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Introduction

•
 

Gravitational waves from neutron-star and black-hole binaries 
carry valuable information on their physical properties and probe 
physics inaccessible to the laboratory.

•
 

Although development of black-hole
 

gravitational wave 
templates in the past decade has been revolutionary, the 
corresponding work for double neutron-star

 
systems has lagged.

•
 

Recent progress by groups in Frankfurt (Whisky), Kyoto 
(SACRA), Jena (BAM), Caltech-Cornell-CITA-AEI (SpEC) etc.

•
 

The Valencia
 

scheme has been a workhorse for hydro in 
numerical relativity…
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Introduction

•
 

Gravitational waves from neutron-star and black-hole binaries 
carry valuable information on their physical properties and probe 
physics inaccessible to the laboratory.

•
 

Although development of black-hole
 

gravitational wave 
templates in the past decade has been revolutionary, the 
corresponding work for double neutron-star

 
systems has lagged.

•
 

Recent progress by groups in Frankfurt (Whisky), Kyoto 
(SACRA), Jena (BAM), Caltech-Cornell-CITA-AEI (SpEC) etc.

•
 

The Valencia
 

scheme has been a workhorse for hydro in 
numerical relativity, but considering alternative hydrodynamic 
schemes can lead to further progress…

•
 

Hamiltonian
 

methods have been used in all areas of physics but 
have seen little use in hydrodynamics 



Introduction

•
 

Constructing a Hamiltonian requires a variational principle
•

 
Carter and Lichnerowicz

 
have described barotropic fluid motion 

via classical variational principles as conformally
 

geodesic
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Introduction

•
 

Constructing a Hamiltonian requires a variational principle
•

 
Carter and Lichnerowicz

 
have described barotropic fluid motion 

via classical variational principles as conformally
 

geodesic

•
 

Moreover, Kelvin’s circulation theorem 

implies that initially irrotational flows remain irrotational.
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Introduction

•
 

Constructing a Hamiltonian requires a variational principle
•

 
Carter and Lichnerowicz

 
have described barotropic fluid motion 

via classical variational principles as conformally
 

geodesic

•
 

Moreover, Kelvin’s circulation theorem 

implies that initially irrotational flows remain irrotational.

•
 

Applied to numerical relativity, these concepts lead to novel 
Hamiltonian

 
or Hamilton-Jacobi

 
schemes for evolving 

relativistic fluid flows, applicable to binary neutron star inspiral.
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Carter-Lichnerowicz
 

variational principles
 for barotropic flows

•
 

Carter’s Lagrangian:

•
 

Canonical momentum:

•
 

Carter’s superHamiltonian:
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Carter-Lichnerowicz
 

variational principles
 for barotropic flows

•
 

Carter’s Lagrangian:

•
 

Canonical momentum:

•
 

Carter’s superHamiltonian:

•
 

Euler equation in Carter-Lichnerowicz
 

form:
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Constrained Hamiltonian approach
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1 0

( )    fluid velocity measured by normal observers

/           fluid velocity measured in local coordinates
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Easiest way to get 3+1 constrained Hamiltonian is to start from Lichnerowicz action, which is parametrization invariant. Use t as time parameter. Write metric in 3+1 form, and done.



Constrained Hamiltonian approach
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Conservation of circulation
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•

 

The most interesting feature of Kelvin's  theorem is that, since

 

its derivation did 
not depend on the metric, it is exact in time-dependent spacetimes, with 
gravitational  waves carrying energy and angular momentum away from a 
system. In particular, oscillating stars and radiating binaries, if modeled as 
barotropic fluids with no viscosity or dissipation other than gravitational radiation 
exactly

 

conserve circulation

•

 

Corollary: flows initially irrotational remain irrotational.
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Irrotational hydrodynamics
Irrotational flow:            0

Hamilton equation:         0

Hamilton-Jacobi equation:        0

Example: In the dust limit on a Minkowsky background, on
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these are Hamilton equations and can be obtained covariantly for arbitrary spacetimes is unnoticed.

Solutions to HJ equation are NOT unique. 

Nevertheless, 'viscosity' solutions to HJ equation are unique.



Irrotational hydrodynamics
Irrotational flow:            0

Hamilton equation:         0

Hamilton-Jacobi equation:        0

For barotropic fluids, the above equation is coupled to the c
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Conclusions
Notable features:

•

 

Unlike Valencia, recovery of primitives from conservatives requires no

 

atmosphere: ui

 

is 
recovered via dividing pi =hui by specific enthalpy h which is 1 at the surface (no division 
by zero)

•

 

Like Valencia, strong hyperbolicity is lost when cs = 0: eigenbasis

 

not complete, system 
becomes weakly hyperbolic  instability on surface

•

 

Instead of artificial atmosphere, can use crust EOS with small but nonzero cs near 
surface: sound speed in a realistic NS crust (outer 1 km) cs ~ 0.05
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Sound speed profile of a TOV star
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Conclusions
Notable features:

•

 

Unlike Valencia, recovery of primitives from conservatives does requires no atmosphere:
ui

 

is recovered via dividing pi =hui by specific enthalpy h which is 1 at the surface (no division 
by zero)

•

 

Like Valencia, strong hyperbolicity is lost when cs = 0: eigenbasis

 

not complete, system 
becomes weakly hyperbolic  instability on surface

•

 

Instead of artificial atmosphere, can use crust EOS with small but nonzero cs near 
surface: sound speed in a realistic NS crust (outer 1 km) cs ~ 0.05. Then, extrapolating 
the EOS to the exterior (h<1) allows one to evolve smooth fields and obtain pointwise 
convergence on the surface, which is unattainable with an artificial atmosphere.

•

 

Scheme may be combined with symplectic

 

integration or constraint damping methods 
that preserve symplecic

 

structure and circulation 
•

 

SPH schemes based on the Lagrangian

 

or Hamiltonian formulation possible
•

 

Extension beyond irrotational flows also possible

Reference
C. Markakis, arXiv:1410.7777
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