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● Introduction:  The r-process riddle                                              
                                         

● Supernovae as candidate sites of r-processing                         
                                 

● Neutron star mergers as likely sites of r-process production   
                                                                                               

Outline



● Courtesy: K.-L. Kratz

s- and r-Process Nucleosynthesis



s- and r-Process Nucleosynthesis

● Rapid neutron-capture process         
(r-process) is responsible for 
production of ~50% of n-rich nuclei 
heavier than iron.

●

● Astrophysical site(s) of             
r-process are still unknown;

● One of greatest mysteries of 
nuclear astrophysics.



R-Process Elements in Ultra Metal-Poor Stars

● Elemental r-process 
abundances in ultra metal-
poor stars compared to             
solar distribution                        
          

● Uniform pattern for 56 < Z < 83

● Larger scatter for Z < 50 



Metallicity Evolution of R-Element Enrichment

● Fe and Mg produced   
in same site:  core-
collapse supernovae      
                                          
                                          
                             

● Significant [Eu/Fe] 
scatter at low 
metallicities [Fe/H]

● R-process production 
is rare in early galaxy

● Mg and Fe production 
is not tightly coupled  
to r-process production



● Physical conditions of the ejecta  <――>

             Source of “weak” or “strong” r-process?                   
             Can solar r-abundances be produced “robustly”?     
                                             

● Ejecta mass and frequency of source  <――>                         
                        Main source or sub-dominant contributor?     
                      

● Element enrichment history of Galaxy  <――>                        
  Can one astrophysical source explain all observations?

                                            

                                                                                                     
  

r-process Sources: Basic Questions



 Supernova ~1680 

 Neutron Star Merger

Explosive Origins of Heavy Elements

 Supernova 1054 



Supernovae as Potential  
Site of r-Process 

Element Production



● Dynamical ejecta of prompt explosions (of O-Ne-Mg cores) 
(Hillebrandt, Takahashi & Kodama 1976; Wheeler, Cowan & Hillebrandt 
1998; Wanajo 2002)

● He-shell exposed to intense neutrino flux (Epstein, Colgate, & 

Haxton 1988; Banerjee et al. 2011)                                
● Neutrino-driven wind from proto-neutron stars  (Woosley et al. 

1994)                                                          
● C+O layer of O-Ne-Mg-core (“electron-capture”) supernovae 

(Ning, Qian & Meyer 2007)

● Magnetohydrodynamic jets of rare core-collapse supernovae 
(Winteler et al. 2013, Nishimura et al.)

● Ejection of fallback material   (Fryer et al. 2006)

● Some more...?                                                                               
                    

R-Process Scenarios in Supernovae



Neutrino-Driven Wind from Proto-Neutron Stars



Arcones, Janka, & Scheck (A&A 467 (2007) 1227)

Arcones & Janka, (A&A 526 (2011) A160)

Neutrino-Driven Wind from Proto-Neutron Stars



Nucleosynthesis in Neutrino-Heated Ejecta

– Crucial parameters for nucleosynthesis in neutrino-driven outflows:     
 

–        *   Electron-to-baryon ratio Ye     (<---> neutron excess)
–        *   Entropy   (<---->  ratio of (temperature)3  to density)
–        *   Expansion timescale
–

– Determined by the interaction of stellar gas 
– with neutrinos from nascent neutron star:



Requirements for strong r-Process Including 
Third Abundance Peak
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Nucleosynthesis in O-Ne-Mg Core Winds

● Neutrino-driven wind remains     
p-rich for >10 seconds!

● No r-process in the late neutrino-
driven wind!

● Holds also for more massive 
progenitos  (Fischer et al. 2009)

            Hüdepohl (Diploma Thesis 2009);           
Hüdepohl et al. (PRL 104 (2010); arXiv:0912:0260)

● No favorable conditions for a 
strong r-process in ONeMg-core 
explosions and neutrino-driven 
winds of PNSs!                      



CRAB Nebula with 
pulsar, remnant of 
Supernova 1054 

Eexp  ~  1050 erg  =  0.1 bethe
MNi   ~   0.003 Msun

Low explosion energy and 
ejecta composition (little Ni, C, O) 
of ONeMg core explosion are 

compatible with CRAB (SN1054)  
       (Nomoto et al., Nature, 1982;          
            Hillebrandt, A&A, 1982)

Might also explain other low-
luminosity supernovae (e.g. 
SN1997D, 2008S, 2008HA)

Explosion properties:



t = 0.262 s  after core bounce

2D SN Simulations:   M
star

 ~ 8...10 M
sun

 
     Convection leads to slight increase of 

explosion energy, causes explosion 
asymmetries, and ejects n-rich matter!

Entropy    Ye



●                                                  
Convectively ejected n-rich matter makes 
ONeMg-core and low-mass Fe-core 
supernovae an interesting source of nuclei 
between the iron group and N = 50 (from 
Zn to Zr), possibly also of weak r-process 
nuclei.

● (Wanajo, THJ, Müller, ApJL 726, L15 (2011))

●

●

– 2D model

– Y
e

– entropy
8.8 Msun O-Ne-Mg core SN

n-rich 
matter

Nucleosynthesis in Neutrino-
Heated SN Ejecta

9.6 Msun (z=0) Fe core SN



Nucleosynthesis in O-Ne-Mg Core SNe

●                                                  
● Models in very good agreement with Ge, Sr, Y, 

Zr abundances observed in r-process deficient 
Galactic halo stars.  

●
– If tiny amounts of matter with  Ye down to 0.30‒

0.35 were also ejected, a weak r-process may 
yield elements up to Pd, Ag, and Cd. –

(W
an

aj
o,

 J
an

ka
, &

 M
ül

le
r, 

A
pJ

 L
et

te
rs

 7
26

 (
20

11
) 

L1
5)

●                                                  
Convectively ejected n-rich matter makes 
ONeMg-core supernovae an interesting 
source of nuclei between iron group and N 
= 50 (from Zn to Zr).

●

●

 0.262 s  



Ejecta Conditions in O-Ne-Mg Core SNe
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Ye > 0.34!
n-rich 
matter
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Ejecta Conditions in O-Ne-Mg Core SNe



Ye > 0.35!
n-rich 
matter
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Ejecta Conditions in O-Ne-Mg Core SNe

Nucleon       
self-energy 
shifts 
(“nucleon 
potentials”) 
reduce Ye



n-rich 
matter Ye > 0.37!
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Ejecta Conditions in O-Ne-Mg Core SNe

Nucleon       
self-energy 
shifts 
(“nucleon 
potentials”) 
reduce Ye



Compact Binary Mergers 
as Origin of 

r-Process Elements



NS+NS/BH Mergers

Ruffert et al.           
Rosswog et al.       
Oechslin et al.        
Shibata et al.         
Rezzolla et al.       
Rasio et al.             
Lehner et al.          
Foucart et al.          

etc.              



Extreme Magnetic Field Amplification
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NS+NS

NS+BH

HMNS
different. rot. SMNS

BH+torus

BH

stable NSEvolution Paths of 
NS+NS/BH Mergers

Observable signals: 
Gravitational waves, neutrinos, gamma-ray bursts,
mass ejection, r-process elements, electromag. transients



Neutron Star Mergers as Production 
Sites of Ejecta & Heavy Elements

● are likely sources of short gamma-
ray bursts                               
(Paczynski, Jaroszynski, etc.)

● are among strongest sources of 
gravitational waves

● are potential production sites of       
r-process nuclei                            
(Lattimer & Schramm 1974, 1976;         
Lattimer et al. 1977; Meyer 1989)

● May be observable transient  
sources of optical radiation               
(Li & Paczynski 1998, Kulkarni 2005,       
Metzger et al. 2010, Roberts et al. 2011)

and radio flares  (Piran & Nakar 2011)

(Ruffert & Janka 1999; Just et al., MNRAS 448 (2015) 541)

Compact binary mergers
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Dynamical Mass Ejection in NS-NS Mergers

Asymmetric NS-NS merger



Properties of Dynamical Merger Ejecta
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Asymmetric
NS-NS
merger

Asymmetric
Merger

Symmetric
NS-NS
merger

● Still unclear influence of neutrinos on ejecta Ye

● Can depend on NS compactness and therefore EOS



Asymmetric
Merger

● Per merger event       
10–3–10–2 Msun are 
ejected.

● With rate of 10–5    
events per year and 
galaxy, NS mergers 
could be the main 
source of heavy r-
process material.

Nucleosynthesis in Dynamical Merger Ejecta
(Goriely, Bauswein, THJ,
  ApJL 738 (2011) L32) ● During r-processing fission recycling 

takes place and produces roughly 
solar abundances for  A > 130.



R-process Nucleosynthesis

● Robust r-process with solar abundance above A ~130

● Insensitive to high-density equation of state?  Caveat:  neutrinos??

● Radioactive decays power optical transient

for 1.35-1.35 binaries (most abundant in binary population)
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Neutrinos

Sekiguchi et al., PRL 107, 051102 (2011)



Nucleosynthesis in Neutrino-Heated Ejecta

– Crucial parameters for nucleosynthesis in neutrino-irradiated outflows:  
    

–        *   Electron-to-baryon ratio Ye     (<---> neutron excess)
–        *   Entropy   (<---->  ratio of (temperature)3  to density)
–        *   Expansion timescale
–

– Determined by the interaction of stellar gas 
– with neutrinos from radiating merger remnant:



● Compact NSs produce strongly 
shock-heated ejecta.

● Electron fraction increases 
considerably in hot ejecta, mostly 
due to positron capture.

● Heavy r-process is still produced,  
but also A < 130 nuclei.

(Wanajo et al., ApJL 789 (2014) L39)

Nucleosynthesis in Neutrino-Processed 
Merger Ejecta

  see also M. Shibata's talk of yesterday



Nucleosynthesis in Neutrino-Processed 
Merger Ejecta
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Nucleosynthesis in Neutrino-Processed 
Merger Ejecta
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Mass of r-material varies between some percent and ~70%



● Depends on EoS   (cf. Sekiguchi et al. 2015)                                      
                 

● Depends also on viewing direction, merger system and 
system parameters, phase of mass ejection                               
                                                                

● Potentially depends on neutrino flavor oscillations                   
               (cf. Malkus et al. 2012, Caballero et al. 2012)                            
                                

Mass of r-Process vs. α-particles vs. Fe-group



BH-Torus
Outflows

● Hydrodynamical 2D models             
of BH-torus evolution.                         
 (Just, PhD Thesis 2012)                   

● New Newtonian MHD-code           
with 2D, energy-dependent      
neutrino transport based on         
two-moment closure scheme.             
 (Obergaulinger, PhD Thesis 2008) 

● BH treated by Artemova-         
Novikov potential.

● Diplayed model based on      
Shakura-Sunyaev α-viscosity

● MHD yields turbulent tori !

      Just et al., MNRAS 448 (2015) 541 

        also: Fernández & Metzger      
           (2013, 2014, 2015)



Outflows from Magnetized BH-Torus

(Just, PhD Thesis 2012)
Magnetohydrodynamic simulation
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R-process Nucleosynthesis
for NS+NS merger + BH-torus remnant



Electromagnetic Transients: Light Curve

Shen EoS;

Light curves from
one-zone ejecta 
modell

Estimates:       Lbolo ~ 7.5*1041 erg/s   κ–1/2  (v/0.1c)1/2 (Mejecta/10-2Msun)1/2

      tpeak ~ 0.5 d   κ1/2   (v/0.1c)-1/2 (Mejecta/10-2Msun)
1/2

   Teff ~ 1.4*104 K  κ–3/8   (v/0.1c)-1/8 (Mejecta/10-2Msun)-1/8
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  see also following talk by B. Metzger



Infrared Transient of GRB 130603B and NS 

EOS Implications 

Hotokezaka et al., ApJ (2013)

Soft EOS with small NS radius 
needed for NS+NS merger

Stiff EOS with large NS radius 
needed for NS+BH merger



Constraints on NS-BH 
Merger Rate by R-Process

Production

Bauswein et al., ApJL 795 (2014) L9

Stiff EoS

Soft EoS

  see also talk by R. Ardevol-Pulpillo



Summary and Conclusions

● Strong r-processing hard to achieve at supernova conditions.

● O-Ne-Mg core explosions are favorable sites for weak r-process.

● NS+NS/BH mergers are likely sites for strong r-process.  

● Mass of NS+NS/BH merger ejecta sensitively depends on nuclear 
equation of state and BH spin.

● Properties of electromagnetic transients of compact object mergers 
are strongly and systematically affected by elemental composition of 
ejecta  (cf. GRB130603B)

● Nucleosynthesis insensitive/weakly sensitive to EoS,                           
but for NS-NS mergers depends on neutrino emission (and 
absorption)            ―>  relevance for ejecta opacity!

● Chemogalactic implications require careful studies with detailed 
hydrodynamical models of Galaxy evolution



● Having identified one source does not exclude existence of 
other sources.                                             

                                                                                                     
  

R-process Sources
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The ISM Mixing Problem

(see also Wehmeyer et al., arXiv:1501.07749)



Jet-Supernova Models as r-Process Sites?

Dessart et al., ApJL 673 (2008) L43
Winteler et al., ApJL 750 (2012) L22

● MHD-driven polar “jets” could sweep out n-rich matter.
● Requires extremely fast matter ejection and therefore extremely rapid 

rotation and extremely strong magnetic fields in pre-collapse stellar 
cores.

● Would be very rare event; maybe 1 of 1000 stellar core collapses?

Mösta et al., ApJL 785 (2014) L29



The ISM Mixing Problem
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Argast et al. ( A&A 416 (2004) 997 :

Each SN (preceding a NS merger) 
mixes into 5*104 Msun  of ISM and 
thus produces [Fe/H] ~ 10–3.....10–2

Chemogalactic Enrichment History



But :                  Highly idealized picture of Galactic chemical enrichment 
                  dynamics and history



What can large-scale flows in the Galaxy and NS kick velocities do?



     Dwarf spheriodals and sub-halos mergers with Galaxy can change              
 relation between time and metallicity;  reduce SN metal enrichment             
 preceding first NS mergers to [Fe/H] ~  10–4.....10–3                                                            
 (Prantzos 2006; Ishimaru et al. 2015, Vangioni et al. 2015; van de Voort 2015)



Chemogalactic Enrichment History

 Vangioni et al., arXiv:1501.01115



Supernovae                   Mergers
✗ Exist, rare, rate uncertain

✔ Ejecta more mass/event

✗ Chemogalactic role not well 
studied

✔ Prompt mass ejection very 
fast: neutrinos do not harm 
much

✔ “Robust” r-process,      
outcome independent of 
numerics/group

✔ Scenario can be directly 
confirmed by observations 
(macro-nova)

✔ Sufficient variability for 
“outliers” and event scatter       
                          

                                                 
                                                 
     

✔ Exist, frequent, known rate,    
onset early in galaxy

✗ Small r-mass mass/event  

✔ Chemogalactic role well 
understood

✗ Inner ejecta exposed to intense 
neutrino fluxes, increase Ye

✗ Ejecta conditions highly variable, 
neutrino-driven wind sensitive to 
Mns, Rns, neutrino properties, 
strong B-fields, wave-heating, 
sterile neutrinos,....               

✗ Speculative scenarios:                     
      O-Ne-Mg core surface                 
      He shell (secondary process)    
      MHD jets                                       
      SN fallback-ejection                  
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