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QPOs: Observations (1)

Aim of this work
To find a new model for the high-frequency quasi-periodic oscillations (kHz QPOs) observed in
accretion disks orbiting around compact objects.
What is a kHz-QPO ?
* Discovered in 1996 in 2 low mass X ray binaries (LMXBs) containing a neutron star: Sco X-1

and 4U1608-52.
* A QPO 1s a modulation in the intensity of the emission observed in the X ray range (1-20 keV).

= peak in the Fourier spectrum of the light curve.

Twin peak close to 1 kHz for 2 neutron stars.
Source Sco X-1, van der Klis et al. 1997 Source 4U1608-52, Mendez et al. 1998
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QPOs observations (2)

Some properties
to date about 20 sources containing a neutron star are known ;

QPOs appear by pairs (v1, v2) for 90% of them ;

frequencies between 300-1300 Hz ;

peak separation Av between 200-400 Hz ;

QPOs frequencies increase with accretion rate M but their separation decreases ;

sometimes the peak separation Av is commensurable with the spin v, of the star :
Av & vy or Av & vy /2.

Variation of the twin-peak separation, Av = vg — v1 Vs. vy
(Mendez and van der Klis 1999)
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The models

General 1dea

Inhomogeneities forming in the disk create clumps of matter orbiting around the compact object
and generate a modulation in the intensity of the radiation. In the case of interest here, mostly in
the X ray range.

X-ray emission
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The Beat frequency model

Idea
Interaction between the orbital motion at some preferred radius in the accretion disk v,,,-p and the
spin of the neutron star v.
Choice of the preferred radius

the magnetospheric radius corresponding to the region where the motion of the fluid
begins to be dominated by the magnetic field (Alpar & Shaham 1985, Lamb et al. 1985) ;

the sonic point corresponding to the radius where the radial flow becomes
supersonic (Miller et al. 1998).

Model

the high frequency peak vo associated with orbital motion v, of the disk at the
preferred radius ;

the low frequency peak v1 related to the beat frequency given by vpeqt = Vorp — Vs-

Consequence
The separation between the twin peaks remains constant and equal to Av = vg — V] = V.
however Av was observed not to be perfectly constant
= leads to some refinement of the beat frequency model (Lamb & Miller Lamb2001) and also to
other models like the relativistic precession model.
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Characteristic frequencies around rotating BHs

We distinguish 3 characteristic frequencies in accretion disks :
the circular orbital frequency (2 ;
the radial epicyclic frequency k+ ;
the vertical epicyclic frequency & .

In Newtonian theory, orbital, radial and vertical epicyclic frequencies are all

equal : Q = K = K.

In General Relativity, they are all different and independent. Moreover they depend not only on
the mass M, of the star but also on its angular momentum a .

Orbital €2, radial epicyclic k, and vertical epicyclic s, frequencies around a rotating black hole
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Innermost stable circular orbit (ISCO)

The circular orbit of a single particle becomes unstable when x,, < 0
= disk truncated at the inner boundary R;sc o such that k- (Rrsco,a) = 0.
For the Schwarzschild spacetime :

Rrisco = GGM*/C2 = 3 Rs

The maximal orbital frequency is then :

Mg
vrsco = 2198 v Hz

*

For a 1.4 M neutron star :

vrsco = 1571 Hz

Therefore for such systems :
v(kHz — QPO) <vysco = 1571 Hz

Knowing the mass of the black hole, we can constrain its angular momentum.
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The relativistic precession model

Idea
To take into account the characteristic frequencies of circular orbits around rotating black

holes (Stella & Vietri 1998,1999).
Model

the highest kHz-QPO v associated with the orbital motion v,,,.;, at some preferred
radius ;

the lowest kHz-QPO v associated with the precession of the

periaStI'OIl for-ec — I/O’f’b - ’/'r- ;

the low frequency QPO (< 10 Hz) related to the Lense-Thirring precession (v, 7).

Consequences

Predicts two quantitative relations :

a first relation between v,- and Av such that :
Av =v9 — v = Uy
a second relation between low frequency QPOs and kHz-QPOs such that :

8 2 I, 9

2M Vx l/orb

C * Thessaloniki - 10/11/2004 — p.9/3¢

VLT =




QPOs Observations (3)

Correlation between low (<10 Hz) and high (=1 kHz) frequency QPOs in WD, NS and BH.
(Psaltis et al. 1999, Mauche 2002, Warner et al. 2003)
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There must be one same physical mechanism producing these QPOs irrespective of the nature of
the compact object.
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Idea

The physical mechanism
To show that an accretion disk evolving in :

either a gravitational potential ;
or a magnetic field ;
which possesses the two following essential properties :
an asymmetry with respect to the rotation axis of the disk ;
a rotating motion compared to the disk ;

will be subject to some instabilities.
The method
This study is done in two steps :

1. hydrodynamical disk evolving in a quadrupolar gravitational perturbation ;
2. magnetized disk evolving in a dipolar magnetic perturbation.

The tools
The main tools at hand are :

1. alinear analysis of the stability ;
2. 2D numerical (M)HD simulations.

The predictions

Power spectrum density of the accretion disk. Thessaloniki - 10/11/2004 — p.11/3;



HD disk: linear analysis (1)

Hydrodynamical equations of an accretion disk with adiabatic motions :

0p

i v - 0

8t+ (pv
p[%Jr(ﬁﬁ)ﬁ] = pg—Vp

D
_(3) _ g
Dt \ p7

Perturbing the equilibrium state with respect to the Lagrangian displacement é’ and making
allowance for a perturbation in the gravitational field, the Lagrangian displacement satisfies a
second order linear partial differential equation :

D2¢& . s o o S Lo . 5 - ~
PV E+E VD)~V (€T T + 5V - (pD (T - (p8) — )57 =0

We introduced the convictive derivative by D /Dt = 0 + Q 0.
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HD disk: linear analysis (2)

Simplification :
Study of the Lagrangian displacement in each direction independently.

In the radial direction £ = (&r,0,0) :

D%, 1 8 [ , 8 .. 19
— rT T T ) T =9 T
Dt2 pr 8’]“ (pcsr 8T > +H’r‘£ +pr ar (Tpg ) g g
In the vertical direction £ = (0,0, £,) :
D2£Z 1 a 28€z 2 1 3
- = B z T — — z ) z:(S z
D 5 0s (pcs 5, ) + Kz € +p 5 (p€z) dg g

with cg the sound speed, k, and k. the radial and vertical epicyclic frequencies.
Both equations look very similar with the following parts :

a sound wave propagation in a tube of varying cross section : no instability ;
an harmonic oscillator at the epicyclic frequency ;
a Mathieu equation giving rise to a parametric resonance ;

a resonance due to a driving force dg,. /.
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Parametric resonance

A simple physical example : the swing  Growth rate for different excitation amplitudes h.

Growth rate

Prototype example, Mathieu equation :
0" (t) + wa [1 + h cos (vt)]6(t) =0

Resonance conditions : v = 2% with n integer.
We deduce the relation growth rate-amplitude : ~,, oc h™.
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HD disk: linear analysis (3)

Three kind of resonances are expected :

a corotation resonance at the radius where the angular velocity of the disk equals the
rotation speed of the star, only possible for prograde motion : 2 = 2,

an inner and outer Lindblad resonance at the radius where the radial/vertical epicyclic
frequency equals the rotation rate of the the gravitational potential perturbation as
measured in the frame locally corotating with the disk :

2 |Q - Q*' — K”r/z
a parametric resonance related to the periodically time-varying radial/vertical epicyclic
frequency, (Mathieu equation) :

K’r/z

Q- Q.| =

with
- n: integer ;
- 4 spin of the star ;

- rotation rate of the disk ;

= Ry radial/vertical epicyclic frequency. Thessaloniki - 10/11/2004 — p.15/3;



Newtonian disk: results

For a thin disk, the rotation is roughly Keplerian and k, =~ Kk, = Qp = %

Resonance conditions are expressed as :

Qk n
- = —,2,3/2,4/3, ...
Q. n—1 /2:4/
Qk n

= =1/2,2/3,3/4, ...
Q. | /2,2/3,3/

Qs
7§Qk§29*

Therefore the QPOs associated with the orbital motion are :

Ux
= <vQpro < 2vk
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General-relativistic disk: results

Application to a neutron star with spin v.

K’r/z(ra CI,*)

n

Q(r,ax) £ — {(Jie

For a given angular momentum ax, we have to solve these equations for the radius r. For a
neutron star, we adopt the typical parameters :

mass My = 1.4 Mg ;
angular velocity v, = Q4 /27 = 300 — 600 Hz ;

moment of inertia I, = 1038 kg m2

angular momentum a . = GC—J{}:% Qs = 5.79 % 107° Q..
rank n Orbital frequency v(r, ax) (Hz)
Vertical Radial
v« =600Hz v« =300Hz | v. =600Hz v, = 300Hz
1 —- /301 — /150 1196 /330 800 / 159
2 1175 /401 597 /200 870/ 432 480 /209
3 893 /451 449 / 225 769 /478 405 /234
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HD disk: detailed 2D linear analysis

Expansion of the solution in plane wave form

&r(r,0,t) = &n(r) llme=ob)

We look for the eigenvalues o satisfiyng the prescribed boundary conditions,
namely the Lagrangian pressure perturbation Ap = 0 at the inner edge.
The radial Lagrangian displacement is solution of the Schrodinger type equation,

with ¢(r) = & /7D :
"' (r) + V(r)(r) = F(r)

with the potential and the Doppler shifted frequency given by :

Vir) =

w = o—m¢)
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HD disk: detailed 2D linear analysis

This Schrodinger equation possesses two different kind of solutions :

a free wave solution travelling in the unperturbed gravitational potential, corresponding to
the homogeneous part with F'(r) = 0;

a non-wavelike disturbance due to the asymmetric potential represented by the non
homogeneous part of the equation.

Analytical approximate solutions for the free wave solutions given by a linear combination of the
Airy functions Az and B by :

. 2/3
wi(r) = -— [—%/ \/V(s)ds] for r < rp,

g pr 2/3
wi(r) = 5 / v =V (s) ds] forr > rp,
R

P(r) = Ciryi1(r)+ C2a(r)
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HD disk: Free wave solutions

In the WKB approximation
P(r) = B(r) et/ )4

The dispersion relation is then given by :
w? = Kk? + cg k2
The wave can only propagate in regions where

w2 — K2 >0

Example of potential V' form = 2 and o = m Q.

m=2, S=mWx«

1
0.8t
0.6¢

The frontier between propagating and damp- 5l

ing zone is defined by the Lindblad radius r, > 0.2}

defined by V' (rz) = 0. 0
-0.2¢
-0.4¢
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HD disk: solutions of the eigenvalue problem

The highest eigenvalues

Eigenvalues o /Q71sc0
Newtonian Schwarzschild
m = 2 m =5 m = 2 m =5
0.838519  3.55997 1.34337  4.01528
0.60303 29742 | 0916075  3.2938
0.468333  2.6023 | 0.688728  2.84633
0.373567  2.32075 | 0.53807  2.51832
0.302154  2.09279 | 0.42896  2.25799
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HD disk: solutions of the eigenvalue problem

The corresponding eigenfunctions for the density waves

Newtonian Schwarzschild
0/Risco=0.468333 0/Risco=0.688728
3 3
2r o
Li 1
Sle Sle g
1 -1
—2k 27
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HD disk: Non-wavelike disturbance

Non-wavelike density perturbation for the mode m = 2 and the speed pattern o = 2 ()...

Newtonian Schwarzschild
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/\ 0.0005} /\
g - : 5oy 0
~0.0005] ] =0.0005¢ \,/
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r r

The amplitude is no more arbitrary but fixed by the strength of the gravitational petrurbation.
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Newtonian disk: High resolution 2D Simulation

Final snapshot

LtrT.=b. 83316
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Newtonian disk: 2D Simulation (2)

Ap/p

Time evolution

Density

Cross section

Density

0.005r

HHHHHHEHHM

-0.005

-0.01F

600
Time t/Ti;

60 80
Radius r

Disk properties

growing and persistence of the corotation and Lindblab resonances ;

a periodic variation of the density produced :
1.
2.

the Keplerian rotation around the accreting source ;

a beat phenomenon at much lower frequencies.

the density evolution corresponds to :
1.
2.

a non-wavelike perturbation due to the external periodic force ;

a free wave propagation between the Lindblad resonances and the disk edges.

results are qualitatively the same for a pseudo-Schwarzschild or a pseudo-Kerr geometry.
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Schwarzschild disk: 2D Simulation (2)

Cross section Time evolution

Density Density
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Disk properties are the same as before, no qualitative change.

Thessaloniki - 10/11/2004 — p.26/3¢




MHD disk: linear analysis (1)

Ideal MHD equations for the accretion disk with adiabatic motions :

op =
— + V- -(pv = 0
3¢ T (pv
p[a-F(U-V)U] = pg—Vp+3AB
_D P a.é — — — — —
— | = = 0 ; —=VA (AB) ; VAN B= '
= (Z) - (71 B) -

The magnetic field B has two distinct components :
1. the stellar magnetic field which is dipolar and rotating ;
2. the magnetic field induced by the flow in the disk.

Introducing again the Lagrangian displacement ,S_: it satisfies a second order linear PDE :

— > = VII+4+ — (B-VQ+Q-VB)+V (p€T- V-GV -(p§)
Dit?2 140
1 - "
+— V A (B+6B) AdBx
Ko

— —

With@zﬁ/\ (5/\B)andl—[:7p§-§_’—|—§_'-§p—ié-@.
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MHD disk: linear analysis (2)

Simplification :
Study of the Lagrangian displacement in each direction independently.

In the radial direction £ = (&r,0,0) :

D2%¢, 1 0 PR — ; §BZ [ 92 OB,
_ * B =0

Dt? rp Or {rp(cs—l—caz) 87“} +KT£T+/,L0,0 [87‘2 (&r B2) + or ]
In thevertical direction € = (0,0, &) :

D%¢, 1 0 9 o \ O, P BT [ 02 OB,

_ - e * . Br) — =0
th IO 62 |: (CS + CCLT‘) 62 i| + H-’Z g /J,O p |:6Z2 (6 ) az i|
Ca,z/r Alfven speed, K, and K the radial and vertical epicyclic frequencies.

a sound wave propagation ;
an harmonic oscillator ;
a Mathieu’s equation ;

a driving force.
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MHD disk: linear analysis (3)

3 kind of resonances
a corotation resonance : £2 = €.,

an inner and outer Lindblad resonances :

r/z

a parametric instability :
Ky /2

with
- n: integer ;

- Q.: spin of the star ;

(2: rotation rate of the disk ;
K./ radial/vertical epicyclic frequency.

Note the difference with the hydrodynamical case corresponding to m = 2.
More generally, for a perturbation of azimuthal mode m, the resonance conditions are :

for the inner and outer Lindblad resonances : m [2 — Q«| = K,/

Ker/z

n

for the parametric instability : m |2 — Q.| = 2
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Newtonian MHD disk: linear analysis

For a thin disk, the rotation is roughly Keplerian and k, =~ Kk, = Qp = %

Resonance conditions are expressed as :

Qk. n

b = —1,-,3,2,...

Q. n— 2

Yo _ " 1/31/2,3/5,2/3
Q* — n + 2 — ) 3 ’ PIELL

Qs
?SQkS?’Q*

Therefore

Ux
3 <vgpro < 3vx
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General-relativistic MHD disk: linear analysis

Application to a neutron star with standard parameters.
mass My = 1.4 Mg ;
angular velocity v, = /27 = 300 — 600 Hz ;

moment of inertia I, = 1038 kg m2 ;
angular momentum ax = & EQ Q.
K r,a
Q(r, as) £ 2 r/z(T ) _ o
n
rank n frequency v (r, ax) (Hz)
Vertical Radial

v« =600Hz v,=300Hz | vo., =600Hz v, =300Hz

1 —- /200 — /100 1596 /220 1332 /106
2 —- /301 — /150 1196 /330 800/ 159
3 1695 /361 885/ 180 980 /392 573 /190
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Newtonian MHD disk: 2D Simulation (2)

Cross section Time evolution
Density Density
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Properties of the disk

growing and maintain during time evolution of the corotation and driven resonances ;

a periodic variation of the density produced :
1. a Keplerian rotation around the accreting source ;

2. abeat phenomenon at much lower frequencies.

the density evolution corresponds to :
1. anon-wavelike perturbation due to the external periodic force ;

2. a free wave propagation between the Lindblad resonances and the disk edges.

results are qualitatively the same for a pseudo-Schwarzschild or a pseudo-Kerr geometry.
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Schwarzschild MHD disk: 2D Simulation (2)

Cross section Time evolution
Density Density
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Properties of the disk :

same as before

What are the observational consequences of these instabilities?
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Spectrum of the accretion disk

To estimate the power spectrum density of the accretion disk related to the 2D simulations shown
previously = light curves in a curved spacetime.
Main characteristics :

the Doppler redshift due to the motions in the disk ;
the gravitational redshift induced by spacetime curvature ;
the light ray deflection.
Hypothesis :
a sample of punctual source in the disk emitting isotropically ;
take only the primary image (above emitting part of the disk) into account.

Definition of the redshift : '
_ Eobs _ (k'z ui)obs
Eem (kz ui)em

k* : 4-wave number of the photon ;

u® : 4-velocity of the particle in the disk (em) and observer (obs) frame.

Then the intensity measured by a distant observer is :

Iobs — 94 Iem
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Primary image vs secondary image

Primary image Secondary image
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PSD: Results

Power spectrum density for different line of sight inclination, ¢ = 10°,45°, 80°
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intensity depends on the dissipation law in the disk, put in another way on the efficiency

of converting kinetic energy into radiation ;

frequencies around 0.5 — 2 v, are dominant for HD disk ;

high frequencies are dominant, close to the frequency of the ISCO for the MHD disk ;

shape of the PSD depends only slightly on inclination of the line of sight ;
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Conclusions

the resonances appear in accretion disks due to a rotating non axisymmetric gravitational
or magnetic field ;

these instabilities possess a small radial extension ;
the physical origin of these instabilities is the same in the HD and MHD case ;
the high quality factor () > 20 explained by :

1. 1instabilities localized in narrow radial extension ;

2. along enough life and coherence time of the inhomogeneities ;

the line of sight inclination has only a small influence on the Fourier spectrum ;
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Perspectives

include a viscous term and therefore a stationary inwards flux of matter ;

replace polytropic equation of state by conservation of energy and radiative transfer
mechanism ;

take into account the finite size of the emitting regions ;

study the fully general-relativistic (HD or MHD?) case :
1. linear analysis of the resonance conditions ;

2. 2D simulations ;

effect of the warping and precession of the disk orbital plane = generalization to 3D
simulations.
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