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General Relativity

GR is based on two important principles:
Mach’s principle
Equivalence principle
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General Relativity

GR is based on two important principles:
Mach’s principle The presence of matter curves the geometry of spacetime
Equivalence principle Locally a free-falling observer and an inertial
observer are indistinguishable

This means:
-Gravity is a local condition of spacetime
-Gravity sees all (including vacuum energy!)
-In Newtonnian gravity mI and mG happen to be the same, in GR it is a
founding principle
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General Relativity

GR is based on two important principles:
Mach’s principle The presence of matter curves the geometry of spacetime
Equivalence principle Locally a free-falling observer and an inertial
observer are indistinguishable

gµν :field variable ∂−→ Γγαβ , frame ∂−→ Rσµνρ dynamics
Gµν = 8πGNTµν , EoM are second order EPD’s with respect to the field
variable.
GR is a classical or an effective theory of gravity. At energy scales where
curvature is large it has to be UV-completed to a quantum theory of
gravity...
Here we will concentrate on classical or IR modifications of GR.
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GR is a unique theory

Theoretical consistency: In 4 dimensions, consider
L = L(M, g ,∇g ,∇∇g). Then Lovelock’s theorem in D = 4 states that
GR with cosmological constant is the unique metric theory emerging from,

S(4) =
∫
M

d4x
√
−g (4) [R − 2Λ]

giving,
Equations of motion of 2nd-order (Ostrogradski no-go theorem
1850!)
given by a symmetric two-tensor, Gµν + Λgµν
and admitting Bianchi identities.

Under these hypotheses GR is the unique massless-tensorial 4 dimensional
theory of gravity!
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Observational data

Experimental consistency:
-Excellent agreement with solar system tests and strong gravity tests on binary
pulsars
-Observational breakthrough GW170817: Non local, 40Mpc and strong gravity
test from binary neutron stars. cT = 1± 10−15

Time delay of light Planetary tajectories

Neutron star binary
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Q: What is the matter content of the Universe today?

Assuming homogeinity-isotropy and GR

Gµν = 8πGTµν
cosmological and astrophysical observations dictate the matter content of the

Universe today:
A: -Only a 4% of matter has been discovered in the laboratory. We hope to see
more at LHC. But even then...
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Q: What is the matter content of the Universe today?

Assuming homogeinity-isotropy and GR

Gµν = 8πGTµν
cosmological and astrophysical observations dictate the matter content of the

Universe today:
A: -Only a 4% of matter has been discovered in the laboratory. We hope to see
more at LHC. But even then...

If we assume only ordinary sources of matter (DM included) there is
disagreement between local, astrophysical and cosmological data.
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Universe is accelerating → Enter the cosmological constant

Simplest way out: Assume a tiny cosmological constant
ρΛ = Λobs

8πG = (10−3eV )4, ie modify Einstein’s equation by,

Gµν + Λobsgµν = 8πGTµν

Cosmological constant introduces
√

Λ and generates a cosmological
horizon
√

Λ is as tiny as the inverse size of the Universe today, r0 = H−10

Note that Solar system scales
Cosmological Scales ∼

10 A.U.
H−1
0

= 10−14

Typical mass scale for neutrinos...
Theoretically the cosmological constant should be huge!
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Cosmological constant problem, [S Weinberg Rev. Mod. Phys. 1989]

Cosmological constant behaves as vacuum energy which according to the
strong equivalence principle gravitates,

Vacuum energy fluctuations are at the UV cutoff of the QFT
Λvac/8πG ∼ m4

Pl ...

Vacuum potential energy from spontaneous symmetry breaking
ΛEW ∼ (200GeV )4

Bare gravitational cosmological constant Λbare

Λobs ∼ Λvac + Λpot+Λbare

Enormous Fine-tuning inbetween theoretical and observational value

Why such a discrepancy between theory and observation? big CC
Can one explain or fix dynamically the cosmological constant.
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Maybe Λobs is not a cosmological constant.

What if the need for exotic matter or cosmological constant is the sign for
novel gravitational physics at very low energy scales or large distances.

-Same situation at the advent of GR.
-A next order correction with one additional parameter was enough to save
Newton’s laws (at the experimental precision of the time..)
-Success of GR is not the advance of Mercury’s perihelion, modification of
gravity cannot only be "an explanation" of the cosmological constant.
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General issues to deal with

Since GR is unique we need to introduce new and genuine gravitational
degrees of freedom!
They generically must not lead to higher derivative equations of motion.
Additional degrees of freedom can lead to ghosts and vacuum is unstable
(Ostrogradski theorem 1850 [Woodard 2006]). Since [Gleyzes et al] we know that
higher derivative EOM do not always lead to ghosts. What is essential is
the number of propagating dof.
Matter does not directly couple to novel gravity degrees of freedom.
Matter sees only the metric and evolves in metric geodesics. As such EEP
is preserved and space-time can be put locally in an inertial frame.
Novel degrees of freedom need to be screened from local gravity
experiments. Need a well defined GR local limit (Chameleon [Khoury 2013],
Vainshtein [Babichev and Deffayet 2013]).
Exact solutions are essential in modified gravity in order to understand
strong gravity regimes and novel characteristics. Need to deal with no hair
paradigm, absence of GR black hole theorems etc.
A modified gravity theory should tell us something about the cosmological
constant problem and in particular how to screen an a priori enormous
cosmological constant. Self tuning and self acceleration.
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Possible modified gravity theories

Assume extra dimensions : Extension of GR to Lovelock theory with
modified yet second order field equations. Braneworlds DGP model RS
models, Kaluza-Klein compactification, String theory and holography.
Graviton is not massless but massive! dRGT theory and bigravity theory.
4-dimensional modification of GR:

Scalar-tensor theories, f (R), Galileon/Hornedski theories → Beyond
Horndeski and DHOST theories.
Vector-tensor theories

Lorentz breaking theories: Horava gravity, Einstein Aether theories
Theories modifying geometry: inclusion of torsion, choice of geometric
connection
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Scalar-tensor theories

are the simplest modification of gravity with one additional degree of
freedom
Admit a uniqueness theorem due to Horndeski 1973 and extended to
DHOST theories [Langlois et.al] [Crisostomi et.al.]

contain or are limits of other modified gravity theories.
(Can) have insightful screening mechanisms (Chameleon, Vainshtein)
Include terms that can screen classically a big cosmological constant or
give self accelerating solutions. Need a non trivial scalar field.
Have non trivial hairy black hole solutions even around non trivial self
accelerating vacua
Theories are strongly constrained from gravity waves.
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Jordan-Brans-Dicke theory [Sotiriou 2014]

Simplest scalar tensor theory

SBD =
1

16πG

∫
d4x
√
−g
(
ϕR −

ω0
ϕ
∇µϕ∇µϕ−m2(ϕ− ϕ0)2

)
+ Sm(gµν , ψ)

ω0 Brans Dicke coupling parameter fixing scalar strength
ϕ = ϕ0 constant gives GR black hole solutions (with a cosmological constant)
but spherically symmetric solutions are not unique (and not GR)!
For spherical symmetry we find,

γ ≡
hij |i=j

h00
=

2ω0 + 3− exp
[
−
√

2ϕ0
2ω0+3mr

]
2ω0 + 3 + exp

[
−
√

2ϕ0
2ω0+3mr

]
where γ = 1 + (2.1± 2.3)× 10−5 from local tests.
ω0 > 40000 in the absence of potential.
Need a more complex version in order to screen the scalar mode locally and to
obtain hairy black holes.→ Higher order dervative theories.
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Jordan versus Einstein frame

Jordan frame is the physical frame. Matter couples only to metric and the weak
equivalence principle is satisfied.

SJordan =
1

16πG

∫
d4x
√
−g̃
(
ϕR̃ −

ω(ϕ)
ϕ
∇̃µϕ∇̃µϕ− V (ϕ)

)
+ Sm(g̃µν , ψ)

Consider a conformal transformation: g̃ab = Ω2(x) gab :∫
d4x
√
−g R =

∫
d4x
√
−g̃ (R̃ Ω2 + 6∇̃aΩ∇̃aΩ), Φ = Φ(ϕ; Ω)

and the action transforms into

SEinstein =
1

16πG

∫
d4x
√
−g (R −∇µΦ∇µΦ− U(Φ)) + Sm(gµν ,Φ, ψ)

The action is GR like, but,
Matter couples to metric and scalar!
Non physical frame or Einstein frame. Matter in free-fall does not follow gµν
geodesics!
Frames are equivalent mathematically and physically as long as we know how
matter couples to the metric.
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f (R): a higher order metric theory?

f (R) is a scalar tensor theory in disguise

S =
1

16πG

∫
d4x
√
−gf (R) + Sm(gµν , ψ)

metric field eqs are:

f ′(R)Rµν −
1
2

f (R)gµν − [∇µ∇ν − gµν�]f ′(R) = 8πGTµν

Clearly 4th-order equations in gµν . Ghosts? Not really because,

S =
1

16πG

∫
d4x
√
−g [ϕR − V (ϕ)] + Sm(gµν , ψ)

where V (ϕ) ≡ f (φ)− φf ′(φ) and ϕ = f ′(φ). Hence BD with ω = 0. Higher
derivative theory can be written in terms of a lower derivative scalar tensor
theory.
Order of field eqs does not necessarily dictate number of DoF and hence
presence of ghosts. One has to identify the number and physical nature of
degrees of freedom. Theories such as f (R) are degenerate theories evading
Ostrogradski theorem.
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Self-Tuning idea

Expected value of the cosmological constant is enormous compared to the
observed value
Weinberg’s no go theorem states that we cannot have a Poincare invariant
vacuum with Λ 6= 0
Question: Can we break Poincare invariance for some additional field (not the
metric)?
Keep gµν = ηµν locally but allow for φ 6= constant.
Can we have a portion of flat spacetime whatever the value of the cosmological
constant...
and without fine-tuning any of the parameters of the theory?
Toy model theory of self-tuning scalar field.
Can I have geometric de Sitter acceleration independent of the vacuum
cosmological constant? Can dark energy be driven by a dynamical source?
In order to elaborate on such ideas (self acceleration, self tuning, screening etc)
we need to introduce higher derivative theories.
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Galileons/Horndeski [Horndeski 1973]

What is the most general scalar-tensor theory
with second order field equations [Horndeski 1973]?

Horndeski has shown that the most general action with this property is

SH =
∫

d4x
√
−g (L2 + L3 + L4 + L5)

L2 = K(φ,X),
L3 = −G3(φ,X)�φ,

L4 = G4(φ,X)R + G4X
[

(�φ)2 − (∇µ∇νφ)2
]
,

L5 = G5(φ,X)Gµν∇µ∇νφ−
G5X
6
[

(�φ)3 − 3�φ(∇µ∇νφ)2 + 2(∇µ∇νφ)3
]

the Gi are free functions of φ and X ≡ − 1
2∇

µφ∇µφ and GiX ≡ ∂Gi/∂X .
In fact same action as covariant Galileons [Deffayet, Esposito-Farese, Vikman].
Galileons are scalars with Galilean symmetry for flat spacetime.
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d4x
√
−g (L2 + L3 + L4 + L5)

L2 = K(φ,X),
L3 = −G3(φ,X)�φ,

L4 = G4(φ,X)R + G4X
[

(�φ)2 − (∇µ∇νφ)2
]
,

L5 = G5(φ,X)Gµν∇µ∇νφ−
G5X
6
[

(�φ)3 − 3�φ(∇µ∇νφ)2 + 2(∇µ∇νφ)3
]

Examples: G4 = 1 −→ R.
G4 = X −→ Gµν∇µφ∇νφ.
G3 = X −→ "DGP" term, (∇φ)2�φ
G5 = lnX −→ gives GB term, Ĝ = RµναβRµναβ − 4RµνRµν + R2

Action is unique modulo integration by parts.
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Horndeski theory admits self accelerating vacua with a non trivial scalar field in
de Sitter spacetime. A subset of Horndeski theory self tunes the cosmological
constant.
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Galileons/Horndeski [Horndeski 1973]

SH =
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√
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Generically ST or SA vacua acquire a non trivial scalar field with flat or de Sitter
metric.
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Galileons/Horndeski [Horndeski 1973]

SH =
∫

d4x
√
−g (L2 + L3 + L4 + L5)

L2 = K(φ,X),
L3 = −G3(φ,X)�φ,

L4 = G4(φ,X)R + G4X
[

(�φ)2 − (∇µ∇νφ)2
]
,

L5 = G5(φ,X)Gµν∇µ∇νφ−
G5X
6
[

(�φ)3 − 3�φ(∇µ∇νφ)2 + 2(∇µ∇νφ)3
]

This brings up the issue of time dependance which will be crucial for black holes.
We will now briefly examine time dependent scalars and dark energy related
issues.
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Self tuning in Horndeski theory
Starting from Horndeski theory with a cosmological constant,
Find the most general scalar-tensor theory with self-tuning property:
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-For an arbitrary cosmological constant that is allowed to change in time
-Without fine tuning the parameters of the theory.
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Self tuning in Horndeski theory
Starting from Horndeski theory with a cosmological constant,
-Admitting flat space time solution with a non trivial scalar
-For an arbitrary cosmological constant that is allowed to change in time
-Without fine tuning the parameters of the theory.

Ljohn =
√
−gVjohn(φ)Gµν∇µφ∇νφ

Lpaul =
√
−gVpaul (φ)(∗R∗)µναβ∇µφ∇αφ∇ν∇βφ

Lgeorge =
√
−gVgeorge(φ)R

Lringo =
√
−gVringo(φ)Ĝ

Fab 4 terms
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Self tuning in Horndeski theory
Starting from Horndeski theory with a cosmological constant,

Ljohn =
√
−gVjohn(φ)Gµν∇µφ∇νφ

Lpaul =
√
−gVpaul (φ)(∗R∗)µναβ∇µφ∇αφ∇ν∇βφ

Lgeorge =
√
−gVgeorge(φ)R

Lringo =
√
−gVringo(φ)Ĝ

Fab 4 terms

All are scalar-curvature interaction terms stemming from Lovelock theory. They
are the unique interaction terms yielding second order field equations.
Theory depends on 4 arbitrary potentials.
Fab 4 terms can self-tune the cosmological constant for flat spacetime. At the
absence of curvature Fab 4 terms drop out.
Adding a standard kinetic term self tunes to de Sitter [Gubitosy, Linder]
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Example self tuning solution
Consider a slowly varying scalar field in the presence of an arbitrary cc in a time
evolving universe,

Flat spacetime: Milne metric ds2 = −dT 2 + T 2
(

dχ2

1+χ2 + χ2dΩ2
)
...

For simplicity take analytic expansion:

Vjohn = Cj ,Vpaul = Cp ,Vgeorge = Cg + C1
g φ ,Vringo = Cr + C1

r φ−
1
4

Cj φ
2

Friedmann equation reads,
cj (φ̇H)2 − cp(φ̇H)3 − c1g (φ̇H) + ρΛ = 0

with matter source ρΛ = Λ, vacuum cosmological constant. Note that φ̇H
appear as homogeneous powers of time...
Hence since H = 1/T for Milne, taking φ = φ0 + φ1T 2 gives
cj (φ1)2 − cp(φ1)3 − c1g (φ1) + ρΛ = 0 an algebraic constraint.
Integration constant φ1 is fixed by the cosmological constant for arbitrary values
of the theory potentials.
Going to spherically symmetric coords scalar is space and time dependent! Same
holds for De Sitter self tuning...
We can remedy part of the cc problem and even have dark energy emanating
from the scalar. Non trivial, dark energy vacua, inherently demand a time
dependent scalar!
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Galileons/Horndeski [Horndeski 1973]

SH =
∫

d4x
√
−g (L2 + L3 + L4 + L5)

L2 = K(X),
L3 = −G3(X)�φ,

L4 = G4(X)R + G4X
[

(�φ)2 − (∇µ∇νφ)2
]
,

L5 = G5(X)Gµν∇µ∇νφ−
G5X
6
[

(�φ)3 − 3�φ(∇µ∇νφ)2 + 2(∇µ∇νφ)3
]

the Gi are free functions of φ and X ≡ − 1
2∇

µφ∇µφ and GiX ≡ ∂Gi/∂X .
Horndeski theory includes Shift symmetric theories where Gi ’s depend only on X
and φ→ φ+ c.
Associated with the symmetry there is a Noether current, Jµ which is conserved
∇µJµ = 0.
Presence of this symmetry permits a very general no hair argument
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So far...

Even for a static spherically symmetric spacetime scalar field is to be time
dependent if we are going to be in a non trivial branch of solutions
Shift symmetric Horndeski theory provides a conserved Noether current.
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Black holes have no hair [recent review Herdeiro and Radu 2015]

During gravitational collapse...
Black holes eat or expel surrounding matter
their stationary phase is characterized by a limited number of charges
and no details
black holes are bald...

No hair arguments/theorems dictate under some reasonable hypotheses that adding
degrees of freedom lead to singular solutions...
For example in vanilla scalar-tensor theories black hole solutions are GR black holes
with constant scalar.

Warning : beyond GR Birkhoff’s theorem is not valid.
Spherical symmetry thus does not guarantee staticity.
Scalar tensor black holes radiate monopole gravity waves.
There is no reason for metric and scalar not to radiate for spherical symmetry
Let us now see a classical example of a hairy solution...
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Example: BBMB solution

Consider a conformally coupled scalar field φ:

S[gµν , φ, ψ] =
∫
M

√
−g
( R
16πG

−
1
2
∂αφ∂

αφ−
1
12

Rφ2
)

d4x + Sm[gµν , ψ]

Invariance of the EOM of φ under the conformal transformation{
gαβ 7→ g̃αβ = Ω2gαβ
φ 7→ φ̃ = Ω−1φ

There exists a black hole geometry with non-trivial scalar field and secondary
black hole hair.
The BBMB solution [N. Bocharova et al.-70 , J. Bekenstein-74 ]
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The BBMB solution [N. Bocharova et al.-70 , J.
Bekenstein-74 ]

Static and spherically symmetric solution

ds2 = −
(
1−

m
r

)2
dt2 +

dr2(
1− m

r

)2 + r2
(

dθ2 + sin2 θdϕ2
)

with secondary scalar hair

φ =

√
3

4πG
m

r −m

Geometry is that of an extremal RN.
Problem:The scalar field is unbounded at (r = m).
A cosmological constant can cure this; [MTZ] family of solutions
Secondary hair black hole

C. Charmousis Modifying gravity, black holes, and gravity wave constraints



The BBMB solution [N. Bocharova et al.-70 , J.
Bekenstein-74 ]

Static and spherically symmetric solution

ds2 = −
(
1−

m
r

)2
dt2 +

dr2(
1− m

r

)2 + r2
(

dθ2 + sin2 θdϕ2
)

with secondary scalar hair

φ =

√
3

4πG
m

r −m

Geometry is that of an extremal RN.
Problem:The scalar field is unbounded at (r = m).
A cosmological constant can cure this; [MTZ] family of solutions
Secondary hair black hole

C. Charmousis Modifying gravity, black holes, and gravity wave constraints



The BBMB solution [N. Bocharova et al.-70 , J.
Bekenstein-74 ]

Static and spherically symmetric solution

ds2 = −
(
1−

m
r

)2
dt2 +

dr2(
1− m

r

)2 + r2
(

dθ2 + sin2 θdϕ2
)

with secondary scalar hair

φ =

√
3

4πG
m

r −m

Geometry is that of an extremal RN.
Problem:The scalar field is unbounded at (r = m).
A cosmological constant can cure this; [MTZ] family of solutions
Secondary hair black hole

C. Charmousis Modifying gravity, black holes, and gravity wave constraints



The BBMB solution [N. Bocharova et al.-70 , J.
Bekenstein-74 ]

Static and spherically symmetric solution

ds2 = −
(
1−

m
r

)2
dt2 +

dr2(
1− m

r

)2 + r2
(

dθ2 + sin2 θdϕ2
)

with secondary scalar hair

φ =

√
3

4πG
m

r −m

Geometry is that of an extremal RN.
Problem:The scalar field is unbounded at (r = m).
A cosmological constant can cure this; [MTZ] family of solutions
Secondary hair black hole

C. Charmousis Modifying gravity, black holes, and gravity wave constraints



The BBMB solution [N. Bocharova et al.-70 , J.
Bekenstein-74 ]

Static and spherically symmetric solution

ds2 = −
(
1−

m
r

)2
dt2 +

dr2(
1− m

r

)2 + r2
(

dθ2 + sin2 θdϕ2
)

with secondary scalar hair

φ =

√
3

4πG
m

r −m

Geometry is that of an extremal RN.
Problem:The scalar field is unbounded at (r = m).
A cosmological constant can cure this; [MTZ] family of solutions
Secondary hair black hole

C. Charmousis Modifying gravity, black holes, and gravity wave constraints


