Simplified simulations of MHD turbulence in a coronal loop

Éric Buchlin

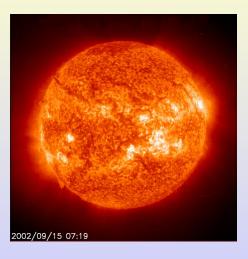
Dipartimento di Astronomia e Scienza dello Spazio Università di Firenze, Arcetri, Florence, Italy

> A. Π. Θ. 2 Feb 2005

The Solar atmosphere

Visible surface (photosphere), 6000 K

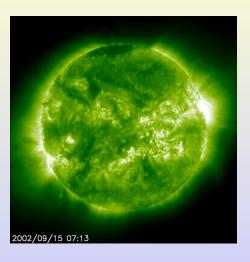
The Solar atmosphere



Visible surface (photosphere), 6000 K

High chromosphere / transition region, 50 000 K, altitude: 2000 km

The Solar atmosphere

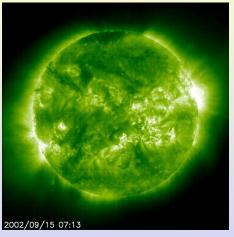


Visible surface (photosphere), 6000 K

High chromosphere / transition region, 50 000 K, altitude: 2000 km

Corona, > 10⁶ K, altitude: > 5000 km.

Coronal structures

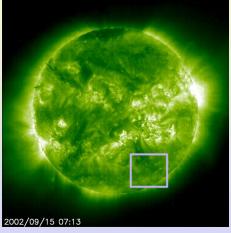


- Active regions
- Quiet Sun, bright points

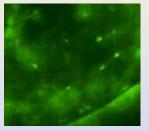
EIT 195, 2002

High energy dissipation → bright structure in UV

Coronal structures



- Active regions
- Quiet Sun, bright points

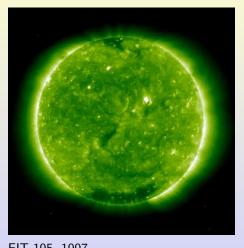


Structures even smaller may exist

EIT 195, 2002

High energy dissipation → bright structure in UV

Coronal structures



- Active regions
- Quiet Sun, bright points

Structures even smaller may exist

EIT 195, 1997 High energy dissipation → bright structure in UV

The coronal heating problem

- ▶ The corona is very hot (known since 1943)
- The Sun produces enough energy (in its core) to heat it

- This energy needs to be transported to the corona, in a non-thermal
 - Sound waves and slow magnetosonic waves excluded (do not reach
 - Fast magnetosonic and Alfvén waves
- ▶ It needs then to be dissipated, but:
 - The observed events of energy dissipation are not enough
 - The physical mechanisms of dissipation:

The coronal heating problem

- ▶ The corona is very hot (known since 1943)
- The Sun produces enough energy (in its core) to heat it

But:

- This energy needs to be transported to the corona, in a non-thermal way. Solutions:
 - Sound waves and slow magnetosonic waves excluded (do not reach the corona)
 - Fast magnetosonic and Alfvén waves
- ▶ It needs then to be dissipated, but:
 - The observed events of energy dissipation are not enough
 - The physical mechanisms of dissipation:

The coronal heating problem

- ▶ The corona is very hot (known since 1943)
- The Sun produces enough energy (in its core) to heat it

But:

- This energy needs to be transported to the corona, in a non-thermal way. Solutions:
 - Sound waves and slow magnetosonic waves excluded (do not reach the corona)
 - Fast magnetosonic and Alfvén waves
- ▶ It needs then to be dissipated, but:
 - The observed events of energy dissipation are not enough
 - The physical mechanisms of dissipation:
 - wave-particle interactions
 - reconnexion, resistivity (Joule)

are too slow (not enough efficient)

How to (finally) solve the problem?

A possible way: small scales (spatial and temporal)

- Dissipation mechanisms are more efficient at small scales (nanoflares, Parker 1988)
- ► The smallest events

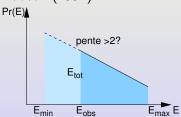
- ▶ Diffusion time: L^2/η , with $\eta \approx 1 \,\mathrm{m}^2/\mathrm{s}$
- ► Hudson (1991):

How to (finally) solve the problem?

A possible way: small scales (spatial and temporal)

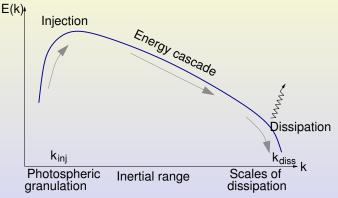
- Dissipation mechanisms are more efficient at small scales (nanoflares, Parker 1988)
- ➤ The smallest events (non-observables) contribute perhaps the most to the heating of the corona

- ▶ Diffusion time: L^2/η , with $\eta \approx 1 \, \mathrm{m}^2/\mathrm{s}$
- ► Hudson (1991):



The origin of small scales

May be created by turbulence:



In the corona:
$$R_{\rm e}=UL/\eta\approx 10^{13}\gg 1$$
 (for $U=1\,{
m Mm/s},\ L=10\,{
m Mm},\ \eta=1\,{
m m}^2/{
m s})$

Smallest (dissipative) scales: 10 m!

Need for statistics of coronal heating

- Small flares, small scales:
 - cannot be observed directly
 - Hudson... → small-scale statistics extrapolated from observations
- ► Theoretical description of turbulence: statistics are a privileged means of tackling its complexity

When used at the same time to analyze observations and simulations: a comparison is possible

Outline

- Introduction
- 2 Numerical models of a coronal loop
- Coupled shell-models
- 4 Conclusions

Numerical models of a coronal loop

- Introduction
- 2 Numerical models of a coronal loop
 - Magnetohydrodynamics
 - Simplifications of MHD
 - Models of coronal loops
 - First model: based on cellular automata
- 3 Coupled shell-models
- 4 Conclusions

MagnetoHydroDynamics (MHD)

Starting-point: incompressible MHD

Equations, with $\rho_0 = 1$, $\nabla \cdot \mathbf{v} = 0$ and $\nabla \cdot \mathbf{B} = 0$:

$$\partial_t \mathbf{v} + (\mathbf{v} \cdot \nabla) \mathbf{v} = \frac{1}{\mu_0} (\nabla \times \mathbf{B}) \times \mathbf{B} + \nu \nabla^2 \mathbf{v}$$
 (1)

$$\partial_t \mathbf{B} = \nabla \times (\mathbf{v} \times \mathbf{B}) + \eta \nabla^2 \mathbf{B}$$
 (2)

Includes velocity v, magnetic field B, and:

- Non-linear terms, which allow the creation of small scales by turbulence
- Diffusion terms, which allow energy dissipation (mainly at small scales)
- Alfvén waves (as fluctuations)

Need for simplifications

Direct numerical simulations (DNS) of MHD:

- ▶ Small grid sizes ($\approx 1024^3$ max)
- Reynolds numbers too small (1000)
- Too slow (long computations for just a few events)

→ Need for simplified simulations of MHD:

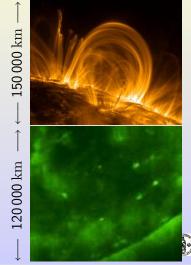
- Reduce number of spatial dimensions
 - ---- Einaudi, Velli, Georgoulis; Galtier...
- ▶ Reduce the number of active modes in turbulence, and the complexity of their interactions
 - → shell-models: Carbone, Giuliani...
 - → cellular automata: Lu & Hamilton; Isliker & Vlahos, Krasnoselskikh...

Coronal loops

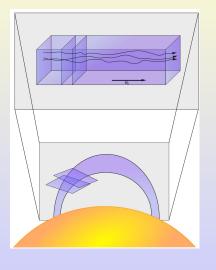
Our models represent a coronal loop: loop of magnetic field, containing plasma.

Large loops in active regions:

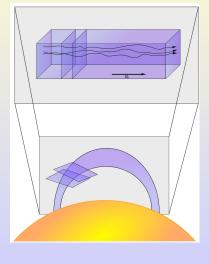
We are mainly interested in small loops of the quiet Sun (bright points and smaller):



Common framework to our loop models



- ▶ The box represents a loop, MHD
- Weak forcing at the "photosphere", $\Pi = -(\mathbf{v}_{\perp,\mathrm{ph}} \cdot \mathbf{B}_{\perp}) \mathbf{B}_0 / \mu_0$
- Propagation of Alfvén waves along B₀ (along the loop)
- Non-linear interactions between these waves
- Energy dissipation



- The box represents a loop, MHD
- Weak forcing at the "photosphere", $\Pi = -(\mathbf{v}_{\perp,\mathrm{ph}} \cdot \mathbf{B}_{\perp}) \mathbf{B}_0 / \mu_0$
- Propagation of Alfvén waves along B₀ (along the loop)
- Non-linear interactions between these waves
- Energy dissipation

Simplification: simplification of the non-linear interactions in each cross-section of the loop:

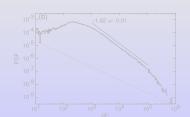
- Cellular automata
- Shell-models

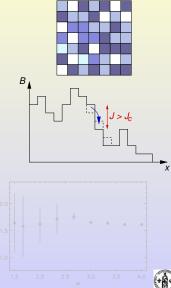
Coupled cellular automata

Each cross-section is a cellular automaton.

Non-linear interaction between Alfvén waves: avalanches, with threshold J_c on current density

→ Buchlin et al. A&A 2003



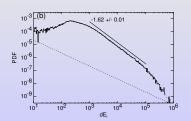


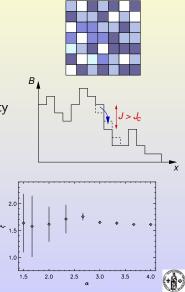
Coupled cellular automata

Each cross-section is a cellular automaton.

Non-linear interaction between Alfvén waves: avalanches, with threshold J_c on current density J.

 \longrightarrow Buchlin et al. A&A 2003



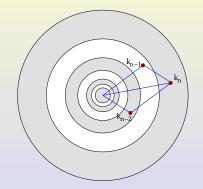


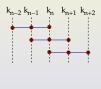
Coupled shell-models

- Numerical models of a coronal loop
- Coupled shell-models
 - The model
 - Results and statistics
 - Statistics of events

Coupled shell-models

Each cross-section $\perp \mathbf{B}_0$ is a shell-model (Giuliani and Carbone, 1998):





- Logarithmic spacing of shells (modes) (2D Fourier space)
- Non-linear interactions between neighboring modes (triads)

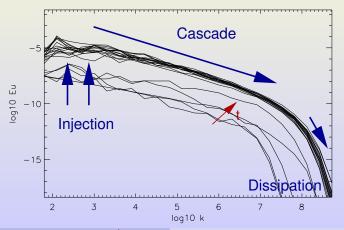
Advantages of shell-models

- Large spread of wavenumbers (of scales) with just a few modes (24)
 - → large Reynolds numbers (10⁶ instead of \approx 1000 for DNS)
 - → intermittency is possible
- Good model of local non-linear interactions between modes of MHD
- ▶ No free parameters (coefficients determined by conservation of 2D MHD invariants

Spectrum development

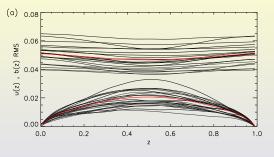
Small scales, created by turbulent cascade (due to non-linear terms of MHD)

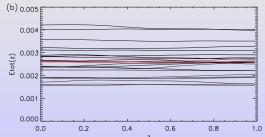
Spectra of \perp kinetic energy in a loop cross-section as a function of time:



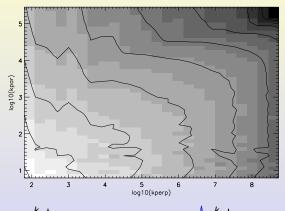
Introduction Models Shell-model Conclusion The model Results and statistics Events

Profile of kinetic and magnetic energy along the loop

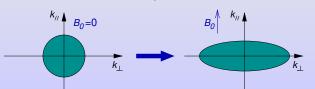




2D spectra



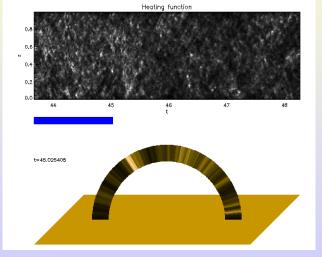
Obtained by Fourier transform along the loop.



Anisotropic?

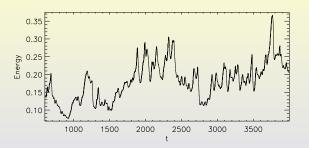
Heating function

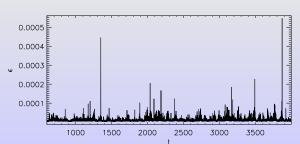
Energy dissipation as a function of time and position along the loop:



Introduction Models Shell-model Conclusion The model Results and statistics Events

Time series: energy and dissipation





Physical values of model units:

► Time: 10 s

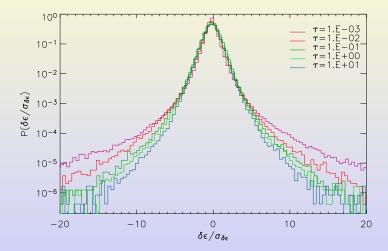
► Energy: 10¹⁷ J

▶ Power: 10¹⁶ W

4 days of computation $5 \cdot 10^7$ time steps 100 planes (cross-sections)

Intermittency of the dissipation power time series

Distributions of $\delta_{\tau}\epsilon \equiv \epsilon(t+\tau) - \epsilon(t)$ for different τ 's:



(normalized by their standard deviations)

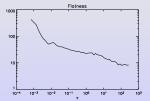
Intermittency of the dissipation power time series (2)

$$\delta_{\tau}\epsilon \equiv \epsilon(t+\tau) - \epsilon(t)$$

Intermittency:

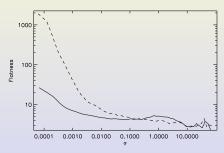
- \triangleright Distributions of $\delta_{\tau}\epsilon$ have a shape which depends on the scale τ , Deviation from the Kolmogorov 1941 turbulence theory: Turbulence is not self-similar (fractal), but multi-fractal
- Exponents ζ_q of the structure functions $S^q(\tau) \equiv \langle |\delta_{\tau}\epsilon|^q \rangle \propto \tau^{\zeta_q}$ are a non-linear function of q.

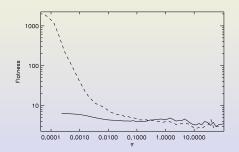
In particular, the flatness $F(\tau) \equiv S^4(\tau)/(S^2(\tau))^2$ grows at small scales:



Intermittency as a function of the parameters

Reference run (- - -): $\nu = 10^{-13}$, $a = L/\ell = 10$



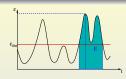


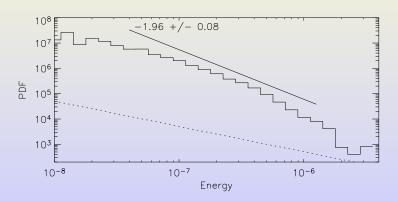
$$\nu = 10^{-11}$$

$$a = 80$$

Distributions of events: energies

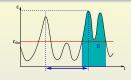
Distribution of energies of events (defined by a threshold):

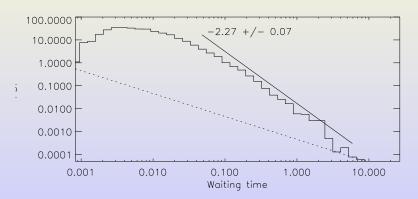




Distributions of events: waiting-times

Distribution of waiting times between events (defined by a threshold):





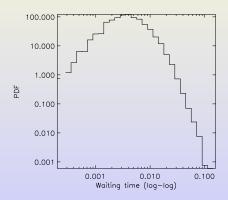
Non-Poissonian, long-duration correlations

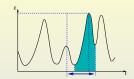
About the definition of events

Other definition:

Each peak can be considered as an event.

Distribution of waiting-times:



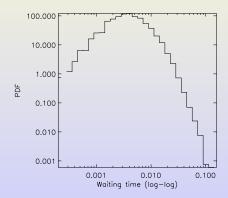


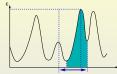
About the definition of events

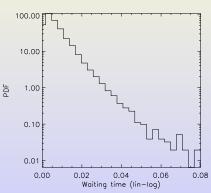
Other definition:

Each peak can be considered as an event.

Distribution of waiting-times:







Still Poissonian?

About the definition of an event (2)

In the general case:

- Events statistics do depend on the definition of events (of course...) Thus conclusions about the Poisson nature of the flaring process, or about the nano-flares hypothesis, depend on the definition
- Higher sensibility of statistics to the definition when intermittency is low
- Are there really clear events in a time series / structures in a MHD field?
 - If not, it is better to use statistics which do not need events to be defined (structure functions, spectra...)
- → Buchlin et al. 2005 (submitted to A&A)

Conclusions

- Introduction
- 2 Numerical models of a coronal loop
- Coupled shell-models
- 4 Conclusions

Conclusions

- Models designed to explore coronal heating at small scales created by MHD turbulence.
- Simplified so as to be able to produce statistics
- ► First models of this type with geometry of a loop and energy loading at footpoints.

Some results of the shell-model:

- ► Spectra of turbulence, large Reynolds numbers
- Intermittency (also as a function of parameters of the model)
- Heating function: dissipation power as a function of time and position
- ► Events statistics distributed as power-laws: -2 for energy, -2.3 for waiting-times.
 - But these distributions depend on the definition of an event

Conclusions

- Models designed to explore coronal heating at small scales created by MHD turbulence.
- Simplified so as to be able to produce statistics
- ► First models of this type with geometry of a loop and energy loading at footpoints.

Some results of the shell-model:

- Spectra of turbulence, large Reynolds numbers
- Intermittency (also as a function of parameters of the model)
- Heating function: dissipation power as a function of time and position
- Events statistics distributed as power-laws: -2 for energy, -2.3 for waiting-times.
 - But these distributions depend on the definition of an event

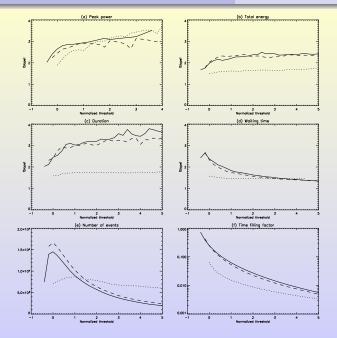
Current and future developments

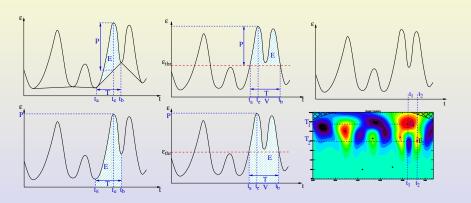
To allow a better comparison between model output and observations:

- Computation of radiative output (via thermodynamics and atomic models)
- More realistic:
 - Stratification: $B_0(z)$...
 - Parameters and energy input deduced from observations
- Produce images of the luminosity of the loop (geometry from extrapolations)

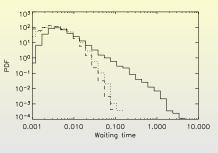
Appendix

- Variation of the slope of the distributions as a function of the threshold
- Definitions of events
- ▶ Waiting-time statistics, definitions, and intermittency

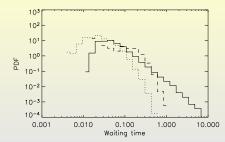




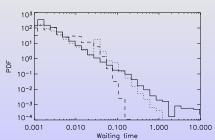
Time series < 1 >:



Time series < 2 >:



Time series < 3 >:



---: threshold

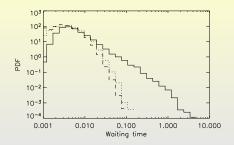
- - -: peaks

. .: wavelets

More intermittency

 $\longrightarrow \mathsf{less} \; \mathsf{sensitivity}$

Time series < 1 >:

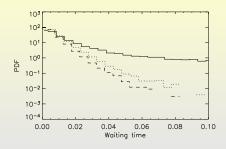


---: threshold

- - -: peaks

. . .: wavelets

Time series < 1 >:



---: threshold

- - -: peaks

. . .: wavelets

