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INTRODUCTION

Recent advances in Cosmology have strongly indicated that we are living in
a flat, accelerating universe with:

1 2
~ 3 matter (baryonic and dark) + 3 dark energy .

The basic set of experiments that we have:

e SNela data [Perlmutter et al. 1999; Tonry et al. 2003]
e CMB anisotropies [Spergel et al. 2003]

e Large Scale Structure [Percival et al. 2002]

e Age of the Globural clusters [Tegmark et al. 2003]

e High Redshift Galaxies [Viel et al. 2003]

Do we know anything regarding the nature of the above exotic dark
energy? Possible candidates for quintessence could be:

(I) A time varying A-parameter (Caldwell, Dave & Steinhardt 1998a) (III)

An extra “matter” component, which is described by an equation of state
Py = wpg where —1 < w < 0. As a particular case, A-models can be
obtained from quintessence models with w = —1.

e Several results suggest w < —0.6 [Efstathiou 1999; Basilakos & Plionis
2003; Tegrmark et al. 2003]
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Figure 1: The evolution of the effective cosmic mean density (Tegmark 2002).
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Figure 2: The overall concordance region based low, intermediate, and high redshift tests for quintessence
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Model 2 is the best fit QCDM model (Wang & Steinhardt 2000).
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Figure 7: 95% constraints (Tegmark et al. 2003) in the (Q,,, Q).
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Figure 8: WMAP best fit (Spergel et al. 2003) (Q,, Q) = (0.3,0.7) and H, = 70/ Km/sec/Mpc.
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Figure 9: The residual Hubble diagram (Tonry et al. 2003) with respect to an empty universe. In this plot
the highlighted points correspond to median values in eight redshift bins. From top to bottom the curves
show (Q,,, Q) = (0.3,0.7), (0.3,0.0), and (1.0,0.0), respectively.



DYNAMICS IN MODELS WITH
DARK ENERGY

For homogeneous and isotropic cosmologies, the time evolution equation of
the models is determined by the Friedmann-Lemaitre equations:

a\? 8rGp k
(ﬁ‘_3 a2 (1)
and .
% = _4nG(p+3P) . 2)
«

THE TOTAL MASS-ENERGY DENSITY AS WELL AS THE TO-
TAL PRESSURE:

p=pPpm+p+pg and P=PF,+ P + Py

e For Matter: p,, = pmo(l + 2)% and P, = 0.
e For Radiation: p, = p,o(1+ 2)* and P, = %pr.

e For Dark energy: pg = pgo(1+ 2)*®*Y and Py = wpy.

Considering the matter epoch p, and P, are negligible.

&\*  8rG k
oyt _ere _ 3
() =" ou+00) - )
and B | |
a
= = —4nG - ~puml 4
% — —anGlw+ 3)pg + 3l ()
Note that for w = —1 we have the ACDM case (Q = A).
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Figure 10: The evolution of the dark energy density for different cosmological models.
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AS A FUNCTION OF REDSHIFT:
The Friedmann-Lemaitre equation (3) divided by H = &/« we have:
_ 8nGpm  8mGpg B k

1= 3H2 3H2 22 )1:Qm—|—QQ—|—Qk (5)
Un(s) = ()
P 3(1+w)
Qo(z) = QQO(lEj;(Z)) (7)
and
Qu(z) = % (8)
where

B(2) = [Qu(1+ 2) + (1 + 2) + Qgo(1 + 2)31+] 2
(), (density parameter), €, (curvature parameter), Qg, (dark en-
ergy parameter) at the present time.

Different values of w could yield cosmological models where:

e A-models can be described by quintessence models with w strictly equal
to -1.

e if w = 0 the equation of state behaves like that of pressureless matter. In
other words, Py = 0 plays a similar role to the cold dark matter (CDM).

e Having a flat low-Q, with w = —1/3 model, the dark energy density
can be given by pg o (1 + 2)2.
wpg leads to the same expansion as in an open universe. In other

words, Py plays a similar role to the curvature, despite the fact that

Therefore, the equation of state Py =

this quintessence model has a spatially flat geometry!

e Having a flat low-Q, with —1 < w < —1/3 model, for the dark energy
density we have pg oc o~ B0+Y) < 073 « p - which means that the dark
energy density falls off at a slower rate than cold dark matter. This is
very important because the dark energy component starts to dominate
the mass density in the universe, especially at the late times, thus creating
an accelerating expansion.



NEOCLASSICAL TESTS

(A) TIME EVOLUTION:

(B) ANGULAR SIZE DISTANCE:

H,a, z dz
y(z) = HoOéoT(Z) - WS}c [\ Qo |1/2 /0 m] (10)

where

Si(x) = sinhy for open, Si(x)=sinx for close, Si(x) = x for flat Geometry

(C) THE DISTANCE MODULUS:

m — M = 25 + 5log[3000(1 + z)y(z)] — blogh (11)

H, = 100hKm sec™! Mpc_1 06 <h<1

(D) LINEAR PERTURBATION THEORY § < 1:

Considering the matter as an ideal fluid and utilizing the Newtonian mechan-
ics (mass conservation, Euler and Poisson equations) we can obtain the time
evolution equation for the mass density contrast: § = (§pw/pm), with general
solution of the growing mode (cf. Peebles 1993) being 6 o< D(t), is:

0% 00

while the growth factor of the linear density contrast can be given by (Silveira
& Waga 1994; Basilakos & PLionis 2003)

D(z) = (14 z)_lF[—i, “’T;l - % (82 - ”&* A7 )
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Figure 12: The angular size distance and the time evolution for different cosmological models.
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Figure 13: The apparent magnitude for SNel.



COSMOLOGICAL PARAMETERS

e Matter Density: 2, = 0.27 £+ 0.04

e Baryon Density: 2, = 0.044 + 0.004

e Dark Energy Density: g, = 0.73 £ 0.04

e Equation of State: w < —0.6, most probable w = —1

e Hubble Constant: H, = 717Km/sec/Mpc

e Age of the Universe: T, = 13.7 £ 0.2Gyr

e Matter Power Spectrum Normalization: o3 = 0.84 + 0.04

e Decoupling Redshift: z;,. = 1089 + 1

e Redshift of Matter/Radiation Equality: z., = 323313}

e Spectral Index at k£ = 0.05Mpc~': n, = 0.99 £+ 0.03

e Baryon/Photon Ratio: n = (6.17)3) x 1071



CDM COSMOLOGIES

Now we present the cosmological models that we use in this work. For the
power spectrum of our CDM models, we consider P(k) ~ k"T?(k) with
scale-invariant (n; = 1) primeval inflationary fluctuations. We utilized the
transfer function parameterization as in Bardeen et al. (1986):

_ In(1 +2.34q)
N 2.34q
Here ¢ = k/hI', k = 27/) is the wavenumber in units of A~ Mpc™! and T, is

the CDM shape parameter, in units of (h"*Mpc)™!, given approximately by
Sugiyama’s (1995) formula:

T(k) [14 3.89¢ + (16.1¢)% + (5.46¢)> + (6.71¢)"71/* .

T ~ Q.hexp[—Qy — (20)Y2Q/Q] |
where (2, is the baryon density.

Cold Dark Matter Models (CDM):

e SCDM model: Q, =1, H, =50 Kms 'Mpc~!, and I" ~ 0.5.
e OCDM model: Q, =0.3, H, = 65 Kms 'Mpc~!, and I' ~ 0.2.

e ACDM model: Q, =1—-Q, =03, w= -1, H, = 70 Kms~'Mpc™!
and I' ~ 0.2.

e QCDM1 model: Q, =1— Qg, = 0.3, H, = 70 Kms 'Mpc™}, w =
—2/3, and T" ~ 0.2.

e QCDM2 model: Q, =1- Qg, = 0.3, H, = 70 Kms 'Mpc™!, w =
~1/3, and T ~ 0.2,

Finally, the latter cosmological models are normalized to have fluctuation
amplitude in 8 h~'Mpc scale of

os = 0.50+£0.1Q,7 (Wang & Steinhardt 1998)
with v = 0.21 — 0.22w + 0.33€), .



CLUSTER FORMATION IN MODELS
WITH DARK ENERGY

Why Clusters of Galaxies? because being the largest physical labora-
tories in the universe, they appear to be ideal tools for studying large-scale
structure, testing theories of structure formation and extracting invaluable
cosmological informations (£2., H, etc).

Non-Linear Evolution of Perturbations § >> 1:

The simplest approach to non-linear evolution is to follow the spherical
“TOP-HAT” collapse model.

e Suppose that at the epoch defined by 1 + z; = 103 the universe is char-
acterized by an unperturbed Hubble flow.

e The matter fluctuation field has a Gaussian distribution and the density
of mass scales of clusters is normally distributed about the mean density
with variance og.

e We take into account also the dark-energy (A for w = —1)

e Therefore we can write for the perturbations:

Qos = Qg(zy) and Qe = L (20) (L + A)



CLUSTER FORMATION:

e For the bound perturbations that we consider, the matter fluctuation
field has a Gaussian distribution

1 A?

e The solution of the integral, describes the fraction of the universe (char-
acterized by €2, ¢, and og) on some specific mass scale that has already
collapsed at time ¢ and is given by (see also Richstone et al. 1992):

()b o

e Then, we can obtain the ratio (cf. Richstone et al. 1992) of the collapse
time to the current age of the (unperturbed) universe:

t 00 dz 00 dz -
7= Trona [/o (1+:E)E(x)] (16)
where

M(A,2) = [Q(1+A)(1+2)° + (1 - Q1+ A)—
Qo) (1+ 2)° + Qqo(1 +2)"12 .

e The next step is to normalize the cluster formation to give the ratio
of the number of clusters which have already collapsed by the epoch ¢
(cumulative distribution), divided by the number of clusters which have
collapsed at the present epoch:

F =

(17)

with

f= . (18)



Figure 14: The 3D map of the local superclusters (Basilakos, Plionis, Robinson 2001) within 200k~ *Mpc.
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Figure 15: Contour plot of the smoothed galaxy distribution on the supergalactic plane. Well known
structures appear in this plot; the largest and most evident is the Shapley concentration located at
(Xsup, Ysup) = (—120,60), the Perseus-Pisces supercluster at (Xsup, Ysup) ~ (60, —40), the Coma super-
cluster at (Xsup, Ysup) = (—20,70), the Ursa-Major supercluster at (Xsup, Ysup) = (100,100), the Pisces-
Cetus supercluster at (Xgup, Ysup) = (50, —140) while the Great Attractor (Hydra-Centaurus complex ?), at
(Xsup, Ysup) = (—30,30) appears in the foreground of the Shapley concentration.



e p. ~ 2.78 x 101Mh2M, Mpc= is the critical density, (n) is the num-
ber density of clusters which have collapsed prior to the present epoch.
The parameter (n) can be defined utilizing the Abell/ACO cluster cata-
logue, which is a volume-limited sample within ~ 180 — 200~~! Mpc and
which a general agreed value is: (n) ~ 1.8 x 107°h* Mpc~3. Therefore,
considering virialized clusters of the mass scale of rich Abell clusters,
M ~ 10"°h=1M,, it is a routine to obtain the ratio of collapsed matter
at the present time

f(10" M) = 0.065Q;*

e It is obvious that the above generic form (eq.15) depends on the choice
of the background cosmology. Indeed the relationship between A, z,
t/T, and oy is different in different cosmologies (cf. Mo & White 1996;
Magliocchetti et al. 2001)

A ¢ ¢
() _ = . (19)
o8 D(z)og  o(z2)
The value d. = 1.686 corresponds to the spherical top-hat model in €2, =
1, but it has been shown that é. depends only weakly on the cosmology
(Eke, Cole & Frenk 1996).
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Figure 16: Theoretical predictions of the fractional rate of cluster formation as a function of redshift and
fractional time t/T, for different cosmological models (Basilakos 2003).



VIRIALIZATION IN QCDM

Using the virial theorem we can write for the final state

1
T, = _§UG,U + UQ’U . (20)

Since the energy is conserved, assuming that the sphere remained uniform
we can write:

1
E = TU+UG,U+UQ,U - UG,ta+UQ,ta — §UG,U+2UQ,’U - UG,ta"'UQ,ta . (21)
with

e The matter potential energy:

3GM?
5 R;

Ugi =

e The dark energy potential:

4
UQJ' = —gﬂ'GpQ,iMR?

e Total mass: A
T
M=ol

where 7 = v and 7 = ta.

The above analysis leads to the following cubic equation for the ratio g—::

20y (=2)2 — (24 n)(=2) +1=0 (22)
where

n, — QQQO(l + 2,)30Hw) ny 2QQ0(1’ + 24q) 3" i (3_7T)29;0.79+0.2690—0.06w
]Qo(1+zta)3 ]Qo 4




ELEMENTS FROM ALGEBRA: Given a cubic equation:
:1:3—|—a1:1:2—|—a2:)3—|—a3:0 .
Let D be the discriminant:
D = a’a5 — 4a3 — 4alas — 27aj + 18ajaza;3
and

9 27 _3v3D

3
r1 = —aj + <ai1as — —as T9 =
L 2 7 2

then, the roots of the above equation are:

a1+1[ + )
rv=—-—-—— —
1 3 3fh q2
R
ro = 3+3[ q1 + €go)

1
T3 = —% + §[EQ1 + €q]

where ¢, = (z1 + i$2)1/3 and € = _1%\/__3 If D < 0, we have one real root
(r1) and a pair of complex conjugate roots. If D = 0, all roots are real and
at least two of them are equal. If D > 0, all roots are real (irreducible case).

In that case r{, r9 and r3 can be written:

=——+-R
r1 3 + 3
al 1
n=-%_Lryvaum
3 3
pa— — 1 TR _
T3 3
where R and M are given by
0 0
R = rl/?’cos(g) and M = rl/?’sin(g) (23)

with r = /22 4+ 2% and 6 = Arctan(za/z1).



COMMENTS:

e For Qg, = 0 (Einstein-de Sitter case), n, = n; = 0 the solution is:

Ry 1

Ry, 2

e The discriminant is:
2(2 + ny)3 — 27n,
4n3 '

D(ny,ny) =

Owing to the fact that we are living in an accelerating universe g, > 0
with low matter (baryonic and dark matter) density, the condition for an
overdensity shell to turn around is 0 < n; < n, < 1 which gives D > 0
and therefore all roots o f the cubic equation are real (irreducible case)
but one of them R )
ro = Rtfa = —g[R—I— \/§M]
corresponds to expanding shells. Thus, according to the solution de-
scribed above, figure 3 shows the surface behavior of the exact virial

solution in parametric form with:

272 27D\ "/° o1 2n,/3D
ri/3 = ! + ! and - = -Arctan 2 v3D
16n2 4 3 3 9




Figure 17: Ratio of the final (virial) to turnaround radius of a virialized cluster utilizing a QCDM cosmology
(Basilakos 2003). We give the surface in parametric form.



Figure 18: In this figure we plot as an example the optical SDSS image (cluster loccated at z = 0.67) is
overlaid with the X-ray contours from the XMM data.



CONCLUSIONS

We are living in a flat, accelerating Universe with 30% matter
(baryonic+dark), 70% dark energy, H, ~ 70Km/sec/Mpc and
T, ~ 13.7Gyr.

Rich clusters of galaxies formed at z ~ 2 in Cold Dark Matter
models with dark energy (negative pressure).

The cluster formation rate in quintessence models (—1 < w < 0)
is an intermediate case between the open and ACDM models
respectively.

XMM cluster project (Basilakos, Plionis, Georgantopoulos, Geor-
gakakis, Kolokotronis, Gaga, G. C. Stewart-Un. of Leicester, T.
Shanks-Un. of Durham)
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