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The Solar atmosphere

> u Visible surface

(photosphere), 6000 K

High chromosphere /
transition region, 50000 K,
altitude: 2000 km

Corona, > 100 K,

>
SR e L altitude: > 5000 km.
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Coronal structures

» Active regions
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High energy dissipation — bright structure in UV
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Coronal structures
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Coronal structures

» Active regions
> Quiet Sun, bright points

Structures even smaller may exist

EIT 195, 1997
High energy dissipation — bright structure in UV
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The coronal heating problem

» The corona is very hot (known since 1943)

» The Sun produces enough energy (in its core) to heat it
But:

» This energy needs to be transported to the corona, in a non-thermal
way. Solutions:

m Sound waves and slow magnetosonic waves excluded (do not reach
the corona)
m Fast magnetosonic and Alfvén waves
» |t needs then to be dissipated, but:

m The observed events of energy dissipation are not enough
m The physical mechanisms of dissipation:

@ wave-particle interactions
@ reconnexion, resistivity (Joule)

are too slow (not enough efficient)
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How to (finally) solve the problem?

A possible way: small scales (spa- > Diffusion time: L2/1, with

tial and temporal) na~1m?/s

» Dissipation mechanisms are
more efficient at small scales

(nanoflares, Parker 1988)
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How to (finally) solve the problem?

A possible way: small scales (spa- > Diffusion time: L2/, with
tial and temporal) na~1m?/s
» Dissipation mechanisms are
more efficient at small scales » Hudson (1991):
(nanoflares, Parker 1988) Pr(E),

\‘x\pente >27

Etc\

V Emin Eobs Emax E

» The smallest events
(non-observables) contribute
perhaps the most to the
heating of the corona
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The origin of small scales

May be created by turbulence:

E(k)
Injection
&,
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/‘gycas
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issipation
kinj Kdiss K

Photospheric  |nertial range Scales of
granulation dissipation

In the corona: Re = UL/n ~ 101 > 1
(for U=1Mm/s, L =10 Mm, n = 1m?/s)

Smallest (dissipative) scales: 10 m!
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Need for statistics of coronal heating

» Small flares, small scales:
m cannot be observed directly
m Hudson... — small-scale statistics extrapolated from observations
» Theoretical description of turbulence: statistics are a privileged
means of tackling its complexity

When used at the same time to analyze observations and simulations:
a comparison is possible
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Outline

© Numerical models of a coronal loop
© Coupled shell-models

@ Conclusions
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Numerical models of a coronal loop

© Numerical models of a coronal loop
@ Magnetohydrodynamics
@ Simplifications of MHD
@ Models of coronal loops
@ First model: based on cellular automata
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MagnetoHydroDynamics (MHD)

Starting-point: incompressible MHD

Equations, with pg =1, V.-v=0and V-B =0:

IR SR //io(vXB)xB+ (1)
0B = Vx(vxB)+ (2)

Includes velocity v, magnetic field B, and:

» Non-linear terms, which allow the creation of small scales
by turbulence

> terms, which allow energy dissipation
(mainly at small scales)

» Alfvén waves (as fluctuations)
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Need for simplifications

Direct numerical simulations (DNS) of MHD:
» Small grid sizes (=~ 10243 max)
» Reynolds numbers too small (1000)

» Too slow (long computations for just a few events)

—> Need for simplified simulations of MHD:

» Reduce number of spatial dimensions
— Einaudi, Velli, Georgoulis; Galtier...

» Reduce the number of active modes in turbulence, and the
complexity of their interactions

—— shell-models: Carbone, Giuliani...
—— cellular automata: Lu & Hamilton; Isliker & Vlahos, Krasnoselskikh...

Eric Buchlin Simplified simulations of MHD turbulence
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Coronal loops

Our models represent a coronal loop: loop of magnetic field, containing
plasma.

Large loops in active regions:

We are mainly interested in
small loops of the quiet Sun
(bright points and smaller):

«—— 120000 km — «— 150000 km —
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Common framework to our loop models

» The box represents a loop, MHD

» Weak forcing at the “photosphere”,

Ay NS M=—(vipn-Bi)Bo/ko

» Propagation of Alfvén waves along Bg
(along the loop)

» Non-linear interactions between these
/ waves

» Energy dissipation
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Common framework to our loop models

» The box represents a loop, MHD

» Weak forcing at the “photosphere”,

Ay NS M=—(vipn-Bi)Bo/ko

» Propagation of Alfvén waves along Bg
(along the loop)

Il
rr
A
;

» Non-linear interactions between these

waves

» Energy dissipation

Simplification: simplification of the
non-linear interactions in each cross-section
of the loop:

@ Cellular automata
@ Shell-models

Eric Buchlin Simplified simulations of MHD turbulence
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Coupled cellular automata

Each cross-section is a
cellular automaton.

Non-linear interaction between Alfvén waves:
avalanches, with threshold J. on current density
J.

— Buchlin et al. A&A 2003
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Coupled cellular automata

Each cross-section is a
cellular automaton.

Non-linear interaction between Alfvén waves:
avalanches, with threshold J. on current density
J.

— Buchlin et al. A&A 2003
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Coupled shell-models

The model Results and statistics Events

© Coupled shell-models
@ The model
@ Results and statistics
@ Statistics of events

Eric Buchlin

Simplified simulations of MHD turbulence
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Coupled shell-models ’%

\ £

Each cross-section L By is
a shell-model

(Giuliani and Carbone,
1998):

kr‘|72 kq—l lfn kq+1 kn‘+2
e
e |
R

» Logarithmic spacing of shells (modes)
(2D Fourier space)

» Non-linear interactions between neighboring modes (triads)
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Advantages of shell-models

> Large spread of wavenumbers (of scales)
with just a few modes (24)
— large Reynolds numbers
(10° instead of ~ 1000 for DNS)
— intermittency is possible

» Good model of local non-linear interactions between modes of MHD

» No free parameters (coefficients determined by conservation of
2D MHD invariants

Eric Buchlin Simplified simulations of MHD turbulence
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Spectrum development

Small scales, created by turbulent cascade
(due to non-linear terms of MHD)

Spectra of L kinetic energy in a loop cross-section as a function of time:

Cascade

log10 Eu
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Profile of kinetic and magnetic energy along the loop
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2D spectra

Obtained by Fourier
transform along the
loop.

log 10(kpar)

Anisotropic?
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Heating function

Energy dissipation as a function of time and position along the loop:

Heating funclion

44 45 46 47 43

£=45.025405
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Time series: energy and dissipation
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Intermittency of the dissipation power time series

Distributions of d,¢ = €(t + 7) — €(t) for different 7's:
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(normalized by their standard deviations)
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Intermittency of the dissipation power time series (2)

dre=e(t+7)—€(t)

Intermittency:

» Distributions of ¢ have a shape which depends on the scale 7,
Deviation from the Kolmogorov 1941 turbulence theory:
Turbulence is not self-similar (fractal), but multi-fractal

» Exponents (g of the structure functions S9(7) = (|6,¢€|9) oc 7% are a
non-linear function of q.

» In particular, the flatness
F(r) = $4(7)/(S*(7))?

grows at small scales:

Eric Buchlin Simplified simulations of MHD turbulence
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Intermittency as a function of the parameters

Reference run (- --): v =10713, a=L/¢ =10
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Distributions of events: energies

Distribution of energies of events
(defined by a threshold):
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Distributions of events: waiting-times

Distribution of waiting times between events
(defined by a threshold):

100.0000 : :
-2.27 +/- 0.07

10.0000
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Waiting time

Non-Poissonian, long-duration correlations
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About the definition of events

Other definition:
Each peak can be considered as an event.

Distribution of waiting-times:

|
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About the definition of events

Other definition:
Each peak can be considered as an event.

Distribution of waiting-times:
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Still Poissonian?
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About the definition of an event (2)

In the general case:

» Events statistics do depend on the definition of events (of course...)
Thus conclusions about the Poisson nature of the flaring process, or
about the nano-flares hypothesis, depend on the definition

» Higher sensibility of statistics to the definition
when intermittency is low

» Are there really clear events in a time series / structures in a MHD
field?

If not, it is better to use statistics which do not need events to be
defined (structure functions, spectra...)

— Buchlin et al. 2005 (submitted to A&A)
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Conclusions

@ Conclusions
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Conclusion

Conclusions

» Models designed to explore coronal heating at small scales created
by MHD turbulence.

» Simplified so as to be able to produce statistics

» First models of this type with geometry of a loop and energy loading
at footpoints.
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Conclusion

Conclusions

» Models designed to explore coronal heating at small scales created
by MHD turbulence.

» Simplified so as to be able to produce statistics

» First models of this type with geometry of a loop and energy loading
at footpoints.

Some results of the shell-model:

» Spectra of turbulence, large Reynolds numbers

> Intermittency (also as a function of parameters of the model)

» Heating function: dissipation power as a function of time and
position

» Events statistics distributed as power-laws: -2 for energy, -2.3 for
waiting-times.
But these distributions depend on the definition of an event w;

Eric Buchlin Simplified simulations of MHD turbulence
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Current and future developments

To allow a better comparison between model output and observations:
» Computation of radiative output
(via thermodynamics and atomic models)
» More realistic:
m Stratification: By(z)...
m Parameters and energy input deduced from observations
» Produce images of the luminosity of the loop
(geometry from extrapolations)

Eric Buchlin Simplified simulations of MHD turbulence



Appendix

» Variation of the slope of the distributions as a function of the
threshold

» Definitions of events

» Waiting-time statistics, definitions, and intermittency
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