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Distribution of TNOs in a-e & a-i planes
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The Kuiper belt is divided into two parts:
(a) An internal zone with a<40 A.U. where stable orbits are connected with mean motion 

resonances of 1st order;  
(b) An external zone with a>42 A.U. where the stable orbits are basically non-resonant

Remark: Many KBOs <e>≈0.05-0.10 but  Plutinos <e>≈0.21



Outline
• Framework : Restricted  3-body  problem (RTBP)

• Study :  1st, 2nd and  3rd order resonances 

(Part A: Symmetric :2/3, 3/4, 4/5, 5/6, 6/7, 3/5, 5/7, 7/9, 4/7, 5/8, 7/10)

(Part B: Asymmetric : 1/2, 1/3, 1/4, 1/5, 1/6)

•Periodic  Orbits in the Planar Circular RTBP

•Surfaces of section in Planar Circular model

•Bifurcation  Points from 2-D Circular to 2-D Elliptic and 3-D Circular 

RTBP

•Periodic  Orbits in the 2-D Elliptic and 3-D Circular RTBP

•Surfaces of section in 3-D Circular model

•Periodic  Orbits in the 3-D Elliptic RTBP

•Conclusions



Circular Planar RTBP

Classical Configuration :  Rotating  Oxy orthogonal  system
Sun,  Neptune  as  primaries (µ=0.00005178,  Τ=2π )

Families  of  periodic orbits

•First  kind: e≈0, n/n΄ varies  along  the family (Circular orbits)

•Second  kind: e≠0, n/n΄≈ const. (Elliptic Orbits)

General  characteristics:

First  kind: Continuation near the second, third –high order resonances for  µ>0

Second  kind:  
Family  I → Unstable; Perpendicular Collision orbit with Neptune when 
a(1-e)=1; Stable and k→k+1, k=multiplicity
Family  II→ Stable; Except for a small area: a collision with Neptune occurs



Families of symmetric POs in 1st order NMMRs

(Voyatzis and Kotoulas, 2005: Planetary and Space Science 53, 1189-1199)



An example: the 4/5 and 5/6 cases



Samples of periodic orbits (res:4/5)
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Families of POs in 2nd order NMMRs

(Voyatzis and Kotoulas, 2005: Planetary and Space Science 53, 1189-1199)



Families of POs in 3rd order NMMRs



Surface of section (y=0, dy/dt<0)
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From Planar Circular to Planar Elliptic Problem

Bifurcation points : Periodic Orbits of the Circular problem with period  T=2mπ; m ∈ Ζ.

Table 1: Bf points (eccentricity values)

Resonan
ce

a (A.U) Period Bf1 Bf2 Bf3 Bf4

2/3 39.40 6π 0.469

3/4 36.41 8π 0.329

4/5 34.88 10π 0.253 0.871

5/6 33.95 12π 0.205 0.749

6/7 33.31 14π 0.172 0.649 0.960

3/5 42.26 10π 0.427 0.800

5/7 37.62 14π 0.278 0.562 0.778 0.936

7/9 35.54 18π 0.203 0.427 0.606 0.898

4/7 43.65 14π 0.027 0.400 0.900

5/8 41.12 16π 0.029 0.335 0.800

7/10 38.13 20π 0.025 0.249 0.905



BFPs from Planar Circular to Planar Elliptic
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Comment : One stable and one unstable family of POs  arise from them

(Kotoulas and Voyatzis, 2004: Proceedings of the 197 IAU)



An example: Families of symmetric POs at N4/5
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(Voyatzis and Kotoulas, 2005: Planetary and Space Science 53, 1189-1199)



Projection of families of POs in the plane e0-e΄



2nd and 3rd order mean motion resonances 
(2-D elliptic problem)



BFPs from Planar Circular to 3D Circular
Bifurcation points : Periodic Orbits of the Circular problem with vertical critical stability.
Periodic orbits : F-Symmetry with respect to xz-plane, G-symmetry with respect to x-axis

Table 2: Bf points, eccentricity values  (FS,  FU,  GS,  GU)

Res. a 
(A.U)

Bf1 Bf2 Bf3 Bf4 Bf5 Bf6 Bf7 Bf8

2/3 39.40 0.421 0.450 0.968

3/4 36.41 0.291 0.307 0.663 0.753 0.767

4/5 34.88 0.222 0.233 0.624 0.729 0.825

5/6 33.95 0.179 0.188 0.525 0.652 0.686

6/7 33.31 0.150 0.157 0.578

3/5 42.26 0.373 0.393 0.705 0.730 0.768 0.815 0.820

5/7 37.62 0.248 0.251 0.281 0.518 0.519 0.592 0.716

7/9 35.54 0.175 0.179 0.228 0.388 0.394 0.470 0.560 0.678

4/7 43.65 0.051 0.064 0.359 0.369 0.727 0.808 0.860

5/8 41.12 0.050 0.063 0.293 0.303 0.640 0.732 0.738

7/10 38.13 0.049 0.062 0.210 0.222 0.517 0.565



BFPs from Planar Circular to 3D Circular
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(Kotoulas and Voyatzis, 2004: Proceedings of the 197 IAU)



Types of 3-D periodic orbits

(Kotoulas and Hadjidemetriou, 2002: Earth, Moon and Planets 91: 63-93)



Families of POs in 3-D circular RTBP

(Kotoulas and Voyatzis, 2005: A&A 441, 807-814)



Samples of 3-D symmetric POs



Projection of the families of POs in the plane e0-i0: 
The 4/5 case



Families of 3-D POs generating from orbits with e≈0

Res h0 BP0 Res h0 BP0

3/5 -1.541 FU , GU 4/7 -1.549 FS , GU

5/7 -1.518 FU , GU 5/8 -1.535 FS , GU

7/9 -1.510 FU , GU 7/10 -1.520 FS , GU



2nd order resonances: The 3/5 case

(Kotoulas and Voyatzis, 2005: A&A 441, 807-814)



3rd order resonances: The 4/7 case



Projections of 4-D surfaces of section (y=0, dy/dt<0)

Comments: (a) A section in the region of a stable PO
(b) A section of  2  trajectories near an unstable PO

(Kotoulas and Voyatzis, 2005: A&A 441, 807-814)



3-D Elliptic RTBP
Bifurcation points : 1. Periodic Orbits of the 3-D Circular RTBP with T=2mπ, m Є Z

2. Periodic Orbits of the 2-D Elliptic RTBP with vertical stability
Types of symmetry : F, G as in the 3-D Circular model

Comment : All of them are linearly unstable



Evolution of an orbit at the 4/5 NMMR

Initial conditions: α=34.88 A.U., e=0.219, i=10 deg, M=180 deg, Ω=-90 deg
a)ω=-76 deg, e΄=0 ,  b) ω=0 deg, e΄=0.01, M’=0 deg, ω’+Ω’=0
c) ω=-76 deg, e΄=0.01, Μ’=0, ω’+Ω’=180 deg
d) ω=-76 deg, e΄=0.01, Μ’=0, ω’+Ω’=0 deg



Asymmetric Resonances
Circular Planar RTBP
Family I : the same characteristics as in the previous cases. 
Family II : Stable→(Bf1)Unstable (Bf2)→Stable.

*1/5 (reciprocal process)

Res a (A.U) Bf1 Bf2

1/2 47.78 0.035 0.960

1/3 62.53 0.123 0.972

1/4 75.75 0.201 0.978

1/5 87.90 0.262 0.981

1/6 99.26 0.322 0.984

Table 3 : Bfps for asymmetric POs 

Table 4 : Bfps from Planar Circular to Planar Elliptic and 3D circular RTBP 

Res a (A.U) Bf(el) 1 Bf(el) 2 Bf(el) 3 Bf(3D) 1 Bf(3D) 2

1/2 47.78 0.070 0.637 0.059 0.066

1/3 62.53 0.135 0.759 0.950 0.112 0.595

1/4 75.75 0.815

1/5 87.90

1/6 99.26 0.870



Poincare maps for 1/2, 1/3, 1/4 NΜΜRs
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Asymmetric periodic orbits

• An asymmetric periodic orbit is a periodic orbit which is not invariant 
under the fundamental symmetry 

• Σ: (x,y,vx,vy,t): (x,-y,-vx,vy,t),   (vx=dx/dt, vy=dy/dt). 

• Consequently, if an asymmetric periodic orbit T1 exists for particular 
initial conditions, then another asymmetric periodic orbit T2 exists 
which is “symmetrical” of T1 because of the symmetry Σ [Henon, 
1997]. Therefore, asymmetric orbits appear in pairs.  

• Their stability can be examined in a similar way as in the case of 
symmetric periodic orbits. Symmetrical asymmetric periodic orbits 
(i.e. orbits T1 and T2) have the same stability type.



Families of asymmetric Pos in 1/2, 1/3, 1/4 NMMRs

(Voyatzis et al. 2005, Cel. Mech. And Dyn. Astr. 91: 191-202)



Samples of asymmetric POs

(Voyatzis et al. 2005, Cel. Mech. and Dyn. Astr. 91: 191-202)



Conclusions

•Planar circular model: Families of periodic orbits in 1st, 2nd, 3rd order resonances 

•Bifurcation points from the planar circular to planar elliptic and to the three-dimensional 
circular one for the 1st, 2nd and 3rd order mean motion resonances.

•Planar elliptic problem: one family is stable (Neptune at perihelion) and the other one is 
unstable (Neptune is at aphelion) 

•Stable POs→ surrounded by regular librations
•Unstable POs→ formation of phase space regions with chaotic motion.

•3D circular problem:  both stable and unstable periodic orbits→ These families extend up to 
high inclination values.

•3D elliptic problem: all the basic periodic orbits are unstable → These families start from 
high inclination values and continue till the rectilinear problem

•The asymmetric resonances
Bf points: planar circular → planar elliptic. Exception: 1/5
Bf points: planar circular → 3D circular only for cases 1/2, 1/3
Bf points: Asymmetric periodic orbits extend to high-eccentricity values. 



The END

Thank you!
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