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Astrophysical motivation
General relativity plays a major role in the description of 
compact objects

Core-collapse supernovae

BH formation (critical phenomena) and accretion

Coalescing binaries (NS/NS, BH/NS, BH/BH)

Except the (vacuum) 
BH/BH system, all 
systems contain
matter fields.

Time-dependent evolutions of fluid flow coupled to geometry is only 
possible through accurate, large-scale numerical simulations. Some 
scenarios can be described in the test-fluid approximation: hydrodynamical 
computations in (static) curved backgrounds (highly mature nowadays).

The (GR) hydrodynamic equations constitute a non-linear hyperbolic system.
Solid mathematical foundations and accurate numerical methodology
imported from CFD. A “preferred” choice: high-resolution shock-capturing
schemes written in conservation form.



3+1 General Relativistic Hydrodynamics equations (1)
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Perfect fluid stress-energy tensor

Equations of motion: 

local conservation laws of density current
(continuity equation)  and stress-energy
(Bianchi identities)
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Different formulations exist 
depending on:

1. The choice of time-slicing: the 
level surfaces of      can be 
spatial (3+1) or   null 
(characteristic)

2. The choice of physical 
(primitive) variables (ρ, ε, ui 

…)

Wilson (1972) wrote the system as a set of advection 
equation within the 3+1 formalism. Non-conservative.

Conservative formulations well-adapted to numerical 
methodology are more recent:

• Martí, Ibáñez & Miralles (1991): 1+1, general EOS

• Eulderink & Mellema (1995): covariant, perfect fluid

• Banyuls et al (1997): 3+1, general EOS

• Papadopoulos & Font (2000): covariant, general EOS
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3+1 General Relativistic Hydrodynamics equations (2)
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Einstein’s equations
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Foliate the spacetime in t=const spatial hypersurfaces Σt

Let n be the unit timelike 4-vector orthogonal
to Σt such  that
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Eulerian observers

u: fluid’s 4-velocity, p: isotropic pressure, ρ : rest-
mass density, ε : specific internal energy density,
e=ρ( 1+ε ): energy density



3+1 General Relativistic Hydrodynamics equations (3)
Replace the “primitive variables” in terms of the “conserved variables” :
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First-order flux-conservative hyperbolic system
Banyuls et al, ApJ, 
476, 221 (1997)

Font et al, PRD, 61, 
044011 (2000)
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Nonlinear hyperbolic systems of conservation laws (1)
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Let us consider the system of p
equations of conservation laws

Formally this system expresses 
the conservation of the state 
vector. Let D be an arbitrary 
domain of Rd and let                         
be the outward unit normal to the 
boundary of D. Then,

In most situations one considers the so-
called initial value problem (IVP), i.e. the 
solution of the above system with the initial 
condition )()0,( 0 xuxu =

A key property of hyperbolic systems is 
that features in the solution propagate at 
the characteristic speeds given by the 
eigenvalues of the Jacobian matrices.

The characteristic variables are 
constant along the characteristic curves

pktxu
dt
dx
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These curves give information about the 
propagation of the initial data, which 
formally permits to reconstruct the future 
solution for the IVP.



Nonlinear hyperbolic systems of conservation laws (2)

For nonlinear systems classical solutions do not 
exist in general even for smooth initial data. 
Discontinuities develop after a finite time.

Continuous and 
differentiable solutions that 
satisfy the IVP pointwise 
are called classical 
solutions.

The class of all weak solutions is 
too wide in the sense that there is 
no uniqueness for the IVP.

A numerical scheme should guarantee 
convergence to the physically admissible 
solution: limit solution when ε→0 of the 
“viscous version” of the IVP:

We seek generalized 
solutions that satisfy the 
integral form of the 
conservation system, which 
are classical solutions 
where they are continuous 
and have a finite number of 
discontinuities: weak 
solutions.
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Nonlinear hyperbolic systems of conservation laws (3)

Mathematically, physical solutions are characterized by the so-called entropy 
condition (the entropy of any fluid element should increase when running into 
a discontinuity)

The characterization of the entropy-satisfying solutions for scalar equations
follows Oleinik (1963), whereas for systems of conservation laws was 
developed by Lax (1972).

For hyperbolic systems of conservation laws, schemes written in conservation 
form guarantee that the convergence (if it exists) is to one of the weak 
solutions of the original system of equations (Lax-Wendroff theorem 1960).

A scheme written in conservation form reads:
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Nonlinear hyperbolic systems of conservation laws (4)
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Example: Burger’s equation with discontinuous initial data

can be discretized by a
conservative upwind scheme:
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Nonlinear hyperbolic systems of conservation laws (5)

The Lax-Wendroff theorem does not state whether the method converges. 
Some form of stability is required to guarantee convergence, as for linear 
problems (Lax equivalence theorem 1956).

The notion of total-variation stability has proven very successful. Powerful 
results have only been obtained for scalar conservation laws.
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The conservation form of the scheme is ensured by starting with the integral 
version of the PDE in conservation form. By integrating the PDE within a 
spacetime computational cell                                  the numerical flux function
is an approximation to the time-averaged flux across the interface:
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The flux integral depends on the solution at 
the numerical interfaces                    during 
the time step

Key idea: a possible procedure 
is to calculate                       by
solving Riemann problems at 
every cell interface (Godunov)

Riemann solution for the left and right 
states along the ray x/t=0.



The Riemann problem
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LA Riemann problem is an IVP with 
discontinuous initial data:

The Riemann problem is invariant under similarity transformations:

The solution is constant along the straight lines x/t=constant, and, hence, 
self-similar. It consists of constant states separated by rarefaction waves
(continuous self-similar solutions of the differential equations), shock 
waves, and contact discontinuities (Lax 1972).

The incorporation of 
the exact solution of 
Riemann problems 
to compute the
numerical fluxes is 
due to Godunov
(1959)



When a Cauchy problem described
by a set of continuous PDEs is solved 
in a discretized form the numerical 
solution is piecewise constant
(collection of local Riemann 
problems).

This is particularly problematic when 
solving the hydrodynamic equations 
(either Newtonian or relativistic) for 
compressible fluids. 

Their hyperbolic, nonlinear character 
produces discontinuous solutions in 
a finite time (shock waves, contact 
discontinuities) even from smooth 
initial data!

Any FD scheme must be able to
handle discontinuities in a
satisfactory way.

1. 1st order accurate schemes (Lax-
Friedrich): Non-oscillatory but inaccurate 
across discontinuities (excessive    
diffusion)

2. (standard) 2nd order accurate schemes 
(Lax-Wendroff): Oscillatory across 
discontinuities

3. 2nd order accurate schemes with artificial 
viscosity

4. Godunov-type schemes (upwind High 
Resolution Shock Capturing schemes)



rarefaction wave

cell boundaries where fluxes are required

shock front

Solution at time n+1 of the 
two Riemann problems at the 
cell boundaries xj+1/2 and xj-1/2

Initial data at time n for the two 
Riemann problems at the cell 
boundaries xj+1/2 and xj-1/2

Spacetime evolution of the two 
Riemann problems at the cell 
boundaries xj+1/2 and xj-1/2. Each 
problem leads to a shock wave 
and a rarefaction wave  moving 
in opposite directions
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Approximate Riemann solvers
In Godunov’s method the structure of the Riemann solution is “lost” in the
cell averaging process (1st order in space).

The exact solution of a Riemann problem is computationally expensive, 
particularly in multidimensions and for complicated EoS.

Relativistic multidimensional problems: coupling of all flow velocity 
components through the Lorentz factor.

• Shocks: increase in the number of algebraic jump (RH) conditions.

• Rarefactions: solving a system of ODEs.

This motivated the development of approximate (linearized) Riemann solvers.

They are based in the exact solution of Riemann problems corresponding to 
a new system of equations obtained by a suitable linearization of the original 
one (quasi-linear form). The spectral decomposition of the Jacobian matrices 
is on the basis of all solvers.

Approach followed by an important subset of shock-capturing schemes, the 
so-called Godunov-type methods (Harten & Lax 1983; Einfeldt 1988).



Special Relativistic Riemann Solvers and Flux Formulae

• Roe-type SRRS                    → Martí, Ibáñez & Miralles, 1991

• HLLE SRRS                          → Schneider et al, 1993

• Exact SRRS                          → Martí & Müller, 1994; Pons et al, 2000

• Two-shock approximation     → Balsara, 1994

• ENO SRRS                           → Dolezal & Wong, 1995

• Roe GRRS                            → Eulderink & Mellema, 1995

• Upwind SRRS                       → Falle & Komissarov, 1996

• Glimm SRRS                         → Wen, Panaitescu & Laguna, 1997

• Iterative SRRS                       → Dai & Woodward, 1997

• Marquina’s FF                        → Donat et al, 1998

Martí & Müller, 1999

Living Reviews in Relativity     www.livingreviews.org



A standard implementation of a HRSC scheme

1. Time update: Conservation form algorithm
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2. Cell reconstruction: Piecewise 
constant (Godunov), linear (MUSCL, 
MC, van Leer), parabolic (PPM, 
Colella & Woodward) interpolation 
procedures of state-vector variables 
from cell centers to cell interfaces.

In practice: 2nd or 3rd order time 
accurate, conservative Runge-Kutta 
schemes (Shu & Osher 1989)

3. Numerical fluxes: Approximate 
Riemann solvers (Roe, HLLE, 
Marquina). Explicit use of the spectral 
information of the system
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Stable and sharp discrete shock profiles

Accurate propagation speed of discontinuities

Shock tube test Relativistic shock reflection

V=0.99999c   (W=224)



Accurate resolution of multiple non-linear structures 
discontinuities, rarefaction waves, vortices,etc

Kerr-Schild          Boyer-Lindquist

Wind accretion on to a Kerr black hole

(a=0.999M)

Font et al, MNRAS, 305, 920 (1999)
Simulation of a extragalactic relativistic jet

Martí et al, Astrophys. J. 479, 151 (1997)



The runaway instability of thick 
accretion disks around black holes

• Thick accretion disks (tori) are present in many astronomical objects: 
AGNs, X-ray binaries, microquasars, central engine of GRBs.

• In a black hole + thick disk system the gas flows in an effective 
(gravitational + centrifugal) potential whose structure is similar to that 
of a close binary.

• The Roche torus has a cusp-like inner edge at the Lagrange point L1 
where mass transfer driven by the radial pressure gradient is possible.

• These systems may undergo a runaway instability (Abramowicz et al 
1983): due to accretion from the disk the BH mass and spin increase 
and the gravitational field changes. Two evolutions are feasible:

1. The cusp moves inwards toward the BH, the mass transfer 
slows down. Stable.

2. The cusp moves deeper inside the disk material, the mass 
transfer speeds up. Unstable.



Most existing studies in the literature are stationary
Recent time-dependent hydrodynamic simulations in GR available 
(Font & Daigne (2002); Zanotti, Rezolla & Font (2003).

• Stationary, relativistic, constant angular 
momentum thick disc (Fishbone & Moncrief 
1976; Kozlowski et al 1978).

• Kerr spacetime + Relativistic Euler (force 
balance) Bernouilli-type equation + non-
Keplerian circular motion.

• Hydrodynamics: Test fluid approximation.

• Spacetime “dynamics”: BH mass and spin 
increase determined by the mass and 
angular momentum accretion rates across 
the event horizon (sequence of exact Kerr 
BHs of varying mass and spin.) Fine for 
small disk-to-hole mass ratios.





Runaway instability – stable vs unstable evolutions

For a black hole of growing mass and 
spin the accretion process becomes 
rapidly unstable when the disk’s angular 
momentum distribution is constant (in 
agreement with stationary models).

Runaway instability: sudden loss of 
the mass of the disk at late times 
and rapid increase of the mass of 
the black hole.



Relativistic Rotational Core Collapse
Dimmelmeier, Font & Müller, ApJ, 560, L163 (2001); A&A, 388, 917 (2002a); A&A, 393, 523 (2002b)

Goals

extend to GR previous results 
on Newtonian rotational core 
collapse (Zwerger & Müller 1997)

determine the importance of 
relativistic effects on the 
collapse dynamics (angular 
momentum)

compute the associated
gravitational radiation
(waveforms)

Model assumptions

axisymmetry and equatorial plane symmetry

(uniformly or differentially) rotating 4/3 
polytropes in equilibrium as initial models 
(Komatsu, Eriguchi & Hachisu 1989). Central 
density 1010 g cm-3 and radius 1500 km. 
Various rotation profiles and rotation rates

simplified EoS: P = Ppoly + Pth (neglect 
complicated microphysics and proper 
treatment of shocks)

constrained system of the Einstein 
equations (IWM conformally flat condition)
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Central Density   Gravitational Waveform
HRSC scheme:

PPM + Marquina flux-formula

Solid line: relativistic simulation

Dashed line: Newtonian

Larger central densities in 
relativistic models

Similar gravitational radiation 
amplitudes (or smaller in 
the GR case)

GR effects do not improve the 
chances for detection (at 
least in axisymmetry)



Rapidly Rotating Models
Fast and extremely differential rotation, rapid collapse (~ 30 ms)

• Initial model has toroidal density shape. Torus becomes more 
pronounced during contraction.

• PNS is surrounded by a disk-like structure, which is accreted.

• Bar instabilities are likely to develop on dynamical timescales.

• After bounce, a strongly anisotropic shock front forms.



Gravitational Wave Signals
www.mpa-garching.mpg.de/Hydro/RGRAV/index.html

Influence of relativistic effects on the signals: Investigate amplitude-frequency diagram

Spread of the 26 models does not change much

Signal of a galactic supernova detectable

On average: Amplitude → Frequency ↑

If close to detection threshold: Signal could fall out of the sensitivity window!



NASA NS/NS Grand Challenge and the CACTUS code

“Multipurpose code for 3D relativistic 
astrophysics and gravitational wave 
astronomy: application to coalescing 
neutron star binaries” wugrav.wustl.edu

Coupled system of Einstein and 
relativistic hydrodynamics equations

GR hydrodynamics code MAHC written mainly by M. Miller (WashU)

Simulations performed using the CACTUS code  www.cactuscode.org

Developed in an international Numerical Relativity collaboration
(AEI/NCSA/WashU)

Open source code: freely available to the scientific community
References: Alcubierre et al, PRD, 62, 044034 (2000);                       

Font et al, PRD, 61, 044011 (2000); 65, 084024 (2002)



EU-TMR Network on Sources of Gravitational 
Radiation and the WHISKY code

Whisky: a 3D, parallel code in Cartesian coordinates, which solves the GR 
hydrodynamics equations using HRSC schemes www.eu-network.org

(Main) institutions involved in the code development:

AEI (Golm, Germany), SISSA (Trieste, Italy), University of Thessaloniki (Greece),
University of Valencia (Spain)

HYDRODYNAMICS HYDRODYNAMICS 

Different approximate Riemann solvers         
implemented: HLLE, Roe, Marquina.

Slope limiters: MUSCL, MC and PPM. 

Optimal results are obtained with 
Marquina’s flux formula and the MC slope 
limiter (2nd order away from local extrema) 

Polytropic and realistic EoS

SPACETIME EVOLUTIONSPACETIME EVOLUTION

Cartesian 3D unigrid and with 
FMR (fixed mesh refinement). 
Implementation of AMR is in 
progress

Iterative Crank-Nicholson scheme 
(2nd order accurate in space and 
time),  but also RK, Leapfrog, etc.



Coupled time evolutions of polytropic spherical stars

Central density of a stable model
“Migration” of an unstable 
model to the stable branch

Font et al, PRD, 65, 084024 (2002)





Stable evolutions of rapidly rotating stars

Isocontours of
vx along the
x-direction

92.0=
Ω
Ω

K

7.0=
equat

pole

R
R



Stable Rapidly Rotating Relativistic Star
Consider a stable Γ=2 star, rapidly rotating at 92% ΩK, and rp/re=0.7

These frequencies are still to be computed 
using perturbation theory!

Power spectrum of central densityProfile of the rest-mass density



Conclusions
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•The hydrodynamic equations (either Newtonian or relativistic) constitute a 
non-linear hyperbolic system, perhaps the archetypal example of hyperbolic 
model in astrophysics.

•There exist solid mathematical foundations and accurate numerical methodology 
imported from classical CFD and recently extended to Relativistic Astrophysics.

•An emerging, “preferred” choice: high-resolution shock-capturing schemes 
based upon Riemann solvers, and written in conservation form.

•Nowadays, computational general relativistic astrophysics is an increasingly 
important field of research in Numerical Relativity worldwide: gravitational stellar 
collapse, black hole formation, coalescence of compact binaries, gamma-ray 
bursts, …

•In particular, hydrodynamical simulations in (static) curved backgrounds – test-
fluid approximation – are routinely performed with satisfactory levels of accuracy.


	Plan of the Talk
	Astrophysical motivation
	3+1 General Relativistic Hydrodynamics equations (1)
	3+1 General Relativistic Hydrodynamics equations (2)
	3+1 General Relativistic Hydrodynamics equations (3)
	Nonlinear hyperbolic systems of conservation laws (1)
	Nonlinear hyperbolic systems of conservation laws (2)
	Nonlinear hyperbolic systems of conservation laws (3)
	Nonlinear hyperbolic systems of conservation laws (4)
	Nonlinear hyperbolic systems of conservation laws (5)
	The Riemann problem
	Approximate Riemann solvers
	Special Relativistic Riemann Solvers and Flux Formulae
	A standard implementation of a HRSC scheme
	Most existing studies in the literature are stationary
	Relativistic Rotational Core Collapse
	NASA NS/NS Grand Challenge and the CACTUS code
	EU-TMR Network on Sources of Gravitational Radiation and the WHISKY code
	Coupled time evolutions of polytropic spherical stars
	Stable evolutions of rapidly rotating stars
	Stable Rapidly Rotating Relativistic Star
	Conclusions

