Gravitational waves and dynamical mass ejection from binary neutron-star mergers

Masaru Shibata

Yukawa Institute for Theoretical Physics,

Kyoto University

YUKAWA INSTITUTE FOR THEORETICAL PHYSICS

In collaboration with Hotokezaka, Kiuchi, Kyutoku, Okawa Sekiguchi, M. Tanaka, & Wanajo

Contents

- 1. One page introduction
- 2. Our latest numerical-relativity activity for NS-NS
- > Gravitational waves from late inspiral
- > Dynamical mass ejection

Why NS-NS mergers are important?

- 1. Most promising sources of gravitational waves for LIGO/VIRGO/KAGRA
- 2. Invaluable laboratory for studying high-density nuclear matter
- 3. Promising origins of short-hard GRBs
- 4. Sources of strong transient EM emission
- 5. Possible site for **r-process heavy elements**

Numerical relativity is the powerful tool for exploring these issues quantitatively

2A Gravitational waves (see John's talk)

Predicting more accurate GWs is urgent

Three key elements for deriving accurate gravitational waves in numerical rela

- \diamond Longterm simulation
- \diamond Eccentricity reduction for initial condition
- ♦ Extrapolation using high-quality data

Eccentricity reduction by Kyutoku+ 2014 (e <~0.001)
Constraint propagation by BSSN+Z4c prescription (we locally used Z4c) (Hilditch & Bernuzzi)
→ less numerical error & good convergence

See also the talk by Roland Haas

Our 15-orbits simulation with eccentricity reduction

Extrapolated waveform for R=13.6 km

Comparison with effective-one-body approach

Comparison with EOB: frequency

Extrapolated waveform for R=11.1 km

For soft EOS, current EOB is good

Overall spectrum

f (kHz)

2A Dynamical mass ejection

• WHY important ?

- That could shine and be an EM counterpart of GW source (radioactively-powered nova, radio flare, ...)
- > That could be main source of r-process elements

New topics in numerical relativity !

Dynamical mass ejection mechanism

- 2 major effects drive ejection
- Strong shock at the merger → enhanced
 thermal pressure ejects material (like supernova)
- 2) Tidal torque by *non-axisymmetric merger remnant* \rightarrow Give angular momentum to the material in the envelope, subsequently ejected.
- Note that other effects like magnetic or viscous or neutrino wind could play a role (e.g., talks by Kiuchi, Just, ...)

Hotokezaka + PRD 2013

Ejecta mass ~ $0.01M_{sun}$, $v \sim 0.2c$ in average

Mass ejection on the meridian plane

Mass ejection on the meridian plane (x-z plane) Model: $1.2M_{sun} - 1.5M_{sun}$, EOS=APR4, R~11 km 2400 * 1200 km 300 * 150 km $Log(\rho g/cc)$ t=9.1854 ms t=9.1854 ms z (km)

z (km)

-150

-100

-50

x (km)

Ejecta is quasi-spherical: Shock heating plays a key role.

-1200

-400

Ω

x (km)

Dynamical ejection mechanism

Two components

Amount of ejecta depends strongly on EOS Soft EOS \rightarrow strong gravity \rightarrow high-mass ejection

Neutron number

Galactic r-process elements

- Numerical-relativity simulations show ejected mass per event of NS-NS could be ~0.001-0.01 M_{sun}
- Total amount of observed r-process elements in our galaxy is $\sim 10^4$ solar mass
- Predicted merger rate ~ one every 10⁴ yrs or less
 → total merger events ~ 10⁶ or less in our Galaxy
- We want mass ejection per event ~ 0.01 M_{sun}
 → If other contributions were absent, relatively soft EOS would be necessary
- IF EOS is stiff (NS has a large radius), we would need other sources or other mechanisms

r-process nucleosynthesis study of ejecta (By Sekiguchi & Wanajo +)

Universality of three peaks for heavy elements found in solar system & metal-poor stars

- Universality indicates the presence of single main origin
- Question: *Could NS-binary merger reproduce abundance pattern (all three peaks) ?*

Appropriate blending of Y_e is needed: HOW ?
 → Perform numerical relativity simulation !

GR neutrino-radiation hydrodynamics (Sekiguchi's GR radiation hydro code)

- <u>Einstein's eq</u>: BSSN + puncture (+ local Z4c)
- <u>Radiation</u>: Leakage + fully covariant truncated moment scheme with M1 closure (gray) for heating
 # pure M1 scheme (gray) works but expensive
- <u>EOS</u> : SFHo, IUFSU, DD2, TMA, TM1
- <u>Grid size</u>: 580*580*290*9 level (fixed mesh refinement) with $\Delta x=150-160$ m for the finest domain
- <u>CPU time</u>: 500-700k node-hours by K-computer with ~7000 cores (864 nodes)
- <u>Binary mass</u>: 1.30-1.30, 1.35-1.35, 1.30-1.40, 1.25-1.45, 1.40-1.40 (ongoing)

Variety of EOS table (we appreciate Hempel)

SFHo (R~11.9 km): 1.35-1.35 M_{sun}

Sekiguchi et al. (2015)

Sekiguchi et al. (2015)

Sekiguchi et al. (2015)

Thermodynamical properties of ejecta

Mass ejection from BNS merger : two components

Fraction of mass as a function of Y_e

Sekiguchi et al. (2015)

However, for stiff EOS, ejecta mass is small

Effects of neutrino heating

Our first result

(Wanajo et al. ApJ 2014)

Broad distribution for Y_e could be suitable for reproducing wide abundance pattern
Project is ongoing by Wanajo, Nishimura, Sekiguchi+

Summary

- Gravitational waves from late inspiraling phase of NS-NS is a valuable site for exploring NS EOS
 → high-resolution numerical-relativity simulations are ongoing for constructing templates (also by Bernuzzi-Nagar +, Haas +,)
- Mass ejected in NS-NS merger is ~ 0.001-0.01
 solar mass → EM counterparts (tomorrow's talks)
- NS-NS could be r-process nucleosynthesis site: Three peaks could be well reproduced by shock
 + neutrino heating (Sekiguchi + 2015; works ongoing)
- Next issue: Adding viscous effects to remnant NS and/or BH+torus

Announcement from Yukawa Institute, Kyoto University

 Longterm workshop on "Nuclear Physics and Compact Stars 2016 (NPACS 2016)" Oct.17 (Mon.), 2016 -- Nov.18 (Fri.), 2016.

 In the third week, conference on "Birth, Life, and Death of Neutron Stars and Nuclei (YKIS 2016)" will be held Oct.31 (Mon.), 2016 -- Nov.4 (Fri.), 2016

Ejecta temperature: Depends on EOS

- SFHo EOS: NS=Small radius
- High temperature

TM1 EOS: NS=Large radius

• Low temperature \rightarrow n rich

Unequal mass NS-NS system: SFHo1.25-1.45

Unequal mass NS-NS system: SFHo1.25-1.45

Unequal mass NS-NS system: SFHo1.25-1.45

- Orbital plane : Tidal effects play an important role, ejecta is neutron rich
- Meridian plane : shock + neutrinos play roles, ejecta less neutron rich

