raised, when one sees the many applications of symplectic manifolds es-

pecially through Hamiltonian mechanics is what do they have in common? More precisely, is

there a way of classifying them? Locally, the answer came from Darboux in 1882 proving that

every symplectic manifold locally looks like R2n (which will be visited as a whole in the next

appendix), while an extension for presymplectic manifolds also followed. The theorem bearing

his name is stated below for the generalized version of presymplectic forms, treating symplectic

ones as a special case. Proofs of this theorem for the original symplectic case can be found for

example in [3], p. 175, or [69], p. 571, both due to Moser and Weinstein. A less elegant, but less
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demanding, too, proof is outlined in [69], p. 594 (and also fully given in the previous edition

of [69], still available online). For a proof of the presymplectic version, which is based on the

symplectic case, see [3], p. 371 or [74], p. 140.

Theorem B.18 (Darboux). Let M be a (2n+k)-dimensional presymplectic manifold equipped

with a presymplectic form B of constant rank 2n. In the neighborhood of any point x of M

there exist local coordinates (x1, . . . , x2n, z1, . . . , zk), called canonical, such that

B = dxn+i ∧ dxi . (B.55)

Moreover, every presymplectic manifold locally splits in a submanifold S and a leaf N that

intersect transversally at x (when k = 0, B is symplectic, N are zero-dimensional and we

recover the original Darboux’ theorem for symplectic manifolds). The double union of all the

tangent spaces to N for every x and every leaf, is spanned by the vector fields that belong to

the kernel of the map B[, which repeating (B.47) is

kerB[ = {v : B(v,w) = 0, ∀w} =
{
v : Bijv

j = 0
}
. (B.56)

The space E = kerB[ has the structure of a vector bundle of dimension 2n+2k and is known

as the characteristic bundle of B. When the rank of B is constant, it is in fact a subbundle

of the tangent bundle TM , the latter being the disjoint union of the tangent spaces TxM for

every point x of M . For the description of vector bundles in general see [69] and for (B.56) in

particular we refer to [3].

Remark B.19. In a three-dimensional manifold M every 2-form B has either zero rank (being

trivial) or two. If it is of rank two everywhere then its kernel Ex at any point x (i.e. the fibers

of E) is one-dimensional, in which case we speak of a characteristic line bundle E. Moreover, if

M is orientable then mapping B under the Hodge star operation to a vector field B = ∗B via

(B.39), the condition Bijv
j = 0 can be equivalently expressed as εijkv

jBk = 0. Thus, the vector

fields that belong to E can be determined in this case as the ones parallel to B.

Two symplectic structures of interest in this thesis related to a presymplectic form are given

by the next two propositions. First of all, observe that if M is a symplectic manifold equipped

with a symplectic form ω and B is any presymplectic form defined on M , then ω̃ = ω+B is also

symplectic. Let us look into this for the special case of cotangent bundles where the following

result holds [74].
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Proposition B.20. Let M be a presymplectic manifold equipped with a presymplectic form

B. Then there is a symplectic structure ω̃ on the cotangent bundle T ∗M and an embedding

g : M −→ T ∗M , such that g∗(ω̃) = B.

Proof. Let ω be the canonical symplectic form (B.54) on T ∗M and π the natural projection from

T ∗M to M , both as constructed above, and consider B = Bij(x)dxi ∧ dxj in local coordinates.

Define the 2-form

ω̃ = ω + π∗(B) (B.57)

Then obviously ω̃ = dvi ∧ dxi +Bij dx
i ∧ dxj is closed and nondegenerate and hence symplectic.

Let g be the embedding defined as g(x) = (x, 0x), where 0x is the zero covector on M , and

w = wi∂xi and r = ri∂xi two vector fields on M . From (B.35) then we can easily see that

g∗(ω) (w, r) = ω (g∗(w), g∗(r)) = dvi ∧ dxi
(
wj∂xj , r

k∂xk
)

= riwjdvi(∂xj ) = 0, and consequently

we have g∗(ω̃) = g∗(π∗(B)) = (π ◦ g)∗(B) = B.

A similar construction, given by the next proposition, yields a lower-dimensional symplectic

manifold than the cotangent bundle. Here we follow (a simplified version of) the proof given by

Marle [81]; another one was given by Gotay [37]. For this case, canonical transformations for

presymplectic systems were also developed by Carinena et al. in [19].

Proposition B.21. Let M be a (2n+k)-dimensional presymplectic manifold equipped with

a presymplectic form B of constant rank 2n. Then there is a symplectic structure ω̃ on the

(2n+2k)-dimensional dual bundle E∗ of the characteristic bundle E = kerB[ and an embedding

g : M −→ E∗, such that g∗(ω̃) = B.

Proof. A preliminary needed first is the notion of the generalized Liouville 1-form ϑλ associated

to a projection λ : TM −→ E. The 1-form ϑλ is defined on E∗ in terms of the Liouville 1-form

ϑ by the relation

ϑλ = (tλ)∗(ϑ) (B.58)

where tλ : E∗ −→ T ∗M is the transpose map of λ. Let π̃ : T ∗M −→ M and π : E∗ −→ M

denote natural projections. For our needs it suffices to restrict to the simple case, where λ is also

the natural projection. Note then that π̃ ◦ tλ = π. Recalling from Example B.15 that ϑ = π̃∗(v),

we have ϑλ = (tλ)∗π̃∗(v) = (π̃ ◦ tλ)∗(v) = π∗(v), where v is a 1-form on M .

Now, according to Darboux’ theorem, at any point of M we can find canonical coordinates

(x1, . . . , x2n, z1, . . . , zk) in terms of which B = dxn+i ∧ dxi. Local coordinates in E∗ are in
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this case (x1, . . . , x2n, z1, . . . , zk, v2n+1, . . . , v2n+k) and thus the generalized Liouville 1-form is

ϑλ = v2n+j dz
j . Define then the 2-form

ω̃ = ωλ + π∗(B) (B.59)

where ωλ = dϑλ, i.e. ω̃ = dv2n+j ∧ dzj + dxn+i ∧ dxi. Obviously ω̃ is closed and nondegenerate,

therefore symplectic. Let g be the embedding defined as the map of M to the zero-section of

E∗. Similarly as in the previous proof, g∗(ωλ) = 0 and hence g∗(ω̃) = B.

Presymplectic forms are also found in the literature as magnetic terms, revealing their close

connection with the structure of the magnetic field. In this context, they often arise in the

cotangent bundle reduction process [83].

For further study, see [99] for Souriau’s fundamental ideas and contributions on the connection

of presymplectic manifolds and mechanics among other things.



Appendix C

Hamiltonian Systems of ODEs

The equivalence of Newtonian and Hamiltonian Mechanics is reflected if not based on the alter-

native way of writing Newton’s second law as a first-order system

dxi

dt
=
∂H

∂pi
dpi
dt

= −∂H
∂xi

(C.1)

widely known as Hamilton’s equations. The coordinates
(
xi, pi

)
are called canonical variables

and H = H(xi, pi) is called the Hamiltonian function. However, other problems, in fact whole

branches of Physics are characterized by a Hamiltonian structure that may not be feasible in the

above fashion. The charged particle motion as well as magnetic field lines are full of Hamiltonian

aspects that cannot always be expressed through formalism (C.1). In this section, we give a brief

review of a generalized notion of Hamiltonian systems, strictly for ordinary differential equations

as the equations of interest in this thesis. Actually, our main concern here is to escape from the

demanding reliance on canonical coordinates and the related canonical transformations, too. In

order to do so, we focus on the key concept of Poisson structures, rather than symplectic ones,

avoiding almost entirely the sophisticated language of differential forms that is often adopted in

most textbooks of Classical Mechanics. An exception to this rule is [89], which we refer to for

further reading, as well as [57] where symplectic matrices are employed rather than forms.

Let us start by introducing first some geometrical considerations. Instead of separating the

variables of a problem in “positions” and “momenta” as in (C.1), we group them all together

denoted as w = (w1, . . . , wm). For finite-dimensional problems considered here, w may be

regarded as a point in Rm, or, in general, in an m-dimensional differentiable manifold M . The

dependent variables then of a first-order system of m ordinary differential equations (often called

219
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dynamical system) are the local coordinates on M , while the independent variable t lies in some

interval of R.

Definition C.1. A system of first-order ordinary differential equations is called Hamiltonian if

it can be expressed as
dw

dt
= J(w)∇H(w), (C.2)

where w = (w1, . . . , wm) are the dependent variables, t the independent one, H is a smooth, real

function of w, ∇ the gradient with respect to w (dw/dt and ∇H written as column matrices),

and J an m×m matrix of functions of w that satisfies the following two properties :

1. J ij = −J ji (skew-symmetry)

2. J il
∂J jk

∂wl
+ Jkl

∂J ij

∂wl
+ J jl

∂Jki

∂wl
= 0 (Jacobi identity)

The functionH is called then the Hamiltonian function of the system and J the Poisson structure

matrix.

The main structure behind equations (C.2) dwells in the matrix J and its properties, giving

rise to a Poisson bracket. In order to understand what lies beneath the geometry of Hamiltonian

systems, we need first to define the Poisson structure.

Definition C.2. Let M be a differentiable manifold and C∞(M) the space of smooth, real

functions on M . A bilinear map { , } : C∞(M) × C∞(M) −→ C∞(M) that satisfies the

following properties :

1. {F,G} = −{G,F} (skew-symmetry)

2. {{F,G} , H}+ {{H,F} , G}+ {{G,H} , F} = 0 (Jacobi identity)

3. {F G,H} = {F,H}G+ F {G,H} (Leibniz’ rule)

for every F,G,H ∈ C∞(M) and a, b ∈ R is called Poisson bracket, while M equipped with a

Poisson bracket is called a Poisson manifold.

In the above form, Poisson structures were first introduced by Lichnerowicz, but their theory

can be traced back to Lie himself. Although this definition may sound abstract to an application-

oriented reader, the following proposition gives us a concrete expression of a Poisson bracket in

local coordinates.
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Proposition C.3. Let M be an m-dimensional differentiable manifold. An m×m matrix J(w)

of functions of w ∈M defines a Poisson bracket on M according to

{F,G} = (∇F )TJ∇G = J ij(w)
∂F

∂wi
∂G

∂wj
(C.8)

for every pair of smooth functions F and G of w if and only if it is skew-symmetric and satisfies

the Jacobi identity.

Proof. Bilinearity and Leibniz’ rule are automatically satisfied for the bracket (C.8), due to the

gradient operator. The equivalence of skew-symmetry between the matrix J and the bracket is

also apparent, since {G,F} = (∇G)TJ∇F =
(
(∇F )TJT∇G

)T
= (∇F )TJT∇G and therefore

{F,G} = −{G,F} if and only if J = −JT . Finally, for the equivalence of the Jacobi identity

we start off for example from the first term

{{F,G} , H} = J lk
∂

∂wl

(
J ij

∂F

∂wi
∂G

∂wj

)
∂H

∂wk

= J lk
∂J ij

∂wl
∂F

∂wi
∂G

∂wj
∂H

∂wk
+ J lkJ ij

∂2F

∂wl∂wi
∂G

∂wj
∂H

∂wk
+ J lkJ ij

∂F

∂wi
∂2G

∂xl∂wj
∂H

∂wk
.

Likewise we also obtain the relations

{{H,F} , G} = J lj
∂Jki

∂wl
∂H

∂wk
∂F

∂wi
∂G

∂wj
+ J ljJki

∂2H

∂wl∂wk
∂F

∂wi
∂G

∂wj
+ J ljJki

∂H

∂wk
∂2F

∂wl∂wi
∂G

∂wj
,

{{G,H} , F} = J li
∂J jk

∂wl
∂G

∂wj
∂H

∂wk
∂F

∂wi
+ J liJ jk

∂2G

∂wl∂wj
∂H

∂wk
∂F

∂wi
+ J liJ jk

∂G

∂wj
∂2H

∂wl∂wk
∂F

∂wi
,

and we suitably interchange the indices, as for example

J ljJki
∂H

∂wk
∂2F

∂wl∂wi
∂G

∂wj
= J ijJkl

∂H

∂wk
∂2F

∂wi∂wl
∂G

∂wj
.

Thus, if we add the above three equations by parts, using the skew-symmetry of J the terms

with second-order derivatives cancel each other, and so

{{F,G} , H}+ {{H,F} , G}+ {{G,H} , F} =

(
J li

∂J jk

∂wl
+ J lk

∂J ij

∂wl
+ J lj

∂Jki

∂wl

)
∂F

∂wi
∂G

∂wj
∂H

∂wk

As we can see the Jacobi identity of the Poisson bracket (C.8) is satisfied if and only if the

Jacobi identity of the matrix J is.

Consequently, the above proposition bridges Definitions C.1 and C.2, stating that the existence

of the matrix J , playing a crucial role for a Hamiltonian system, and the Poisson bracket are

equivalent.

Corollary C.4. The evolution of a Hamiltonian system (C.2) takes place in a Poisson manifold

with Poisson bracket (C.8).
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From (C.8) we also deduce that the elements of the structure matrix J can be defined from

the Poisson bracket as

J ij(w) =
{
wi, wj

}
. (C.9)

In terms of the Poisson bracket, the equations of the Hamiltonian system can also be written as

dw

dt
= {w,H}

Remark C.5. We should comment here that (C.9) is of great importance for the presentation

of the charged particle motion in chapter 1. For when we make a change of variables in a

Hamiltonian system and want to recover the Poisson matrix in the new variables, we don’t

have to blindly search from the beginning. We only need to determine the brackets of the new

variables using the Poisson bracket in terms of the old ones. So, this methodology is often

employed in order to express the Poisson matrix and consequently the equations of motion for

charged particles in different (velocity) coordinate systems, i.e. conjucate momenta, physical

velocities, parallel and perpendicular velocities, etc. In the Hamiltonian literature the question

arises of whether a transformation of variables retains the Poisson structure, in which case is

called a Poisson map (or, in the case of a symplectic structure discussed right below, a canonical

transformation), or not. For our purpose, however, a negative answer to this question, although

undesirable, does not prevent the outcome. In fact, none of the transformations in chapter 1 are

canonical, and the terminology “pseudo-canonical” to describe them in [4] won’t be necessary

nor adopted here.

Finally, another useful relation, often employed in chapter 1 in the spirit decribed in the

previous remark, concerns the Poisson bracket of two functions F and H ◦ G = H(G) on M ,

where one of them is functionally dependent of a third function. Then,

{F,H ◦G} = J ij
∂F

∂wi
∂(H ◦G)

∂wj
= J ij

∂F

∂wi
H ′(G)

∂G

∂wj
= H ′(G) {F,G} (C.10)

Now, that we have established the local expression of the Poisson bracket, we may ask how it is

related to the notion of a symplectic form traditionally used to describe Hamiltonian systems. If

we compare the properties of a symplectic matrix given in Proposition B.14, with the properties

of a Poisson matrix stated in Definition C.1, we note two things: i) both matrices satisfy the

Jacobi identity, which, however, is expressed quite differently for each one: In terms of the

(covariant) elements of the symplectic matrix it results in a system of linear PDEs, but for the

(contravariant) ones of the Poisson matrix leads to a system of non-linear PDEs, and ii) the

symplectic matrix is additionally invertible, while the Poisson matrix is not necessarily. Both
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these points are better clarified in light of the following proposition. But first, we note that the

symplectic matrix being inverse was crucial for proving Proposition B.12, which in fact leads us

to the next remark.

Remark C.6. The dimension of a Poisson manifold and therefore of a related Hamiltonian

system (C.2) is not necessarily an even number, as opposed to that of a symplectic one. Still,

based on the same argument used in the proof of Proposition B.12, the rank of a Poisson matrix

(which may not be constant) is even.

Proposition C.7. A Poisson manifold is symplectic if and only if the Poisson structure matrix

J is invertible. In this case Ω = J−1, where Ω is the symplectic structure matrix.

Proof. On the grounds of Propositions B.14 and C.3, we need only to compare the matrices J

and Ω. The equivalence of skew-symmetry can easily be seen: J = −JT ⇔ J−1 =
(
−JT

)−1 ⇔

Ω = −
(
J−1

)T
= −ΩT . For the Jacobi identity, first we recall that

JΩ = I ⇒ J lmωmj = δlj ⇒
∂J lm

∂wk
ωmj + J lm

∂ωmj
∂wk

= 0⇒ ωil
∂J lm

∂wk
ωmj + ωilJ

lm∂ωmj
∂wk

= 0

⇒ ωil
∂J lm

∂wk
ωmj +

∂ωij
∂wk

= 0⇒ Ω
∂J

∂wk
Ω +

∂Ω

∂wk
= 0⇒ ∂Ω

∂wk
= −Ω

∂J

∂wk
Ω

Therefore starting with the Jacobi identity in terms of Ω, we substitute the above relation on

the left-hand side and use the skew-symmetry of Ω,

∂ωij
∂wk

+
∂ωjk
∂wi

+
∂ωki
∂wj

= −ωil
∂J lm

∂wk
ωmj − ωjl

∂J lm

∂wi
ωmk − ωkl

∂J lm

∂wj
ωmi

= ωilωjm
∂J lm

∂wk
+ ωjlωkm

∂J lm

∂wi
+ ωklωim

∂J lm

∂wj
.

Multiplying successively by Jai, Jbj and Jck (and note that since J is invertible we can always

go backwards), we have

∂ωij
∂wk

+
∂ωjk
∂wi

+
∂ωki
∂wj

= 0⇔ δal δ
b
mJ

ck ∂J
lm

∂wk
+ δbl δ

c
mJ

ai∂J
lm

∂wi
+ δamδ

c
l J

bj ∂J
lm

∂wj
= 0⇔

Jck
∂Jab

∂wk
+ Jai

∂Jbc

∂wi
+ Jbj

∂Jca

∂wj
= 0⇔ Jal

∂Jbc

∂wl
+ Jcl

∂Jab

∂wl
+ Jbl

∂Jca

∂wl
= 0,

i.e. the two properties are equivalent. Thus, if a Poisson manifold is symplectic, then the Poisson

structure matrix is related to the symplectic one through J = Ω−1 and therefore is invertible,

while if J is invertible then its inverse Ω = J−1 defines a symplectic structure.

Remark C.8. More geometrical insight to Poisson manifolds shows that the Poisson bracket

actually gives rise to a 2-vector field (see (B.31)), expressed in local coordinates as

Π = J ij
∂

∂wi
∧ ∂

∂wj
(C.11)
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as opposed to the 2-form ω related to the symplectic structure. And as with ω[ now the map

Π# is introduced, defined as the vector field Π#(a) = Π ( , a), meaning Π#(a) = J ijaj∂wi , for

every 1-form a. This geometrical picture of the Poisson bracket is often considered in many

textbooks of Classical Mechanics, such as [74, 83].

The canonical case. Let us now revisit the case of canonical variables to recover standard

expressions. For system (C.1), the space considered is R2n, where w =
(
xi, pi

)
, and the Poisson

matrix is the 2n× 2n constant matrix

J =

 O I

−I O

 , (C.12)

where O is the n × n zero matrix and I is the n × n identity matrix. Note that J in (C.12)

trivially satisfies the Jacobi identity, since it is constant, and that its determinant is |J |= 1 6= 0.

Therefore, a canonical symplectic form is defined as ω = dpi ∧ dxi, while the canonical Poisson

bracket is

{F,G} =
∂F

∂xi
∂G

∂pi
− ∂F

∂pi

∂G

∂xi
(C.13)

for any two differentiable functions F and G of w. Finally, the following relations also hold,{
xi, xj

}
= {pi, pj} = 0 and

{
xi, pj

}
= δij . As we saw in the previous appendix, the canonical

form is naturally induced to the cotangent bundle of every differentiable manifold, R2n being

just the case for Rn, from the exterior derivative of the Liouville 1-form pidx
i.

In spite of the generalization of the canonical case, necessary to include a whole variety of

Hamiltonian systems, its significance is by no means diminished. The reason is that locally every

Poisson structure can be expressed as in (C.13). This is the analogue of Darboux’ theorem for

Poisson manifolds generalized by Weinstein with his famous splitting theorem, stated below for

consistency, without proof though, as it is beyond the scope of this thesis. For the constant rank

case presented here, a nice proof is given in [89] being the Poisson counterpart of the one outlined

in [69], p. 594 for the symplectic case, that we mentioned earlier in the previous appendix.

Theorem C.9. Let M be a (2n+k)-dimensional Poisson manifold equipped with a Poisson

bracket of constant rank 2n. In the neighborhood of any point w of M there exist local canonical

coordinates (w1, . . . , w2n, z1, . . . , zk), such that

{F,G} =
∂F

∂wi
∂G

∂wn+i
− ∂F

∂wn+i

∂G

∂wi
.
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Furthermore, Weinstein’s theorem describes how every Poisson manifold locally splits in a trivial

Poisson submanifold N at w and a symplectic leaf S passing through w that intersect transver-

sally at this point. The double union of all the tangent spaces to S for every w and every

symplectic leaf, is spanned by the vector fields that belong to the image of the map Π# (see

Remark C.8),

Im Π# =
{

v = Π#(a) : a ∈ T ∗M
}

The importance of this space lies on the fact that it is in fact isomorphic to the span of all the

Hamiltonian vector fields on M ,

Im Π# =
{

v = Π#(dF ) : F ∈ C∞(M)
}

=
{
v : vi = J ijFwj , F ∈ C∞(M)

}
where put more simply Π#(dF ) = { , F}.

The 2-dimensional case. Let M be a two-dimensional manifold. One could argue that every

skew-symmetric matrix defined on M is a Poisson matrix, showing that the Jacobi identity

is trivially satisfied. Just as that every 2-form on M is a presymplectic form, recalling that

the corresponding closure condition is trivial, too. However, in both cases, since the rank of

either the Poisson or the presymplectic structure, respectively, is even, besides the trivial case

of zero rank, we are only left with the case of maximal rank 2, resulting though to a symplectic

structure.

Therefore, in continuation of Example B.13 we consider here the case of a two-dimensional

manifold in R3 equipped with a metric, whose determinant is g, induced by the Euclidean metric.

As previously shown, if (w1, w2) are local coordinates, we can always define on M the symplectic

form ω =
√
g dw2 ∧ dw1, which gives rise to the Poisson matrix

J =
1
√
g

 0 1

−1 0

 . (C.14)

The non-autonomous case. As we can see, Definition C.1 refers to autonomous systems only.

However, it can still be valid, if the Hamiltonian function depends also on t, with no discrimi-

nations whatsoever. A proper treatment though that retains all the geometrical background is

to extend the m-dimensional non-autonomous problem to an (m+2)-dimensional autonomous

Hamiltonian system.

The way to do so is to consider the time t and the Hamiltonian H as two extra dependent

variables canonically conjugate to each other. More specifically, as described in [102], the value
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h of the Hamiltonian function is employed to be distinguished from the function H(w, t) itself.

In this way, we enlarge the original m-dimensional space M by wm+1 = t and wm+2 = −h to

an (m+2)-dimensional space denoted as M̃ , and system (C.2) by the trivial equations

dwm+1

dt
= 1

dwm+2

dt
= −∂H

∂t

(C.15)

to a Hamiltonian system in M̃ , respectively. The extended Hamiltonian on M̃ can then be

defined as the function

H̃(w1, . . . , wm+2) = H(w1, . . . , wm+1) + wm+2 (C.16)

The new Hamiltonian is now autonomous and the motion of the system is realized on the

hypersurface H̃ = 0. Note that in terms of H̃, the two additional equations (C.15) are in

canonical form. Thus, if J is the Poisson matrix of the non-autonomous system,

J̃ =


J 0 0

0 0 1

0 −1 0


is the extended Poisson matrix defined on M̃ and correspondingly the extended Poisson bracket

for any two smooth functions F and G on M̃ is

{̃F,G} = {F,G} − ∂F

∂t

∂G

∂h
+
∂F

∂h

∂G

∂t
. (C.17)

Likewise, in case of a symplectic structure ω the following extended symplectic form can be

considered

ω̃ = ω − dh ∧ dt (C.18)

See [74], p. 329 for the symplectic case in the cotangent bundle. It is also worth noting that for

an autonomous system much of the above considerations can be used in the opposite direction,

meaning to reduce the problem to a non-autonomous system. See, for example, [3], p. 391 the

so-called Hamiltonian flow box theorem, where the treatment of time and (time-independent)

Hamiltonian function as canonical variables is employed not for enlarging the system but ulti-

mately instead for reducing it.



Bibliography

[1] Arnold V. I. (1978) Mathematical Methods of Classical Mechanics, Graduate Texts in

Mathematics, Springer-Verlag.

[2] Abdullaev S. (2006) Construction of Mappings for Hamiltonian Systems and Their Ap-

plications, Springer.

[3] Abraham R., Marsden J. E. (1987) Foundations of Mechanics, 2nd edition, Addison-

Wesley Publishing Company, Inc..

[4] Balescu R. (1988) Transport Processes in Plasmas vol. I : Classical Transport, North-

Holland.

[5] Balescu R. (1988) Transport Processes in Plasmas vol. II : Neoclassical Transport, North-

Holland.

[6] Barut A. O. (1980) Electrodynamics and Classical Theory of Fields and Particles, Dover

Publications Inc..

[7] Baumann G. (2000) Symmetry Analysis of Differential Equations with Mathematica,

Springer-Verlag.

[8] Bellan P. M. (2006) Fundamentals of Plasma Physics, Cambridge Univeristy Press.

[9] Βλάχος Λ. (2000) Φυσική Πλάσματος, η τέταρτη Κατάσταση της ΄Υλης, Εκδόσεις Τζιόλα,

Θεσσαλονίκη.

[10] Bluman G. W., Kumei S. (1989) Symmetries and Differential Equations, Applied Math-

ematical Sciences, Springer-Verlag.

[11] Bluman G. W., Anco S. C. (2002) Symmetry and Integration Methods for Differential

Equations, Applied Mathematical Sciences, Springer-Verlag.

227



228 BIBLIOGRAPHY

[12] Bluman G. W., Cheviakov A. F., Anco S. C. (2010) Applications of Symmetry Methods

to Partial Differential Equations, Applied Mathematical Sciences, Springer.

[13] Bogoyavlenskij O. I. (1998) Extended integrability and bi-Hamiltonian systems, Com-

mun. Math. Phys. 196, 19-51.

[14] Bogoyavlenskij O. I. (2001) Infinite symmetries of the ideal MHD equilibrium equations,

Phys. Lett. A 291, 256-264.

[15] Boozer A. H. (1983) Evaluation of the structure of ergodic fields, Phys. Fluids 26, 1288-

1291.

[16] Bouquet S., Bourdier A. (1998) Notion of integrability for time-dependent Hamiltonian

systems, Phys. Rev. E 57, 1273-1283.

[17] Brizard A. J., Chan A. (1999) Nonlinear relativistic gyrokinetic Vlasov-Maxwell equa-

tions, Phys. Plasmas 6, 4548-4558.

[18] Burby J. W. (2015) Chasing Hamiltonian Structure in Gyrokinetic Theory, Ph.D. Thesis,

Princeton University.
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