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T. Pϋtterich et al., EPS (2015)
T. Pϋtterich et al., this conference (I6)

Reminder: burn curves for D-T plasmas
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● ICRH: heating with waves in the ion cyclotron frequency range, 

● Intuitive idea: launch RF waves at the ion cyclotron frequency or harmonics

● Wave-particle resonance condition is satisfied locally since  

● ICRH can also provide electron heating (mode conversion and ELD/TTMP)

ICRH heating: experimental setup

ω = nωci: vertical line in tokamaks
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● Two ion species, (Z/A)1 and (Z/A)2: 
an ion-ion hybrid cutoff-resonance pair
between Ric,1 and Ric,2

● Mixture plasmas (large minority concentrations) 
→ direct electron heating with ICRH

io
n-

io
n 

hy
br

id
 p

ai
r 

species no. 1
e.g., 3He
(Z/A)i = 2/3

Electron heating in mixture plasmas with ICRH

species no. 2
e.g., D
(Z/A)i = 1/2

Wave propagation: cutoffs and resonances Wave polarization:

are the dielectric tensor components in the notation of Stix

, ion-ion hybrid cutoff (L-cutoff)

, ion-ion hybrid resonance
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Time, t (s)

T e
(k

eV
)

D-3He plasma in JET: X[3He] ≈ 20%
M.J. Mantsinen et al., Nucl. Fusion (2004)

No time delay between Te and ICRH power

P. Mantica and F. Ryter (2006)

Typically used as a localized source of direct electron heating, e.g., for transport studies

Wave absorption by ions still possible:
two-ion plasmas   → multi-ion plasmas (≥ 3, ‘three-ion’ species scenarios)

ICRH in mixture plasmas with MC layer: 
electron heating → ion absorption
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Outline
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● ‘Three-ion’ species ICRH scenarios: theoretical concept1,2,3

● Recent experiments on Alcator C-Mod and JET

Scenario 1, D-(3He)-H: minority heating of 3He ions in H-D mixtures4,5

Scenario 2, D-(DNBI)-H: minority heating of D-NBI ions in H-D mixtures6

● 3He-rich solar flares and three-ion species experiments4

● Applications of new scenarios for JET, W7-X5 and ITER2

● Conclusions
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Effect of wave polarization and plasma composition

● Thermal and moderately energetic ions (~ 100 keV): wave absorption is due to 
the left-hand polarized RF electric field component E+

● E+ and E– vary locally and are mainly determined by plasma composition
(number of ion species with different Z/A and their relative concentrations)

Ions rotate co-clockwise with 
an ion cyclotron frequency ωci

B

Ions: clockwise rotation
+

Wave polarization:
E+ and E– field components
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Illustration of the importance of wave polarization

ICRH power: 0.7MW → 2.2MW → 3.2MW → 4.2MW
Plasma response: ∆Te ≈ 0, ∆Wp ≈ 0

Case 1, single-ion plasmas: 
fundamental (n = 1) cyclotron heating of H and H-NBI ions in hydrogen plasmas

Outcome: inefficient ICRH heating, ω = ωcH + k||v||

JET-ILW (2016)
Plasma composition: X[H] ≈ 100%

● Wave accessibility to the plasma core

● Presence of resonant ions, ω = ωci + k||v||

● Left-hand polarized component, E+ = 0
(single-ion plasmas)
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Illustration of the importance of wave polarization

Plasma composition: X[D] ≈ 95%, X[H] ≈ 5%

● Wave accessibility to the plasma core

● Presence of resonant ions, ω = ωci + k||v||

● Left-hand polarized component, E+ ≠ 0
(two-ion plasmas)

X[H] = nH/ne ≈ 4-5%

JET-ILW (2013)

Minority heating is efficient at Xmino = nmino/ne ≈ 2–10%
‘Three-ion’ species scenarios extend the operational range for MH

Outcome: efficient ICRH heating, ω = ωcH + k||v||

Case 2, two-ion plasmas: 
fundamental (n = 1) cyclotron heating of H (minority) ions in deuterium plasmas
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● Two ion species: (Z/A)1 and (Z/A)2

● Two ion cyclotron layers:               

Ion cyclotron heating in two-ion plasmas
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Ion cyclotron heating in two-ion plasmas

● Two ion species: (Z/A)1 and (Z/A)2

● Two ion cyclotron layers:               

● Every IC layer has a natural width
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● Ion-ion hybrid (IIH) layer, large E+:
located in between Ric,2 and Ric,1

● IIH layer close to cyclotron resonance 
if X2  is a few %   → minority heating

Ion cyclotron heating in two-ion plasmas

IIH pair 

* Minority absorption in two-ion plasmas is not efficient 
at very low concentrations (‰): no ion-ion hybrid layer
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Electron mode conversion heating in two-ion plasmas

IIH pair 
● At larger Xmino, lack of resonant ions capable 

to absorb RF power

● Localized electron heating through mode 
conversion dominates

● Still very strong E+ in the vicinity of the IIH layer

Effective ion absorption still possible! 
Two-ion plasmas  → multi-ion plasmas
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Mixture plasmas with MC layer: 
from electron heating to ion absorption

1) Add third ions with (Z/A)i
different than for the two main ions

2) Add third ions with a large Doppler shift:
can have (Z/A) as the majority ions

● Direct electron heating  → ion absorption scenarios:
extend plasma composition to include additional ion species

● Location of the IIH layer is determined by the 
concentrations of ion species (X1, X2, …)

IIH pair 
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Three-ion species plasmas,   (Z/A)2 < (Z/A)3 < (Z/A)1
(multi-ion plasmas also ok)
Proper choice of plasma composition:

‘Three-ion’ species ICRH scenarios (option no. 1): 
optimal plasma composition

Helium-3 (resonant ions): (Z/A)3 = 2/3
Hydrogen: (Z/A)1 = 1/1

Deuterium: (Z/A)2 = 1/2
TOMCAT 
modeling

1-2‰

[Y. Kazakov et al., NF (2015)]

Proof-of-principle test: 

H-D mixture (X[H] ≥ 70%)
Small amount of 3He (≤ 1%, see figure)
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Alcator C-Mod and JET experiments:
ICRH heating of 3He ions in H-D mixture plasmas

Ye.O. Kazakov, J. Ongena, J.C. Wright, S.J. Wukitch et al., 
Nature Physics 13, 973–978 (2017); 
https://www.nature.com/articles/nphys4167
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Alcator C-Mod and JET: efficient plasma heating observed

High heating efficiency … while using a factor of 10 less 3He
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Alcator C-Mod and JET: energetic ions generated

● Reducing minority concentrations from %  to ‰ levels  →
increasing absorbed ICRH power per resonant ion

● Efficient tool for generating energetic ions in a plasma
● Sawteeth stabilization and core localized TAE modes

T.H. Stix et al., Nucl. Fusion, 1975

Alcator C-Mod:
fTAE ≈ 1280 kHz

JET:
fTAE ≈ 330 kHz
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MeV-range 3He ions generated with ICRH   → characteristic gamma-ray emission
from nuclear reactions between 3He and intrinsic 9Be impurities (~ 0.5%)
3He + 9Be  → 11B* + p;     3He + 9Be  → 11C* + n
Eγ = 4.44MeV / 5.02MeV / 5.5MeV / 5.85MeV / 6.48MeV / 6.91MeV / 7.28MeV / 7.98MeV/ …

9Be impurities, 
≈ 0.5%

JET: unambiguous detection of MeV-range 3He ions

● (3He)-H scenario (proton plasma): X[3He] ≈ 1–2%, PICRH up to 7.6MW
● D-(3He)-H scenario (H-D plasma): X[3He] ≈ 0.2–0.4%, PICRH ≈ 4.4MW
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Reconstructed gamma-ray emission:
visualization of fast-ion population

#90752 and #90753: the same ICRH and NBI power, X[H] ≈ 70-75% and X[3He] ≈ 0.2-0.4%

ICRH: dipole phasing (4.3MW) ICRH: dipole (2.3MW) and +π/2 phasing (2.1MW)

● Efficiency of fast-ion generation enhanced by using +π/2 phasing of ICRH antennas

● RF-induced pinch effect and lower |k|||
M.J. Mantsinen et al., PRL 89, 115004 (2002); J.M. Faustin et al. PPCF 59, 084001 (2017)
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G.M. Mason, 
SSR (2007)

19-22 Oct. 2002: high 3He 
abundance seen over several days

Energetic 3He ions in solar plasmas

Energetic 3He ions produced 
in H-D fusion plasmas

Source: Wikipedia
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3He-rich solar flares

A class of solar flares with anomalously high 3He/4He ratio in the MeV-energy range
D. Reames, Space Sci. Rev. 90, 413-491 (1999); G.M. Mason, Space Sci. Rev. 130, 231-242 (2007)

Typical ratio 3He/4He ~ 1/2500    → 3He/4He ~ 1 in 3He-rich solar flares

3He

G.M. Mason, SSR (2007)

Mechanism for observed 3He enrichment (?)
■ Production by nuclear reactions ruled out

(no increase in D and T)

■ Selective interaction of 3He with plasma waves
(unique charge-to-mass ratio)

→ electrostatic waves: H-4He-3He plasma (Fisk, 1978)
second-stage acceleration process required

→ electromagnetic waves: H-3He plasma 
(Roth-Temerin, 1997)

→ electromagnetic waves: H-4He-3He plasma 
(Kazakov et al., 2017)

Example: 
3He/4He > 1

4He
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Input: experimental data for 24 3He-rich 
events (S. Ramadurai et al., 1984)

3He-rich solar flares and 
4He-(3He)-H three-ion species scenario

Output: the largest number of energetic 3He 
ions observed at X[H] ≈ 70-80%

H-4He plasma: consistent with
our theory and JET observations

H plasma: explained earlier, 
Roth-Temerin (1997)Energetic 3He ions in H-D and H-4He plasmas

(Z/A)D = (Z/A)4He = 1/2
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JET experiments:
n = 1 ICRF heating of NBI ions in mixture plasmas
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● NBI system provides ions resonating in the vicinity of 
the MC layer, where the E+ field is strong

● NBI: seed of fast ions with a velocity distribution 
ranging from vti to v||, max (large Doppler-shift)

● Resonant wave-particle interaction:

IIH
 p

ai
r 

Extension of ‘three-ion’ species ICRH scenarios: 
use NBI ions as a resonant absorber in mixture plasmas

Strong E+
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IIH
 p

ai
r ● Fast NBI ions resonating at the MC layer:

ICRF phasing (k||) and freq. (ω)
NBI energy and geometry (v||)

Type of plasma mixture 
(H-D, D-T, D-3He, etc.)

Plasma composition

Extension of ‘three-ion’ species ICRH scenarios: 
use NBI ions as a resonant absorber in mixture plasmas

Conditions of the JET experiments: 
H-D plasma mixture, ED-NBI = 100keV, v||/v = 0.62, f = 25MHz, dipole phasing   →
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D-(DNBI)-H heating scenario: 
effect of the plasma composition

#91255, X[D] ≈ 10-15% #91206, X[D] ≈ 30%

ICRH + NBI synergy at work No synergy observed

ICRH ICRH

D-NBI D-NBI

7+8 5+6 3+4 1+2 7+8 3+4 1+2

Rn ≈ 2×1013 n/sRn ≈ 1.5×1014 n/s
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D-(DNBI)-H scenario, H-D plasma with X[H] ≈ 85-90% and X[D] ≈ 10-15%

Acceleration of D-NBI ions to MeV-range energies and increase in neutron rate observed

ICRF heating of D-NBI ions (n = 1) in H-rich plasmas

A ten-fold increase in neutron rate with 2.5MW of ICRH

2.9T/2MA

Eγ = 3.37MeV
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Presence of energetic D ions and TOFOR observations

D + D → 3He (0.82MeV) + n (2.45MeV)

TOFOR: time-of-flight neutron spectrometer
C. Hellesen et al., NF 50, 032001 (2010)

tTOF 65ns 60ns 55ns 50ns

En 2.5MeV 2.9MeV 3.5MeV 4.2MeV

#91256, 
t = 9.0-11.5s

D-NBI (3.5MW) + ICRH (2.5MW) 

D ions with energies up to ~2MeV
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Highlights for future studies

D-T plasma:         D + T       → 4He (3.5 MeV) + n (14.1 MeV)
D-3He plasma:     D + 3He   → 4He (3.6 MeV) + p (14.7 MeV)

This technique is also applicable 
for future D-T experiments in JET-ILW
● T-(TNBI)-D scenario: ICRH heating 

of T-NBI ions in D-rich plasmas
● T-(DNBI)-D scenario: ICRH heating 

of D-NBI ions in T-rich plasmas

[J. Ongena et al., RF Topical Conf. 2017]

D-(DNBI)-3He scenario,
X[D] ≈ 50-60%, X[3He] ≈ 20-25%:

source of (nearly) isotropic alpha particles

ED ≈ 450 keV
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Applications of three-ion species scenarios for JET and ITER

12/31/2≈ 0.43-0.451/3(Z/A)i

3HeD, 4He, 
12C, 16O, …

H9Be, 40Ar, 22Ne, 
7Li, 11B, …

TIon 
species

Main ions no. 1
Resonant  ions (no. 3)
Main ions no. 2

Periodic table 
of the elements

non-active4He9Be/40Ar-(4He)-H

active9BeT-(9Be)-D

3He
Resonant ions

non-active
ITER phase

4He-(3He)-H
Scenario

* Also scenarios with NBI ions as a minority in mixture plasmas
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Fast-ion confinement studies in a stellarator Wendelstein 7-X

● Demonstrate good confinement of energetic ions at high plasma beta (ne0 > 1020 m-3)

● Source of fast ions (Ei ≈ 50–100 keV) in the plasma core required (ICRH and NBI)

Three-ion species scenario provides a factor of 20 larger number of ions 
at Ei > 50 keV than MH scenarios

[J.M. Faustin et al., PPCF 59, 084001 (2017); SCENIC modeling]

Recipe for W7-X: 

Hydrogen (~70–80%) + 
D-like ions (12C, 16O, 4He, D, …)  +
3He (~ 0.1-0.2%)



34

Yevgen Kazakov | 17th EFTC (Athens, Greece) | 09-12 October 2017

Use intrinsic 9Be impurities in our favour!

● (Z/A)T < (Z/A)9Be < (Z/A)D: efficient ICRH absorption by 9Be impurities (~ 0.5-1%)

● 9Be provides dominant heating of bulk D and T ions

Observed in TFTR D-T plasmas: T-(7Li)-D scenario[1] Y. Kazakov et al., Phys. Plasmas 22 (2015) 082511
[2] J.R. Wilson et al., Phys. Plasmas 5 (1998) 1721-1726

Localized 9Be absorption

T D9Be

f = 38MHz

pabs(9Be) > 80%
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Conclusions

Three-ion species scenarios: a new set of ICRH scenarios for efficient 
heating of mixture plasmas, ω = ωci + k||v||

→ resonant ions satisfy (Z/A)2 < (Z/A)3 < (Z/A)1

→ resonant ions have (Z/A) as one of the main ions, but a large Doppler-shift (v||)

Successfully demonstrated on Alcator C-Mod and JET tokamaks (2016): 
→ H-D plasma mixture (H-D ≈ 75%-25%) + 3He
→ H-D plasma mixture (H-D ≈ 85%-15%) + D-NBI 

Efficient generation of energetic 3He and D ions confirmed
→ sawtooth stabilization, γ-ray emission, excitation of TAE modes, neutrons, …

Various applications for JET, W7-X, ITER, DEMO
→ extends the flexibility of ICRH for fusion research studies

Developed technique can also be applied to explain observations of
energetic ions in space plasmas, in particular, 3He-rich solar flares
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Thank you for your attention !
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Backup slides
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Doppler-shifted cyclotron heating of NBI ions in JET-ILW plasmas

X[H] ≈ 100% Mixture: X[H] ≈ 85%, X[D] ≈ 15%

Case 1:   single-ion plasma  → E+ small  
→ poor ICRF heating

Case 2:   mixture plasma → IIH layer  
→ large E+ → effective ICRF heating
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#91256

t = 10.5s:  X[DNBI] ≈ 4%, X[H] ≈ 85%, 
H/(H+D)edge ≈ 0.89-0.91

D-(DNBI)-H ICRH+NBI heating scenario in JET-ILW:
enhanced neutron rate

Time-dependent TRANSP modeling
e.g., R. Budny et al., NF (2009)

Temporal evolution of the neutron rate
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3He concentration:
~ 0.1–0.2% only

Increasing X[3He]
up to ~1.0–1.5%

JET: efficient plasma heating observed,
both at X[3He] ~ 0.1-0.2% and at ~1%

#90752 (dipole ICRF phasing)
PICRH

PNBI

Te0

X[3He] ≈ 0.2-0.3%
H/(H+D) = 0.83-0.74

6 8 10 12 14 16 18

● 3He concentrations as low as 0.1-0.2%
were successfully used for plasma heating

● A factor of 20-30 reduction in X[3He]
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(3He)-H 
scenario

JET-ILW experiments 2016

#91323,
(3He)-H scenario,
PICRH = 7.6MW,
PH-NBI = 3.2MW

#91304, 
D-(3He)-H scenario,
PICRH = 4.4MW, no NBI

Increase of plasma stored energy 
per MW of ICRH power

JET: minority heating of 3He ions in H-D mixtures
more efficient than in H plasmas

● JET: effective plasma heating as a result of slowing down of energetic 3He ions
(good fast-ion confinement)

● JET: ~50% higher performance of 3He minority heating in H-D ≈ 80%-20% mixture
if compared to heating H plasmas

● Extension for ITER: use H-4He plasmas (H + 10% of 4He)  +  a tiny amount of 3He 
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#91304, PICRH = 4.5MW, no NBI, EAE modes
X[H] ≈ 70-75%, X[3He] ≈ 1%

#90758, PICRH = 4.4MW, PD-NBI = 3.2MW, TAE modes
X[H] ≈ 80%, X[3He] ≈ 0.1–0.2%

T e
0

(k
eV

)

T e
0

(k
eV

)

TAE at f ≈ 280kHz also observed

fEAE ≈ 560kHz
n = ±1, ±3, ±5

fTAE ≈ 320kHz
n = 7,6,5

3He ICRH experiments in H-D plasmas: 
observation of TAE and EAE modes

V. Kiptily et al., 
IAEA-EP (2017)
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GENESIS-SCENIC synthetic gamma-ray diagnostics

● ICRH modeling: SCENIC code (J.M. Faustin, H. Patten et al.)
● Gamma modeling: GENESIS code (M. Nocente et al.)

M. Nocente et al., 
IAEA-EP (2017)


