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Introduction & Motivation

The natural demain off applicability oif
Is in the field of

and play’ a majer role in the
description of leading| te the fermation of

Core of Galaxy NGC 426l

» Sitellar core-collapse supernevae (Mype HiZ1b/Ic) bt Spaco oo

» Black hoele fiormation (and accretion) | , .
* Coalescingl compact binaries (NS/NS, BH/NS, BH/BH) 4 Q
g ° gamma-ray bursts ‘'

 jet formation (black hole plus thick disc systems)

ol Fluid flow: coupled to the spacetime geometry (Emnstein’s
eguations) enly pessible threugh accurate, large-scale

Seme scenaries can be deseribed in the test-fluid approximation: GRHD/GRMHD
computations In curved backgrounds (highly mature newadays, particularly GRIHD case).

Ihe GRHD/GRMHD eguations constitute nonlinear hyperbolic systems.
Soelid mathematical foundations and accurate numericall methodoelogy Impoerted firom CED. A
“preferred” choice:




In recent years there nas been INtense Work on formulating/selving the: /- [F)
CLERELE el el e anfa el e e e el e = o (eTERer backgrounad or dynamical).

2ol e Wilsen (1975), Sloani & Smark (1985), Evans & 'rrque/ (1988)), Yokosawa (1995

Vleeensesqin s Korde et al (19981..)), De Villiers & Hawley (2003 ...), Baumgarte & Shapiro
(2008);,, Gammie et all (2003), "omJ;;arov (2005), Duez et al (/005) Sh
| ( 05).

hibata & Se"ngJQfJJ
2005), Antdn =i al (2005), 8uth, artificial viscosity and HF

S))
(2005), Annines et a
scheme

s developed.
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Most oiff the applications are: in the fieldrof
accretion and jet formation ...

Pevelopment of the MR in' a
mali grwr ISedi torus around:a Kerr

black hole
(Gammie, McKinney & Toth 2003) 4 *
Jet formation: the twisting of
magnetic field J]mes areund a .. many others under
I/r acclz | - - . g
Lo black nole. The yellowy way (you name it!)
surface Is the ergosphere
Koide et all 2002)

e number off groups Workingl In SPec ]aJ relativistic MHID' IS even larger: Komissarov;

Balsara; Koldoha et al; Del Zanna et al; Leisman et al;

fthe S <|\/IrJJ Riemann problem Ffouncl recen £J/ Romero et al (2005) -
particular case; Glacomazzo & Rezzolla (2005) — general
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A brief reminder: Classical (Newtonian) hydrodynamics

r)dv

et 7, be a velume which meves with the fluid 1its mass 1S given by, m(Vt)=L ,O(t,

From the principle of conservation of mass enclesed within that velume

Corolary: 0 o
_aLpdV:IavpV.dz

“the variation off momenitum of a given portion of Fluid Is equal to the net force
(stresses plus external forces) exerted on It” (Newton's 2nd law):

the variation off the mass enclosed in a fixed volume |/
Is equal to the Flux of mass across the surface at the
pPoundary of the velume.




Let E be the total energy of the Fluid, sum of its kinetic energy and its internal enerqy:

Principle of energy. conservation: “the variation in time of the total energy. of a pertion
of fluidlis eqguall te the work dene per unit time over the system by the Stresses
(Internal forces) and the external forces”. o\

—

0 is a conservative external force fieldl (e.g. gravitationall field); VO, A® =47Gp

Tihe above eqguations are a

Hyperbelic equations have finite propagation
speed: maximum speed of infermation given by
the largest characteristic curves of the system.

The range of influence of the solution Is
pounded by the eigenvalues off the Jacobian
matrix of the system.




General Relativistic Hydrodynamics equations

The general relativistic hydredynamics equations are ocbtained from the
, [* (the Branchi identities),
JA (the continuity eguation):

v,T* =08V, 3"=0

As usual v, stands fior the covariant derivative associated with the fiour dimensional
spacetime metric g, The density current is given by J“=pu#, v representing the fluid 4-
velocity and p the rest-mass densiity in a locally inertial reference frame.

TThe stress-energy tensor for a IS defined as:

T = pl+el“u” +(p-2Oh* =20 +q“u” +q"u”

Where g Is the rest-firame specific internall energy density off the Fluid; pis the pressure,
and /v is the spatial projection tensor, /=t uv+g*. In addiition, ¢ and n are the shear
and bulk viscesity coefficients. The expansion, ©, describing the divergence or

convergence off the Fluid werld lines isidefined as O=V Ul The symmetric, trace-free, and
spatiall shear tensor ¢V Is defined by:

o = %(Vau”h‘” +Vath“”)—%®h‘”

Finally’ ¢* is the energy filux vector.



In the follewing we will
assuming| the to be that of a

T#" = phu“u” + pg*”

where we have introduced! the relativistic specific enthalpy, /1, defined as:

, Such as viscosity or heat transfer,

h=l+s+2

0

Intreducing am explicit the previeus conservation eguations read:

where the scalar x° represents a foliation of the spacetime with hypersurfaces

(coordinatised by x\). Additionally,./— g Is the volume element associated with the 4-
metxic g,,, with g=det(g,,), and r;ﬁ are the 4-dimensional Christoffel symhols.

relating the pressure to seme: fundamenital
thermodynamical guantities, e.g.

p=(I-1)pe

T




In the where the Fluid’s self-gravity Is neglected, the dynamics
off the matter fields is completely governed by the conservation laws off the stress-eneragy.
and of the current density, together with the EOS.

In these situations Where suchi appreximation does noit: hoeld, the previeus eguations must
l9e selved inf conjunction With hor the gravitational“hieldiwhich
describe the evelution off a dynamical spacetime:

(albsence oiff a

preferential reference: firame; equivalence principle).

T he fireedom 1n the choice of the reference frame has led to
. A concept of “time” is Intreduced, whose level surfaces can be spacelike (3+1) or
null (CIV/P).

The are obtained by projecting EE on to the hypersurfaces.

I'he projections W.r.t. the normallvector correspend to the so-called

In the 3+1 fiormulation oiff GR Einstein's eguations can be formulated as an
evoelution eguations for the 3-metric and extrinsic curvature, and
constraint eguations (Hamiltonian and momentum) to be satisfied on every time slice.



Einstein’s equations in the 3+1 formulation  (7,.K;)

I'he most widely used approach to formulate and selve Einstein’s equations in Numerical
Relativity is the so-called

Lichnerowicz (1944); Cheoguet-Bruhat (1962); Arnowitt, Deser & Misner (1962); York (1979)

Spacetime! Is foliated wiith a set: oiff nen-intersecting spacelike hypersurfaces . Within
eachi surface distances are measured with the spatial Ihe

IS also Intreduced. This tensor descrilbes how! the spacelike hipersurfiaces are
“embedded” Inispacetime.

There are whichi deseribe the evolution between;each
hypersurface: the Which describes the rate ofi proper time along a
timelike uniit vector normall ter the hypersurface, and the shift vector ¢, spacelike vector
Which describes, the mevement of coordinates within the hypersurface.

Metric:

ds? = —(a® - . p1)dt? + 2.5 dx o +7/ijdxidxj




(Numerical) General Relativity:
Which portion of spacetime shall we foliate?

bou_pdary

Lichnerowicz (1944); Choguet-Bruhat (1962); Arnowitt, Deser
& Misner: (1962); York (1979)

spsﬁggce Standard choeice for mest Numericall Relativiity groups.

Spatial hypersurhaces have a extension.

(original formulation of the 3+1 equations)

0Ky =-VV,a+aR +KK,—2K K")+B"V K, +K, V B"+K VA"

—167a °T : : : ,
<~ Reformulating these equations to achieve numerical

m stability is one of the arts of numerical relativity.

Spatial hypersurfaces have extension (Friedrich et al).

(Winicour:
et al).

Hypersuperfiaces are light cones

conformal

slices — / (incoming/outgoing) with
" extension. slices \_

characteristic




Oyij =—20K; +V, B, +V,
0Ky = —ViVJ—a+a(Rij +KK; _2KimK;n)
+ﬂmeKij + Kimvjﬂm + ijviﬂm

1
_87Z'0£(Sij _Eyijsj _4”05,07"'

Vi Covariant derivative w.r.t. sopatial metrec

R—@F

~o, T+ T T I

il mn= ij jm™in RICCI tENSOI:

1
F]!k = E)/'" (6k7/nj + 8j7nk _an7/jk) Chrastofifel symbols
R= Rij7/IJ
K= Kij?”IJ
P ETﬂvn,unv — phW2 o

i i Tave 2,
S'=-1,T"n, =phW*
= phW?v,v, + 7, P
S = phW?vv' +3P

Scalar curvature

Trace of extrinsic curvaturé

\VIEGLEIF LERNIS;

S.. EJ_iuJ_l} Tl

1

R+K?-K;K"Y =167p

~y'V K =818’

VK"

S

- Prescribe v, Aj at =0 subject to
the constraint equations.

» Specify coordinates via o and 3

» Evoelve data using eveluition eguations
for vj, /(ij.

guarantee that I
the constraints are satisfied at t=0,
they'lli be satisfied at t>0; that is, the
evoelution eguations satisity the
constraint eguations.



3+1 GR Hydro eguations - formulations

0 ( [— gpu“)=0 Dififerent formulations exist depending on:
ox*

. the levell surfiaces of X"
can be spatial (3+1) or null (characteristic)

2. The choice of (AL

0
— (9T =~ T

ox"

Wroite the system as a set ofi advection equationwithin the 3+1 feormalism.

well-adapted te numerical methodelegy: are more recent:

. 1+1, general EOS
. covariant, perfiect Fluid
. 3+1, general EOS
J covarianit, general EOS
Numerically, the nature off the GRHD equations allows, to

design a soluition procedure based oni the ,
translating to relativistic hydrodynamics, existing tools off CED.

, most notably in aveiding the need for
artificial dissipation terms to handle discontinuous selutions as well as implicit schemes  as
proposed by Norman & Winkler (1986).



3+1 GR Hydro eguations — Eulerian observer

Foliate the spacetime with' t=conist
spatial hypersurfaces: » .

ds? = —(a - B )dt? +2p.dx e +yijdxidxj

et ni be the unit timelike
4-vector orthegenal to
2.: Such that

at rest inja given hypersurface; moves firom X,
10 > . A; along the normal to the slice:

Definitions: v . fluid's 4-velocity, ) ISetropic pressure, 0 : rest-mass density.
& specific internal energy density, eé=p( l#&): energy density




The extension of modern HRSC schemes from cIaSS|caI Fluid dynamics to relativistic
hydroedynamics was accomplished in

1.  Casting the GRHD eguations as a system oiff conservation laws.
2. ldentifying the suitable vector off unknewns.

3. Building up an approximate Riemann selver (or high-erder symmetric scheme).

Replace the In terms of the

P
2 i h=1+¢+—
W =L/

Lorentz factor specific enthalpy.

Banyuls et al, Apd, 476, 221
(1997)

Font et al, PRD, 61, 044011
(Z0)0]0))

']+p5@,E_D(Vi_§‘j+pvi]

j a(T”Oa ha  wpo j]
’ X * “




Recovering special relativistic and Newtonian limits

1 (aﬁpw ) N g,oni ] 0 General Relativity
ot i

[af 2l M}T[@ L J

ox'

(aﬁ(phwz—p—pW) a\/i(phw2 pw)/J (_I_#oélna T“Vl“oj

Ox* w9

y7%

ot G

! Newt
W | OpWV' _ Minkowski ewton

a e o
ophW 2y s a(,ohwzv‘vj + p5”)_0
ot ox'
a(phw 2 - p—pw)Jra(phwz—_pW)/i .
ot Ox'




HRSC schemes based on approximate Riemann selvers use the
For the previous system, this

Infermation was presented in Banyuls et al (1997).

The eigenvalues (characteristic speeds) are all real (but not distinct, one showing| a
threefold degeneracy), and a complete set of right-eigenvectors exist. The above system
satisfies, hence, the definition off hiperboelicity.

(aleng the x direction)

y Wv
h(y,, +2W2v,v, ) h(y,, +2W2v,v, )
h(;/W +2W 2vyvy) r h()/yz +2W 2vyvz)
h(yzy +2W v v )

zy

Wv, (2hw —1)

z




Special relativistic limit (along x-direction)

A, =V* (triple)

coupling with transversal components of the velocity
(Impoertant difffierence with Newtonian case)
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3+1 General Relativistic (Ideal)
Magnetohydrodynamics equations (1)

GRMHD: Dynamics oiff relativistic, electrically conducting fluids in the presence oif
magnetic fields.

. Albsence oiff viscosiity efffiects and heat conduction in the limiit of
(perfiect conductor Fluid).

The Includes the contribution firom the and From the
b‘measured by the ebserver comoeving with the fluid.

T =T +Tey ——>
T4 = phu‘u’ + pg”

= phu“u” + p*g* —b"b"

wWith the definitions:

1

Tér = F#F/) " g F*F, :(u”u” +%g‘”jb2 —b*“b”

Ideal MHID: condition:
electric fiour-current
must be finite.




3+1 General Relativistic (Ideal)
Magnetohydrodynamics equations (2)

f'=

) Adding all up:

>

(divergence-firee
condition)

Ph"W v V' + p°51 —b'b;
Ph'W?' + p* ' a—DV' —ab’b'
V'B* —V*B!'
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A standard implementation of a HRSC FED scheme

cell intertace

Conservation fiorm algerithm 32 e e an (numetical fluxes)

j+1/2 j—1/2
AX J J

n+l

€ S 5 5 S S t
dx di time update
- -
n
€ S 5 5 S S t

cell center

In practice: 2nd or 3rd erder time accurate,

conservative Runge-Kutta schemes (Shu & c (conserved quanitis
Osher 1989; MoL)
b Piecewise constanit (Godunoev), linear
(MUSCL, MC, van Leer), parabolic (PPM, Colella & Woodward 1984),
hyperboelic (Marguina 1992), ENO), etc ol

l state-vector variables from cell centers to cell interfaces.

Approximate Riemann selvers
(Roe, HLLE, Marguina), Expliciit use off the spectral
Infiermation oiff the system

5 - . S I~ ~
fi =%|:fi(WR)+ fi(WL)_Z A, A&;an}
n=1

J-1

5 j-1/2 j+1/2
U(WR) - U(WL) - ZAa)n Rn MUSCL mimmod recosnstruction (piecewise linear)
=1




HRSC schemes for the GR hydrodynamics eguations

» Stable and sharp discrete shock
profiles

» Accurate propagation speed oif
discontinuities

e Accurate reselution oiff multiple
nonlinear structures:
discontinuities, raraefaction
Waves, vortices, etc

\/=0,99999¢c (\W=224)

PO  T (S S—r—"

Scheck et al, MNRAS, 331, 615 (2002) Font et al, MNRAS, 305, 920 (1999)



GRMHD eqguations: shock tube tests

1D Relativistic Brio-Wui shock tulbe test (van Putten 1993, Balsara 2001)

wave structure in Minkewski spacetime at time t=0.4 HLL soelver
nenvanishing lapse fiunction (2), at time t=0.2 1600 zones
noenvanishing shift vector (0.4), at time t=0.16 CFL 0.5

(Balsara 2001) regarding wave lecations, maximum
Lerentz factor achieved, and numerical smearing| of the soluition.



GRMHD eguations: code tests In strong gravity (black holes)

o d | II BN V20netised sphericallaccretion
radial ve onto a Schwarzschild BH

keepi stationarity ol
the soelution. Used in' the literature
(Gammie et al 2003, De Villiers & Hawley:
2003)

radial rrlla‘lgné‘tic‘ '_
", field

" 2nd order
B convergence

radial magnetic Magnetised eguatorialKerr:

" field RN cCCretion (Takahashi et all 1990,
Gammie 1999)

keepi stationarity oif
, | | B the solution (algebraic complexity.
-, ~ azimuthal Il augmented, Kerr metric)
., magnetic field |

-, ~ azimuthal
e, VElOCIEY _ _
Used In the literature (Gammie et al

2003, De Villiers & Hawley 2003)
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Applications of the GRHD/GRMHD equations in relativistic astrophysics

In Clare & Strottman 1986, Wilson & Mathews 1989, Rischke: et al 19953, 5.

2, _Martri et al 1994, 1995, 1997, Gomez et al 1995, 1997, 1998, Aloy et
al 1999 2003, Scheck et al 2002, Leismann et al 2005,

Aloy et alf 2000 Zhang, Woosley: & Mackadyen 20035, Aloy, Janka & Muller 2004.

4, Dimmelmeier, Eont & Muller 2001, 20023, b, Dimmelmeier et al 2004, Cerda-
Duran et al 2004, Shibata & Sekiguchi 2004, 2005.

5, \Wilsen 1979; Dykema 1980; Nakamula et al 1980, Nakamuira
1981, Nakamura & Sato 1982, Bardeen & Piran 1983, Evans 1984, 1986, Stark & Piran 1985, Piran & Stark 1986
Shibata 2000, Shibata & Shapiro 2002, Baiotti et al 2005, Zink et al 2005.

6. Shibata, Baumgarte & Shapire, 2000; Stergioulas &
Font 2001, Font, Stergioulas & Kokkotas 2000, Fonit et al 2001, 2002, Stergioulas, Apostolates & Font 2004, Shibata
& Sekiguchi 2008, Dimmelmeiler, Stergioulas & Fonit: 2005.

7. Font: & Ibanez 1998a,b, Fonit, 1banez & Papadopoules 1999, Brandi et al 1998,
Papadopoules & Font 1998315, Nagar: et al 2004, Hawley, Smarr & Wilson 1984, Petrich et al 1989, Hawley 1991,

8. Fonit & Daigne 20023, Daigne & Font 2004, Zanettl, Rezzolla & Eont 2003, Rezzolla, Zanotti &
Fonit 2003, Zanotti et al 2005,

) Yokosawa 1993, 1995, lgumenshechev: & Belodorov: 1997, De Villiers
& Hawley 2003; Hirose et al 2004. Gammie et all 2003}

10. Koide et al 1998, 2000, 2002, 2003, McKinney & Gammie 2004, Kemissaroy 2005.

11. Miller, Suen & Tobias 2001, Shibata, Taniguchi & Uryu 2003, Evans et al 2003,

Miller, Gressman & Suen 2004, Wilson, Mathews & Marronetti 1995, 1996, 2000, Nakamura & Ochara 1998, Shibata
1999, Shibata & Uryu 2000, 2002.



Scheck et al. MNRAS, 331, 615-634 (2002)




xample: Nonlinear instabllities In relativistic jets

l"l‘l

2D “slab ]e‘t" Cartesian ) ‘ i
PEriodic 'fo'm JE Iy’ conaitions. 256 K—H INSTABILITY IN RELATIVISTIC SLAB JET
ZONES PEr hbeam radius.

Initial meael perturbed wWith 4
SymMmELKIC perturbationsiand 4
ANEISYMMELKIC PEFLUDALIONS.

e

Initial location of the beam

'he eveluition off the linear
FEES WIth analytic result
peErturbation theory.

Development of nonlinearities
Vsl (Kelvin-Helmnoltz

Instabilrty). ©nce rne/ Saturate a Black: externall medium. White: jet
guasi-equiliorium (turbulent) state



» Binary system: black hole + giant star (O,B spectral type). Strong stellar wind. No
Roche lobhe overfilow (commoen envelope evelution, TThorne-Zytkow objects).

» Iselated compact ehjects acecreting from the mterstellar medium.
» Compact objects in stellar clusters, AGNs and QSOs.

Wind (Bendi-Hoyle-Lyttleton) accretion onito black holes: hydredynamics in general
relativity.

Difficulties: 1) Strongl gravitational fields; 2) Ulitrarelativistic flows and shoeck waves.

Wind aceretion on to a
Kerr black hole

. Roe's Riemann solver.

IIsecontours off the log off the
density.

Relativistic wind from left to
Fight.

Black hole spinning counter-
clockwise.



For movies of additionall models visit:

General Relativistic Collapse
of Rotating Stellar Cores
in Axisymmetry

viax Pranek InsTrruTe

Dimmelmeier
José A, Font
Ewald Miiller

http://www.mpa-garching. mpg.de

References;

o Dimmelmeier, H., Font, J. A, and Miiller, E
o Dinnnelineier, Ho, Font, J. A, and Miiller, E

[Larger cenitral densiities in relativistic models
Similar gravitational radiation amplitudes (or smaller in the GR' case)

Only a Galactic superneva (10rkpe) weuld lbe
detectable by the First generation oiff gravitational wave laser

00 100.0 1300

interferometers. etk

Wavetorm catalogue: www.mpa-garching.mpg.de/rel_hydro/wave_catalogue.shtml




Dimmelmeier, Stergioulas & Font, MNRAS, submitted (2005)

oiff the linear pulsation
modes: linear sums and dififerences of linear mode Freguencies.

I=2 trial eigenfunction

The presence of makes possille

, &S
diffferent modes are affiected in diffferent ways by,
reitation,

3-mode couplings could potentially/|ead to reseRance
effects or (parametric) instabilities:

Best case scenario: Pulsational energy from the 0. : 0-1}3 o
guasi-radial mede (Stored during core hounce) M
transfiered to stronger radiating nonradial medes.




As a first step towards relativistic magnetized core collapse simulations we employ. the
test (passive) field approximation for weak magnetic field.

* magnetic field attached to the Fluid (does not hackreact into the Euler-Einstein egns.).

* eigenvalues (Flurd + magnetic field) reduce to the fluid eigenvalues;only.

HLEL soelver' + PPM, Flux-CT, 200x10; zones

BIIB, | = 1370

e i)
t [ms]

a 200 &N B BOG OO0 1200 1404

— IBWB. |
i

- P

th / Plll ini

mag d Pm:-g ini

1 [ms]
TThe amplification factor ofi the initial

The divergence-firee condition is fulfilled te agnetic figld dusing e collpss 15 1570,
good precision during the simulation.




Fleld lines evolution

Initial model: A1B3G5
(Dimmelmeier et al 2002) ..
nomogeneous, poloidal (test)
magnetic Tield.

Equationiof the magnetic field
lines:
- r:r0+J'nrd)L
X n
Rk )
q (N
~ 0=0,+|—dA
B T
8 b=+ [———dz
: ;tor(_)lda'é ) Colour code: ¢ (low
. ..EB-fIQId S A magnetic flux), -« (high
! | magnetic flux)

D]‘f'reren'tjal TJ e o) drIVES
re twisting of the magnetic
Tield lines in the nascent PNS,
and the appearance of a
‘toroidal component ir tne

PhD thesis of Pablo Cerdé-Durén, U. Valencia (2006) magnetic field.



Bailotti, Hawke, Montero, Loffler, Rezzolla, Stergioulas, Font & Seidel;, Phys. Rev. D, 2005, 75, 024035

Simulation code developed at AEI, SISSA, AUTH, UV

Gravitational mass oifif secularly and dynamically.
unstable nitial modelsivs cenitral energy densiity.

o secularly unstable

e dynamically unstable

ised region t=0.67

rarent horizon =
02c¢

seqguence oiff nenrotating models

models; rotating at the mass-shedding limit

seguence off models at the onset off secular
Instability to axisymmetric perturbations



Calculating apparent and event horizons

Grey surface: event horizen. White surface: apparenit horizon. Circles: horizon generators

e 0

it
' |’|.I

= T P
T el cyen
= . =
s == /'-':—“L_.- x.‘:-::\-"b 7 b
=i ‘5‘:_, e — P
= _-;:’: - — [
ot = e H__\\___::_a‘w e T oFE
S B e T
~ Lt b e iy g o
A e T == =N
by PO = 2 T, Tty
Loy L e [»)
g - 8 12

polar and equatorial circumf. radii (km)

= As the collapse proceeds, trapped surfaces form (photons cannot leave).

= Viost relevant: surfiaces are the apparent fiorizon (outermost off the trapped surfaces)
and the' event: hiorizon (glehal null surface).

= AH can be computed at any time (zero expansion off a photon congruence). EH requires
the construction of the whole spacetime.



(Aniton et al 2005)

An ad-hoee peleidalimagnetic field added to the hydredymnamical disc model!

Development of the magnetorotational
instability.

Magnetic field + difffierentially
retating Keplerian disk-— MR
generation off effiective viscosiity and
angular momentum transport eutwards
through MIHD! turbulence:.

Keplerian

—— e ——

“"ctlwat‘nr'lél solution”
"(De Villierg &Hawley 2003) "~~~

\ t/t,,=8.0

J4v]

-/ / rapid increase
? of IDmatg

0 2




General Relativistic Magnetonyvdrocdynarmic Sirmulations of Accretion Torl

iid BH; development off the ma

—

.ﬁ_

SCwarzse

ﬁ'\

lgnetoerotational instability.

Magnetic field + differentially rotating| Keplerian disk — MR : generation of; efifective
vViScosIty and angular mementum transport outwa rds through M rJ_) turbulence.

For further animations; visit: De Villiers & Hawley (2003
http://'www.astro.virginia.edu/~jd5v/



Example: Binary neutiron star coalescence. Simulations with realistic

T
O
U

Shibata, Taniguchi & Uryu, 2005, Phys. Rev. D; 71, 08402

%2
=

hibata & Font, 2005, Phys. Rev. D, 72;

3.44820E-04 ms

7 L9 ] = 7 1o ] =~ N A A / f ' o
1.25M,,, - 1.35M,, case 1.4M,, - 1.4M_,, case
orm;r tion off a differentially rotating Prompit fiormation off a rotating| black hole
nypermassive neutron star
Quasi-periodic, lare Ue amplitude gravitational waves are emitted; With firequencies

petween 3-4 KiHz during - 'clef = (after wnich the NS collapses to a BH).

These waves could be detected by LIGO-11 up tordistances off — [eier |fee



Summary of the talk

currently available.

pased on the wave structure ofi those
hyperboelic systems developed' in recent years.

I relativistic astrophysics newadays within the
so-called

Important advances also achieved for the . but the

(or accurate enough
approximations) have been propesed by several Numerical Relativity groups.

, allowing for the study of interesting relativistic astrophysics scenarios (e.g.
gravitational collapse, accretion, binary neutron star mergers).
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