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Burst Signals: Short

BNS mergers: likely formation of a stable
/ quasi-stable, differentially rotating
neutron star remnant [1, 2, 3, 4].

Transient non-axisymmetric deformations
and f-mode oscillations — short
(10-100ms) burst of high-frequency
(~kHz) gravitational wave (GW)
emission.

Spectral properties — neutron star
equation of state from (e.g.,) dominant
peak frequency foeakx [, 1 Peak-frequency/fiducial-radius
relation from [ ]

May be observable to ~10’sMpc in
advanced LIGO (c. 2020+).
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BNS Burst Signals: Merger/Post-Merger
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Examples for different EOS (APR, Shen, DD2). Waveforms taken from [ 1.
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GW Burst Search: Coherent WaveBurst (CWB)

Search for excess power in time-frequency plane
Decompose data with multi-resolution wavelet basis
Coherent analysis maximises likelihood over waveform &
sky-location [, 9]

Identifies statistically significant coherent power (detection),
reconstructs GW signal

Scalogram (sqri((E00+E90)2))

Simulated signal Reconstructed signal
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Previous Burst Detectability Study

"Prospects For High Frequency Burst Searches Following
Binary Neutron Star Coalescence With Advanced
Gravitational Wave Detectors" [7]

Monte-Carlo analysis of burst detectability and basic parameter
estimation of post-merger bursts
Family of numerical waveforms with various EoS
Initial detector era noise recoloured to 2022 sensitivities
Deployed CWB to detect & reconstruct signals
Compared sensitivity with optimal matched filter expectation

Very simple model selection procedure for spectral analysis of
reconstructed signals (identify post-merger scenario, measure
dominant frequency)
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Detectability & Frequency Recovery
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Effective range for theoretical matched Absolute error in radius recovery,
filter & burst analysis (fixed false alarm using fpeak — R1.6 relationin [ ].
probability=1%)
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New Study: Prospects for...: Round 2

Motivation & Goals of Study:
Recent upgrades to flagship burst analysis algorithm *
More post-merger waveforms from University of Trento (also
home of various CWB experts)
Point-comparison of SPH and NR waveform codes from
independent groups
Also recent development & availability of ‘unmodelled’ Bayesian
analysis algorithm
Tune the post-merger analysis for next year’'s BNS inspiral
detection!

Participants from GATech, Universities of Thessaloniki & Trento
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Preliminary Results From New Study

Going further than previous study and looking at
full-reconstruction fidelity characterised by match and peak
frequency measurements

‘Ceiling’ on matches — Missing late-time/high-frequency
post-merger signal; goal is to tune the analysis to avoid this effect
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Enhancements & Bayesian Methods

CWBB: fast, robust & familiar ‘flagship’ burst analysis; principal
tool GW burst searches.

Other recent efforts for burst waveform recovery &
characterisation:

1 Bayesian wavelet analysis (‘BayesWave’); model dimension
estimation & potential to encode prior information on
time-frequency structure

2 Principal component analysis as a route to phenomelogical
templates
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Principal Component Analysis Of Short Bursts

Clark, Bauswein & Stergioulas (in prep.)
1 Goal: find a robust basis to accurately represent simulated waveforms

2 Organise M simulation waveforms, each containing N samples, from
numerical simulations of binary neutron star mergers into an M x N
data matrix, X

3 Align dominant features, subtract the mean waveform h to get centered
data matrix Y

4 Eigenvectors W of the covariance matrix C ~ YY" provide a basis to
represent deviations from the mean

5 Arbitrary waveform h is represented in the new basis by,
_ P
h=h+Y_ Bwi, (1)
=1

where w; are rows of W & 3; are projection coefficients from B = h'.'W

6 See e.g., supernova waveform analyses [ ], reduced order modelling
for BBH[ ]
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Short Burst PCA

Clark, Bauswein & Stergioulas (in prep.)

Original Spectra Aligned Spectra Aligned & Centered Spectra
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Prospects for PCA Of Short Bursts

PCA provides an (approximate)
template:

H(f) =~ Apca(f) expligpca(f)],

where,
N
Apca(f) =Y BMuM (@)
=il

N
dpca(f) = Z B ul®
i=1

Right: matches for waveforms

in [ ]using 1st principal
component (N = 1) from training
data with test waveform excluded
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Burst Signals: Long

Longer, louder GW emission also possible with formation of stable
post-merger remnants. Examples include:

w(x10%) rad/s

1000

Magnetic field amplification — stable
magnetar with B-field induced
quadrupole moment [ ]. Emission
over ~ 10° s, matched-filter effective
range: ~ 25 — 53 Mpc
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Secular bar-mode instability [ 1.
Emission over ~fewx10? — 10%s,
matched-filter effective range:

~ 45 Mpc.



Searching For Long Bursts

Also have tools to specifically target long (few 100—few 1000s)
transients, where precise morphology is unknown. E.g., ‘STAMP’
analysis [14]:

Cross-correlate strain time
series from pairs of detectors

Form cross-power
time-frequency maps (e.g.,
right)

Pattern-recognition problem:
search for ‘tracks’ in
Cross-power maps

Example signal recovery with STAMP
(accretion disk instability waveform).

Sensitivity studies & tuning now underway; interested in any/all
long-transient signal scenarios
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Summary

Likely formation of post-merger NS remnant following
coalescence

GWs from merger & oscillations could constrain EOS for nearby
mergers

Challenges: weak signal & uncertain morphology; use
unmodelled burst analysis

Initial burst study: signals observable in advanced detectors to a
few Mpc, dominant post-merger frequencies quite well recovered.
Follow-up burst study underway: multi-resolution analysis,
opportunity to tune, study more waveforms & characterise full
waveform reconstruction fidelity

Exciting new developments: PCA-based analysis could triple our
range & mature long-duration transient searches ready to go
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Detectability & Frequency Recovery

hsDD2* EFTH
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Effective range for theoretical matched Absolute error in peak frequency
filter & burst analysis (fixed false alarm recovery
probability=1%)
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Classification Accuracy & Radius Recovery

DD23 31
DD2

Probability of identifying correct
post-merger scenario
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