Unified Picture of the Postmerger Dynamics and Gravitational-Wave Emission

> Andreas Bauswein (AUTH Thessaloniki) with N. Stergioulas, J. Clark, H.-T. Janka Workshop on Binary Neutron Star Mergers Thessaloniki, 29/05/2015

supported by Marie-Curie Intra-European Fellowship (IEF 331873) within the Seventh European Community Framework Programme

Outline

- Dominant postmerger GW emission
 - NS radius measurements
 - estimates of the NS maximum mass
- Origin of secondary features
- Classification of postmerger GW emission and dynamics
- Dependencies of secondary frequencies

Generic GW spectrum

- Up to three pronounced features in the postmerger spectrum (+ structure at higher frequencies)
- 1.35-1.35 M_{sun} DD2 EoS

In the literature f_{peak} is also called f_2

Gravitational waves – EoS survey

characterize EoS by radius of nonrotating NS with 1.6 $\rm M_{sun}$

Bauswein et al. 2012

Pure TOV/EoS property => Radius measurement via f_{peak}

(Triangles: strange quark matter; red: temperature dependent EoS; others: ideal-gas for thermal effects)

Note: R of 1.6 M_{sun} NS scales with f_{peak} from 1.35-1.35 M_{sun} mergers (density regimes comparable)

See also Clark's talk

Gravitational waves – EoS survey

Triangles: strange quark matter; red: temperature dependent EoS; others: ideal-gas for thermal effects

Radius measurements

- Equivalent relations exist for other total binary masses
- Binary masses are measurable at distance which allow f_{peak} determination (e.g. Rodriguez et al. 2014)
- Asymmetric binaries of the same M_{tot} alter f_{peak} only slightly
- Intrinsic rotation has negligible impact for observed spin rates (see also talk by Kastaun)
- Frequencies agree with results from Kyoto / Frankfurt group
- Dominant frequency detectable for near-by events e.g. via morphology-independent burst analysis (Clark's talk) with ~10 Hz accuracy

Estimates of maximum NS mass (nonrotating)

- Key quantity: Threshold binary mass M_{thres} for prompt BH collapse
- Important: depends in particular way EoS/TOV properties $M_{thres} = M_{thres}(R_{max}, M_{max}) = M_{thres}(R_{1.6}, M_{max})$ (Bauswein et al. 2013)
- 2 ways of estimating Mthres/Mmax:

- Determine M_{thres} either by direct observations of delayed and prompt collapse for different M_{tot} (Bauswein et al. 2013)

- Or extrapolate behavior from several events at lower binary masses $f_{peak}(M_{tot}) \rightarrow f_{thres}(M_{thres})$, i.e. using observations of events in the most likely range of binary masses (Bauswein et al. 2014)

$$M_{thres} = k * M_{max}$$

from two measurements of f_{peak} at moderate M_{tot}

(final error will depend on EoS and extact systems measured) Note: M_{thres} may also be constrained from prompt collapse directly

Generic GW spectrum

- Up to three pronounced features in the postmerger spectrum (+ structure at higher frequencies)
- 1.35-1.35 Msun DD2 EoS

Quasi-radial mode

- Central lapse function shows two frequencies (~500 Hz and ~1100 Hz)
- Add quasi-radial perturbation \rightarrow re-excite quasi-radial mode => $f_0 = 1100 \text{ Hz}$
- Confirmed by mode analysis \rightarrow radial eigen function at f_0

Could consider also size of the remnant, rhomax, ...

Note: additional low-frequency oscillation (500 Hz) also in GW amplitude (explained later)

Generic GW spectrum

• Interaction between dominant quadrupolar mode and quasiradial oscillation produced peak at $f_{2-0} = f_{peak} - f_0$ (see Stergioulas et al. 2011)

Rest-mass density (equatorial plane) – linear scale ! DD2 EoS, 1.35-1.35 Msun

=> Second component of the remnant

Antipodal bulges (spiral pattern)

Orbital motion of antipodal bulges slower than inner part of the remnant (double-core structure)

Spiral pattern, created during merging lacks behind

Orbital frequency: $1/1ms \rightarrow generates GW$ at 2 kHz !!!

Present for only a few ms / cycles

Generic GW spectrum

Orbital motion of antipodal bulges generate peak at f_{spiral}

Further evidence

- Presence of spiral pattern coincides with presence of peak in GW spectrum
- Mass of bulges (several 0.1 $\rm M_{sun}$) can explain strength of the peak by toy model of point particles the central remnant for a few ms
- Tracing dynamics / GW emission by computing spectra for "outer" and "inner" remnant $\rightarrow f_{spiral}$ emission is produced outside
- (Dynamics of double cores fail to explain this emission)

=> orbital motion => f_{spiral} peak

Survey of GW spectra

 Considering different models (EoS, M_{tot}): 3 types of spectra depending on presence of secondary features (dominant f_{peak} is always present)

Survey of GW spectra

Type I Type II Type III

LS220, DD2, NL3 EoS all with $M_{tot} = 2.7 M_{sun} \rightarrow \text{consider } M_{tot} \text{ relative } M_{thres}$

Classification scheme

- Type I: 2-0 feature dominates, f_{spiral} hardly visible, radial mode strongly excited, observed for relatively high M_{tot}
- Type II: both secondary features have comparable strength, clearly distinguishable, moderate binary masses
- Type III: f_{spiral} dominates, f₂₋₀ hardly visible, found for relatively low binary masses, (central lapse, GW amplitude, rhomax show low-frequency modulation in addition to radial oscillation)
- Different types show also different dynamical behavior, e.g. in central lapse, rhomax,
- High mass / low mass relative to threshold binary mass for prompt BH collapse (→ EoS dependent)
- Continuous transition between different types

=> Depending on binary model (EoS, M1/2) either one or the other or both features are there / dominant (if you measure a secondary peak you should always think whether it is f2-0 or fspiral)

Classification scheme

Type of M_1 - M_2 merger indicate at $M_{tot}/2 = M_1$

(Continuous transition between types \rightarrow tentative association) For M_{tot} = 2.7 M_{sun} all Types are possible depending on EoS

Classification scheme

Behavior reasonable:

- Type I: compact NSs merge \rightarrow high impact velocity / violent collision => radial oscillation strongly excited (2-0 dominant); higher compactness \rightarrow formation of tidal bulges suppressed (f_{spiral} weaker)
- Type III: less compact NSs merge \rightarrow lower impact velocity / smooth merging => radial mode suppressed (no 2-0); pronounced tidal bulges (strong f_{spiral} feature)

For Type III and Type II low-frequency modulation with $f_{low} = f_{peak} - f_{spiral}$ by orientation of bulge w. r. t. inner double-core/bar

(seen in lapse, GW amp., rhomax, ...)

Dependencies of secondary frequencies

For fixed $M_{tot} = 2.7 M_{sun}$

Dashed line from Takami et al. 2014

EoS characterized by compactness C=M/R of inspiralling stars (equivalent to radius as before)

All three frequencies scale similarly with compactness (equivalently radius since $M = M_{tot}/2 = fixed$ here)

Here: only temperature-dependent EoS to avoid uncertainties/ambiguities due to approximate treatment of thermal effects (Gamma_th)

For small binary mass asymmetry only small quantitative shifts

Different binary masses

Dashed line from Takami et al. 2014

- for the individual secondary frequencies there are relations between C and the frequency for fixed binary masses (solid lines)

- (binary masses will be known from GW inspiral signal)

- there is no single, universal, mass-independent relation (for a expected range of binary masses), also when choosing the strongest secondary peak

- no conflict with Takami et al.'s data (frequencies agree when comparing same models), but here constant binary mass range for every EoS, more EoSs (larger, more representative parameter range (EoS, M_{tot}))

Summary

- Dominant postmerger oscillation frequency tightly constrains NS radii and NS maximum mass
- Two distinct mechanisms generate secondary features in GW spectrum: interaction between quadrupolar and radial mode; orbital motion of antipodal bulges (explain also low-frequency modulation)
- Depending on presence of secondary features GW emission and dynamics can be classified: three different Types (depending on total binary mass for given EoS)
- Secondary and dominant frequencies show very similar dependence on NS compactness / radius
- Mass-dependent relations for different frequency peaks (but no universal mass-independent relation)

Details: Bauswein & Stergioulas: arXiv:1502.03176