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Edge Localized Modes - MAST

* Edge Localized Modes
(ELMSs) are periodic
eruptions of plasma
from the pedestal/edge
region

» Driven by the plasma
pressure gradient

» EXxplosive ballooning
mode filaments

* H mode pedestal limited
by critical gradient
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KSTAR

ELMs are observed
on KSTAR

ECEI diagnostic
shows nonlinear
evolution

Instability can
saturate before
crash

Saturated state
shows finger like
fllaments
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FIG. 3 (color online). Simultaneous emergence and growth of
multiple ELM filaments (shot no. 4431). Solid curves are con-
tour lines of the same 87, /T, value representing the approxi-
mate boundary of the filaments. The arrows follow the same
filament illustrating the counterclockwise rotation.

G S Yun et al. Phys Rev Lett 107 045004 (2012)
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I'TB

Internal transport barrier (ITB) discharges have
high pressure and confinement

This would provide higher fusion power for a
given magnetic field

Thus more economic fusion power

However, they are prone to very fast disruptions
(30-100us) which are difficult to control

Without disruption control ITBs are unusable
therefore understanding the disruption process
IS vital.

There may be other problems with ITBs too
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TFTR

LE

ballooning modes

« TFTR experiments
show ballooning
modes appearing prior
to ITB disruption

* This is on top of n=1
mode activity

« ECE diagnostic results
shown In figure
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FIG 1. Contour plot of constant electron temperature across the plasma
midplane versus time. Data from the two GPCs, separated by 1267 in the
toroidal direction is shown. The shaded region indicates the 1807 of toroidal
angle where the n= 1 kink pushes outward in the major radius [[;=2.5 MA,
B;=51T.g(a)=4.0, g% = 19].

Fredrickson et al., Phys. Plasmas 3 2620 (1996)
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Large Helical Device

« LHD is a large
Heliotron device

* Super-Dense-Core
(SDC) experiments
can be terminated by
a Core Density
Collapse (CDC)

« CDC seems to be
ballooning In nature

 Stellarator version of
TFTR diStrU ptlon’) Ohdachi et al. Nucl. Fusion 57 (2017) 066042

g C) .~

-20%

AISX/ISX

Hypothetical mode structure
with SX measurements
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Soft and Hard limits

, 5 ET Pulse No: 79501 (CFC)

« Linear stability can only tell us so T e
much s T
« Nonlinear phase of fast MHD I

Instabilities determines if there Is a
hard or soft limit

« Soft limit usually pins the pressure
gradient to some critical value

— possibly high n ballooning modes
In the pedestal
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Frassinetti et al Nucl. Fusion 55 (2015) 023007
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Soft and Hard limits

Hard limit rapidly destroys confinement

— e.g. edge localized mode (ELM)

— disruption

ELMs show that ballooning modes may produce
a hard limit as well as a soft limit

Want to understand when we have hard or soft
limits

Most importantly how to remove hard limits
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Nonlinear ballooning review

* Previous work on nonlinear
ballooning modes has
focussed on the early

BO_' A B B AL L

nonlinear state ol
» This shows that the mode is * *’}
expected to form narrow ~20}
finger-like structure Y ———
* Mode gets narrower as it o ST
grows

* EXxplosive growth expected

* Finite time singularity
Wilson & Cowley Phys Rev Lett 92 175006 (2004)
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Slab geometry

« Myers et al. studied a line-tied slab with
gravity and a density gradient numerically
using ideal MHD — no reconnection

* They found a number of phases
— Initial transient
— Linear
— Quasilinear
— Explosive growth

* Explosive growth phase not fully resolved,

extra physics required
Myers et al. Plasma Phys. Control. Fusion 55 (2013) 125016
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Box model

 Cowley et al.
Investigated a box
model again with ideal
MHD and line tied
boundary conditions

« Assume filaments are
narrow to reduce field
line bending ¢

* Buoyancy balanced
against magnetic

curvature Cowley et al. Proc. R. Soc A 471 20140913 (2015)
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Box model

o Saturated states were
found

 Linearly stable yet
nonlinearly unstable flux
tubes

 Flux tubes lower In the
atmosphere erupted
further than those above
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Toroidal geometry

« Develop box geometry
to a torus to be able to
study ELMs and
disruptions
guantitatively

« Consider a highly
elliptical flux tube,
0,<<0,

* Tube sufficiently narrow
that the field and
pressure outside are

unperturbed Ham et al. Phys Rev Lett 116 235001 (2016)
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Forces on flux tube

* Denote field inside the tube as
— Bin = B (01,1)
— @, distance along field line
— I, starting flux surface
— 1, time
 The motion Is assumed to be slow compared

to the (sound) time to equalize pressure
along the tube

— Pin(0:1o,1)=p(ro)

Slide 14



Force on flux tube

« We calculate the nonlinear behaviour of
erupting flux tubes by consideration of the
two components of the MHD force equation
perpendicular to the magnetic field

BZ
F=—" B-VB—V(—+,qu]
Hy 2
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Across the tube

* Force in the narrow
direction Is formally large
and so must cancel to this
order - O(p/9d,)

+ This implies total pressure /Y
inside must equal total |/~
pressure outside

B ° B.°
|:I7n+:u0 pO(r):| :|:70+:u0 pO(rO):|
i out

in

Bii (0,1y,1) = Bc? (0,r) + Zﬂo[po(r) - po(ro)]
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Forces on flux tube

 |In the radial direction we have
1] B2 ]
F.=—|B,-VB,=V| —+u,p ||'€,
Hy 2

* Using the results on the previous slide a
generalized Archimedes’ principle can be
derivec

F :i[Bin 'VBin o B0 .VBO]'er

r Hy

 Net force is the curvature force of the tube minus
the curvature force of the tube it has displaced
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Model

* The physics of this model is represented by
the following equations

Bii (0,1y,1) = Bc? (0,r) + 2:Uo[po(r) — po(ro)]

|:r = i[Bin 'VBin B BO 'VBO]'er

Hy

* The rest is geometry!
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Toroidal geometry

 Flux tube must follow the surface S which is
tangent to both the surrounding field lines and the
flux tube

« Consider displacement along the S=0 surface
 Field line shape will be given by r=r(é,ry,t)

B, = —B,R,{f (r)VrxVS]
S =¢-q(r)(@—-6,(r))
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Equilibrium

* Large aspect ratio, Ml
circular cross :
section torus - =

2 10.2

* Region of steep ”

oressure gradient B o

* Region of change
of magnetic shear

* Model of some
Internal transport
barriers
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Force equation

 We now use an ‘'s-a’ model to produce the
required geometry .
Fr — _[Bin 'VBin _ B0 'VBO]'er

Hy

« Becomes
F, =(8, (r,) = By (r))[cos 6 +sin O(asin 0 —s0))

+(89jr0([1+ (asin@—s@) ij;j J ;(S;)io(srl(asine—se)z

« Saturated states when force Is zero.
* Nonlinear generalization of 's- a’ model

where: s=rq’(r)/q(r) — magnetic shear
a(r)=-dg\/dr - pressure gradient
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Evolution equation

* An evolution equation can be derived using
the previous equation, assuming drag
evolution

v(%)[l+(asin 6-s6Y |= (8, (r,) - B, (r))lcos @ +sin (e sin 9 s0)]

+(60jr [[1+ (asin@—s@) Isgj j %(S—gjjo(gl(asine—se)z

where: s=rq’(r)/q(r) — magnetic shear
a(r)=-dg\/dr - pressure gradient
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Linearized evolution equation

« We can linearize to find usual s- o’ model

—

=(B,(r,)- B, (r)5[0039+sin 6(crsin@—s6)]

@)

where: s=rq’(r)/q(r) — magnetic shear
a(r)=-dg,/dr - pressure gradient
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Linearly stable case

* We Iinvestigate a case
which is linearly stable
across the whole profile
but is nonlinearly
unstable

* Physical motivation:
Pedestal will be held at
critical gradient by soft
limit I.e. marginal stabllity
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Equilibrium

* Quartic potential energy function
 Either trivial equilibrium

« Or three equilibria availabl

e
— Unperturbed field line \,\/
_ Acritical field line W

— A nonlinear saturated state
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Downwards evolution

* |f the field line is initially perturbed just below
the critical amplitude the field line drops back
to the initial location

07577

Radial 07”?

position 7
0.8657
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Movie
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Upwards evolution

« |f the field line is initially perturbed just above
the critical amplitude the field line evolves to
the saturated state

Radial |
pOSitiOn
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Movie
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Evolution

 The evolution to the
nonlinear saturated
state shows explosive
behaviour

* No resistivity is x“'__/
included in this model <=~
so the field lines BT T
remain frozen in

Minor radius
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Saturated state

e Saturated state
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Flux tube dynamics

* Movies of flux tube dynamics
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Energy

 We have calculated
the relative energies
of the initial and
saturated states

 The nonlinear
saturated state IS not Ry
necessarily a lower T o stating s
energy state

Slide 31



Ballooning displacement

. The ballooned field 1
lines stretch across M
most of the A >0
pressure step 04 \

« Some field lines °2
start closer to the Sas 05 0% 06 06
core and end up °
closer to the edge - saturated state
i.e. they overtake. - crtical state

 Bu() = By ()

2¢,0,
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Linearly unstable case

* We could start with a linearly unstable case

* Three equilibria available
— Unperturbed field line

— Inward saturated state \/\/

— Qutward saturated state

 Field lines balloon inwards and outwards
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Discussion

« Drag evolution is an approximation of the real
dynamics. However, it is likely to capture key

features such as:
— explosive dynamics
— equilibrium states
* Tube Is assumed to have elliptical shape:
— mildly nonlinear flux tube results
— physical intuition
— But, overtaking may change shape
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Transport

* Model assumes perfectly conducting plasma
l.e. N0 reconnection

* Good for fast eruption but other processes
will take over once In saturated state:

— Disconnection
— Cross field transport (‘leaky hosepipe’)
— Secondary instablility (K-H, ITG etc.)

Where does reconnection occur (if it occurs)?
Future work required

Wilson et al. Plasma Physics Control. Fusion 48 (2006) A71
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Realistic geometry

Work in progress to look at real tokamak equilibria

Numerical circular cross section equilibrium has been
successfully modelled and saturated states found

Next step to look at the effect of the separatrix on ideal
MHD saturated states
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Numerical work

« Potentially difficult to capture these filaments
In nonlinear MHD codes

« Narrowing of the ballooning mode structure Is
important and would require very high
toroidal resolution
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Conclusion

We have produced a nonlinear version of the
ballooning 's-a’ model

We have shown that a linearly stable profile
may still allow nonlinear instabilities

The resulting flux tubes can have
displacements large enough to connect the
two sides of the transport barrier

This may be a mechanism to explain
elements of fast disruptions of TFTR ITB
shots and ELMs
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