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• Motivation – MAST, KSTAR,TFTR, LHD

• Hard and soft limits

• Review of some previous work

• Box geometry

• Toroidal geometry

• Discussion

Overview
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• Edge Localized Modes 

(ELMs) are periodic 

eruptions of plasma 

from the pedestal/edge 

region

• Driven by the plasma 

pressure gradient

• Explosive ballooning 

mode filaments

• H mode pedestal limited 

by critical gradient

Edge Localized Modes - MAST
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• ELMs are observed 

on KSTAR

• ECEI diagnostic 

shows nonlinear 

evolution

• Instability can 

saturate before 

crash

• Saturated state 

shows finger like 

filaments

KSTAR
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• Internal transport barrier (ITB) discharges have 

high pressure and confinement

• This would provide higher fusion power for a 

given magnetic field

• Thus more economic fusion power

• However, they are prone to very fast disruptions 

(30-100μs) which are difficult to control

• Without disruption control ITBs are unusable 

therefore understanding the disruption process 

is vital.

• There may be other problems with ITBs too

ITB
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• TFTR experiments 

show ballooning 

modes appearing prior 

to ITB disruption

• This is on top of n=1

mode activity

• ECE diagnostic results 

shown in figure 

TFTR
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• LHD is a large 

Heliotron device

• Super-Dense-Core 

(SDC) experiments 

can be terminated by 

a Core Density 

Collapse (CDC)

• CDC seems to be 

ballooning in nature

• Stellarator version of 

TFTR distruption?

Large Helical Device
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Ohdachi et al. Nucl. Fusion 57 (2017) 066042

Hypothetical mode structure 
with SX measurements



• Linear stability can only tell us so 

much

• Nonlinear phase of fast MHD 

instabilities determines if there is a 

hard or soft limit 

• Soft limit usually pins the pressure 

gradient to some critical value

– possibly high n ballooning modes 

in the pedestal

– JET pulse 79501 shows 

saturation of Te at the pedestal 

long before an ELM crash

Soft and Hard limits
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• Hard limit rapidly destroys confinement 

– e.g. edge localized mode (ELM)

– disruption

• ELMs show that ballooning modes may produce 

a hard limit as well as a soft limit

• Want to understand when we have hard or soft 

limits

• Most importantly how to remove hard limits

Soft and Hard limits
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• Previous work on nonlinear 

ballooning modes has 

focussed on the early 

nonlinear state

• This shows that the mode is 

expected to form narrow 

finger-like structure

• Mode gets narrower as it 

grows

• Explosive growth expected

• Finite time singularity

Nonlinear ballooning review
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• Myers et al. studied a line-tied slab with 

gravity and a density gradient numerically 

using ideal MHD – no reconnection

• They found a number of phases

– Initial transient 

– Linear

– Quasilinear

– Explosive growth

• Explosive growth phase not fully resolved, 

extra physics required

Slab geometry
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• Cowley et al. 

investigated a box 

model again with ideal 

MHD and line tied 

boundary conditions

• Assume filaments are 

narrow to reduce field 

line bending

• Buoyancy balanced 

against magnetic 

curvature

Box model
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• Saturated states were 

found

• Linearly stable yet 

nonlinearly unstable flux 

tubes

• Flux tubes lower in the 

atmosphere erupted 

further than those above

Box model
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• Develop box geometry 

to a torus to be able to 

study ELMs and 

disruptions 

quantitatively

• Consider a highly 

elliptical flux tube, 

δ1<<δ2

• Tube sufficiently narrow 

that the field and 

pressure outside are 

unperturbed

Toroidal geometry
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• Denote field inside the tube as 

– Bin = Bin (θ,r0,t)

– θ, distance along field line

– r0, starting flux surface

– t, time

• The motion is assumed to be slow compared 

to the (sound) time to equalize pressure 

along the tube

– pin(θ,r0,t)=p(r0)

Forces on flux tube
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• We calculate the nonlinear behaviour of 

erupting flux tubes by consideration of the 

two components of the MHD force equation 

perpendicular to the magnetic field

Force on flux tube
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• Force in the narrow 

direction is formally large 

and so must cancel to this 

order - O(p/δ1)

• This implies total pressure 

inside must equal total 

pressure outside

Across the tube
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• In the radial direction we have

• Using the results on the previous slide a 

generalized Archimedes’ principle can be 

derived

• Net force is the curvature force of the tube minus 

the curvature force of the tube it has displaced

Forces on flux tube
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• The physics of this model is represented by 

the following equations

• The rest is geometry!

Model
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• Flux tube must follow the surface S which is 

tangent to both the surrounding field lines and the 

flux tube

• Consider displacement along the S=0 surface

• Field line shape will be given by r=r(θ,r0,t)

Toroidal geometry

Slide 19

))()(( 0 rrqS  

 SrrfRBB  )(000



• Large aspect ratio, 

circular cross 

section torus

• Region of steep 

pressure gradient

• Region of change 

of magnetic shear

• Model of some 

internal transport 

barriers 

Equilibrium
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• We now use an ‘s-α’ model to produce the 

required geometry

• Becomes

• Saturated states when force is zero.

• Nonlinear generalization of `s- α’ model

Force equation
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• An evolution equation can be derived using 

the previous equation, assuming drag 

evolution

Evolution equation
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where: s=rq’(r)/q(r) – magnetic shear

α(r)=-dβN/dr - pressure gradient



• We can linearize to find usual `s- α’ model

Linearized evolution equation
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where: s=rq’(r)/q(r) – magnetic shear

α(r)=-dβN/dr - pressure gradient



• We investigate a case 

which is linearly stable 

across the whole profile 

but is nonlinearly 

unstable

• Physical motivation: 

Pedestal will be held at 

critical gradient by soft 

limit i.e. marginal stability 

Linearly stable case
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• Quartic potential energy function

• Either trivial equilibrium

• Or three equilibria available

– Unperturbed field line

– A critical field line 

– A nonlinear saturated state 

Equilibrium
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• If the field line is initially perturbed just below 

the critical amplitude the field line drops back 

to the initial location

Downwards evolution
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• If the field line is initially perturbed just above 

the critical amplitude the field line evolves to 

the saturated state

Upwards evolution
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• The evolution to the 

nonlinear saturated 

state shows explosive 

behaviour

• No resistivity is 

included in this model 

so the field lines 

remain frozen in

Evolution
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• Saturated state

Saturated state
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Colour just for illustration



• Movies of flux tube dynamics

Flux tube dynamics
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• We have calculated 

the relative energies 

of the initial and 

saturated states

• The nonlinear 

saturated state is not 

necessarily a lower 

energy state

Energy
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• The ballooned field 

lines stretch across 

most of the 

pressure step

• Some field lines 

start closer to the 

core and end up 

closer to the edge 

i.e. they overtake.

Ballooning displacement
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• We could start with a linearly unstable case

• Three equilibria available

– Unperturbed field line

– Inward saturated state 

– Outward saturated state

• Field lines balloon inwards and outwards

Linearly unstable case
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• Drag evolution is an approximation of the real 

dynamics. However, it is likely to capture key 

features such as: 

– explosive dynamics

– equilibrium states

• Tube is assumed to have elliptical shape:

– mildly nonlinear flux tube results

– physical intuition

– But, overtaking may change shape

Discussion
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• Model assumes perfectly conducting plasma 

i.e. no reconnection

• Good for fast eruption but other processes 

will take over once in saturated state:

– Disconnection

– Cross field transport (`leaky hosepipe’)

– Secondary instability (K-H, ITG etc.) 

• Where does reconnection occur (if it occurs)?

• Future work required

Transport
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• Work in progress to look at real tokamak equilibria

• Numerical circular cross section equilibrium has been 

successfully modelled and saturated states found

• Next step to look at the effect of the separatrix on ideal 

MHD saturated states

Realistic geometry
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• Potentially difficult to capture these filaments 

in nonlinear MHD codes

• Narrowing of the ballooning mode structure is 

important and would require very high 

toroidal resolution 

Numerical work
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• We have produced a nonlinear version of the 

ballooning `s-α’ model

• We have shown that a linearly stable profile 

may still allow nonlinear instabilities

• The resulting flux tubes can have 

displacements large enough to connect the 

two sides of the transport barrier

• This may be a mechanism to explain 

elements of fast disruptions of TFTR ITB 

shots and ELMs

Conclusion
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