Comparing Turbulence Measurements with Simulations

Experimental, Multi-Machine Tutorial on Validation

of Nonlinear Gyrokinetic Transport Models

A. E. White (MIT) with thanks to T. Goerler (MP-IPP), M. Greenwald (MIT) W. Guttenfelder (PPPL), C. Holland (UCSD), N. T. Howard (MIT) 17th European Fusion Theory Conference 9 - 12 October 2017, Athens - Greece

NSE Nuclear Science and Engineering

Validation in Science and Engineering

- Science
 - Extends scientific method into areas where understanding theory requires extensive numerical simulation
 - Seeking explanations, deeper understanding of physics
- Engineering
 - No claim that the model in question is correct or complete, only that it is useful
 - Seeking the "best approximate model"

In Core of Fusion Plasmas Turbulence Plays Important Role in Transport

- Eddies are on scales of electron gyro-radius and ion gyro-radius $\rho_e \approx 0.06mm$ $\rho_i \approx 3.6mm$ at 10keV and 5.4 T
- Size of plasma a \approx 1m
- Frequencies 10kHz to over 1 MHz
- Fluctuation amplitudes, $\tilde{n}/n \le 0.1-10\%$
- Broad spatiotemporal range presents challenge for experiments and simulations

Core Turbulence In Fusion Plasmas Is Described By Nonlinear Gyrokinetics

- Gyrokinetics describes turbulence in stellarators and tokamaks (J. Alonso and F. Parra – Thurs. Talks)
- Theory actively being developed
 - Details of fast ion turbulence interactions (G. Wilkie – afternoon talk)
 - Effects of a non-axisymmetric
 3-D equilibrium magnetic field
 (A. Zocco Tues. Talk)
- Numerical approaches are also evolving; e.g. electromagnetic gyrokinetic simulations (A. Mishchenko - next)

ITG turbulence in W7X, study with GENE, showing high-resolution simulation output

Xanthopoulos PRL 2007

A (Very) Brief History of Comparing Gyrokinetic Codes with Experiment

- 1980s-1990s, rough models available and discrepancies with experiments were orders of magnitude
- 1990s-2000s, higher physics fidelity led to breakthroughs
 - Demonstration of Zonal Flow
 turbulence interactions
 [Lin Science 1998]
 - Ability to match ion and electron thermal diffusivities within experimental error [Candy PRL 2003]

5

Turbulence Measurements Were Key Element of the First "Validation" Paper

- Nonlinear gyrokinetic simulations of DIII-D L-mode [Ross PoP 2002]
 - Electron & ion heat fluxes
 - Long-wavelength density fluctuations measured with Beam Emission Spectroscopy (BES)
- Different models run with GS2 with and without ExB shear
- Understanding discrepancies would be addressed with further experiment and simulation

Experimental low-k ($k_{\theta}\rho_{s} < 0.5$) density fluctuation level

Validation Work Has Most Often Been Done Using " δf " Gyrokinetic Codes

- Conventional " $\delta f''$ formulation, GK equations are derived using expansion in small $\rho^* = \rho_i/a$, starting from the Fokker–Planck equation
- At first order, fluctuations and fluxes are calculated as code outputs
- A single code can be used to run many different models
- Validation has revealed importance of
 - ✓ Realistic geometry
 - ✓ Kinetic electrons
 - ✓ Collisions
 - $\checkmark\,$ Effects of ExB shear and Zonal Flows
 - ✓ Electromagnetic effects (sometimes)
 - Multi-scale effects (ITG-TEM-ETG) (sometimes)

Validation Efforts Have Revealed Many Challenges to Quantitative Comparison

- Experimental Gradients Usually Close to Critical Gradient
- Very stiff: ~10% change in a/L_{Ti} gives 10x increase in heat flux
- Within experimental range of a/L_{Ti}, move from stable to unstable
- Parameter scans (multiple code runs) must be used to address model sensitivity

GYRO simulations of C-Mod L-mode plasmas

Validation Requires Dedicated Experiments to Optimize Comparisons

- Nonlinear gyrokinetic codes take experimental data as input
- Experimental goals:
- reduce error and uncertainty on the inputs to the code
- reduce error on measured turbulence and inferred fluxes that are compared to code outputs

Magnetic Equilibrium Reconstruction Cannot be Taken For Granted

- Variety of codes in the experimental community
 - EFIT widely used in the US
 - CLISTE used at AUG
- Iterating with magnetic and kinetic data or MSE/Polarimeter helps constrain results, reduce mapping errors that affect pressure profiles
- Error in equilibrium reconstruction, q, s-hat, can be reduced < 5-10%

Even High Quality Radial Profile Measurements Can Have Large Errors

- Electron temperature and density profiles are measured reliably with high temporal and spatial resolution a/L_{Te}/ a/Ln ~ 10-20 %
- Ion temperature and rotation profiles more challenging and not available in all conditions a/L_{Ti} ~ 15-30%
- Redundancy is important, time averaging, repeat shots

Power Balance Calculations Are First Point of Comparison With Gyrokinetic Codes

- Codes like TRANSP, ASTRA, etc. used to calculate experimental transport levels
 - Radiated power measurements
 - Zeff, measurements of impurities
 - Fast ion pressure
 - Etc.
- Several internal consistency checks are possible to reveal systematic errors

 Error analysis of power balance is non-trivial, error ~ 10-30% [Petty NF 1998, White PoP 2010, Holland PoP 2016, Paezi FST 2017]

Holland PoP 2016

Large Uncertainties and Model Sensitivity Motivate Comparisons with Turbulence

- Challenges addressed:
 Fortuitous agreement/disagreement
 Discriminating between models
- Fluctuation levels tend to be measured most directly, are at highest level
- Correlation lengths, cross-phase angles are at second level
- Inferred heat fluxes from power balance at lowest level, because not measured directly

Many Diagnostics Used To Measure Plasma Turbulence And Compare With Simulations

Density Fluctuations, ñ/n

Beam Emission Spectroscopy (BES) Low k, ITG/TEM $k_{\perp} \rho_s < 0.5$

Doppler reflectometer (DR) Intermediate k, ITG/TEM/ETG 0.5 < $k_{\perp} \rho_s$ < 5

High-k Coherent scattering High k, ETG k_ ρ_s > 5

Electron Temperature Fluctuations, Ť/T

And more...

- UF-CHERS Ti, n fluctuations
- HIBP ϕ , n fluctuations
- PCI line integrated n/n
- etc.

Beam Emission Spectroscopy (BES) Used To Measure Low-k Density Fluctuations

- BES sample volume determined by optics + atomic physics of beam-plasma interaction
- Measurement of absolute fluctuation level data is possible
 intensity of light fluctuations
- Good spatiotemporal resolution
- Neutral beam injection required, perturbative in some plasmas
- Can measure
 - Power spectrum
 - Fluctuation level
 - Radial and poloidal correlation lengths
 - Eddy motion, Eddy tilt

Beam Emission Spectroscopy (BES) Used To Measure Low-k Density Fluctuations

- BES sample volume determined by optics + atomic physics of beam-plasma interaction
- Measurement of absolute fluctuation level data is possible
 intensity of light fluctuations
- Good spatiotemporal resolution
- Neutral beam injection required, perturbative in some plasmas
- Can measure
 - Power spectrum
 - Fluctuation level
 - Radial and poloidal correlation lengths
 - Eddy motion, Eddy tilt

McKee 2007

Beam Emission Spectroscopy (BES) Used To Measure Low-k Density Fluctuations

- BES sample volume determined by optics + atomic physics of beam-plasma interaction
- Measurement of absolute fluctuation level data is possible
 intensity of light fluctuations
- Good spatiotemporal resolution
- Neutral beam injection required, perturbative in some plasmas
- Can measure
 - Power spectrum
 - Fluctuation level
 - Radial and poloidal correlation lengths
 - Eddy motion, Eddy tilt

A. E. White - EFTC 2017

Low-k Electron Temperature Fluctuations from Correlation ECE (CECE) Radiometers

- CECE sample volume is determined by optics + physics of EC emission
- Correlate two electron cyclotron emission signals to extract turbulence from noise
- Good spatial resolution, nonperturbative, passive, but time averaging required to reduce noise
- Cam measure
 - Power spectrum
 - Fluctuation level
 - Radial correlation lengths

First at W7-AS and TEXT [Sattler PRL 1994, Cima PoP 1995], now widespread AUG, C-Mod, DIII-D, TCV, W7X, EAST

Low-k Electron Temperature Fluctuations from Correlation ECE (CECE) Radiometers

- CECE sample volume is determined by optics + physics of EC emission
- Correlate two electron cyclotron emission signals to extract turbulence from noise
- Good spatial resolution, nonperturbative, passive, but time averaging required to reduce noise
- Cam measure
 - Power spectrum
 - Fluctuation level
 - Radial correlation lengths

First at W7-AS and TEXT [Sattler PRL 1994, Cima PoP 1995], now widespread AUG, C-Mod, DIII-D, TCV, W7X, EAST

Phase Angle Between Low –k \tilde{n}_e and \tilde{T}_e Measured With Coupled Reflectometer and Radiometer

- nT-phase angle measurements first done at W7AS [Haese RSI 1999]
- Reflectometer cut-off at one frequency at same position as ECE resonance at different frequency
- n-T phase diagnostics now operating at AUG and DIII-D and is proposed for EAST and W7-X [White PoP 2010, Freethy RSI 2016, Cao RSI 2016]

Figure from S. J. Freethy, US/EU TTF, Williamsburg, VA, April 25-28 2017

Doppler Reflectometer Measures Intermediate k-range Density Fluctuations

- Doppler reflectometer exploits spatial resolution of reflectometery with wavenumber sensitivity of scattering measurements
- Bragg condition (scattering) to isolate density fluctuations at particular wavenumber
- Frequency spectrum shows peak shifted by plasma rotation (used to measure rotation)
- Can measure partial wavenumber spectrum of density fluctuations

Doppler Reflectometer Measures Intermediate k-range Density Fluctuations

- Doppler reflectometer exploits spatial resolution of reflectometery with wavenumber sensitivity of scattering measurements
- Bragg condition (scattering) to isolate density fluctuations at particular wavenumber
- Frequency spectrum shows peak shifted by plasma rotation (used to measure rotation)
- Can measure partial wavenumber spectrum of density fluctuations

0 $\alpha = -1.2$ Fernandez-Marina NF 2014 r/a = 0.75 -10 $\alpha = -5.6$ $\alpha = -1.2$ S (k perp -20 r/a = 0.65 -30 $\alpha = -6.9$ $P_{ECH} = 300 \text{ kW}$ -40 $\rho \approx 0.75$ $\rho \approx 0.65$ 3 5 6 7 8 9 10 2 k_{perp} (cm⁻¹)

Stellarator TJ-K Data

High-k ETG Scale Density Fluctuation Measurements from Coherent Scattering

- Coherent scattering measures density fluctuations at high wavenumbers
- Scattering volume sets spatial resolution, optics/geometry sets the wavenumber detected
- Recent advances in coherent scattering diagnostics allow spatially resolved high-k measurements DIII-D [Rhodes PoP 2007] and NSTX [Smith PRL 2008] and KSTAR [Lee RSI 2016]

Fluctuation Diagnostics Cannot Measure the Turbulence Perfectly

- Each fluctuation diagnostic samples limited range of wavenumbers
 - + BES, CECE, nT-phase: Low-k, $k_{\perp}~\rho_{s}$ < 0.5
 - + Doppler Reflectometer: Intermediate-k, 0.5 < k_ \perp ρ_{s} < 5
 - Coherent scattering: High-k, $5 < k_{\perp} \rho_s$
- Measurements are made in the lab frame plasma is rotating
- Gyrokinetic codes output fluctuation spectra as function of wavenumber over broad range, in the plasma frame
- Synthetic diagnostics are needed to convert simulation outputs into measurable quantities in lab-frame: frequency and wavenumber spectra, fluctuation levels, correlation lengths, etc.
- Sensitivity scans (multiple code runs) used to probe uncertainties

Simplest Synthetic Diagnostics Take Spatial Averaging and/or k Sensitivity Into Account

- Spot-size or sample volume of diagnostic comes into play for measurements like BES, CECE, nT-phase etc.
- Wavenumber matching, scattering physics and spot-size effects relevant for Doppler reflectometer, coherent scattering

Figure from Bravenec Rev. Sci. Instrum. 88 (I), January 1995

Applying Synthetic Diagnostic Models Is Like Applying Filters to Raw Simulation Data

Figures from White APS 2007, Numerical details in Holland PoP 2009

Synthetic Diagnostic for BES Gives Example of Several General Results

- Low-pass filter in k-space leads to reduced fluctuation level and increased correlation length
- Without the synthetic diagnostic, simulation results cannot match experiment within error bars
- BES synthetic diagnostics have been implemented in several codes
 - **GYRO** [Holland PoP 2009]
 - **NEMORB** [Field PPCF 2014]
 - **GS2** [Bravenec RSI 2006]

A. E. White - EFTC 2017

Synthetic Diagnostic for CECE Gives An Example of Importance of Doppler Shift

- CECE synthetic diagnostic is a low-pass filter in k-space, similar to BES in that respect
- Synthetic diagnostic must include effects of background plasma rotation to get frequency spectrum
- Doppler shifts leads to shift in peak of spectrum, and broadening
- CECE synthetic diagnostic implemented in several codes
 - GYRO [Holland PoP 2009]
 - GENE [Goerler PoP 2014]

Tokamak C-Mod

Sung PoP 2016

A. E. White – EFTC 2017

nT-Phase Synthetic Diagnostics Have Also Employed Simple Low-pass k Filters

- nT-phase has been compared to gyrokinetic simulations on DIII-D with GYRO and GENE [White PoP 2010, Goerler PoP 2014]
- Interesting measurement, because linear phases are often in good agreement with nonlinear phases over a broad parameter range
- nT-phase may be insensitive to many small changes in inputs, but tracks large changes (e.g. ITG vs TEM dominance)

Doppler Reflectometer Synthetic Diagnostic Work Shows Importance of Intermediate-k Turbulence

- Synthetic diagnostic takes into account the finite sample volume, and wavenumber sensitivity of measurement
- In DIII-D experiment, in one case, TEM turbulence could be isolated using synthetic diagnostics
- Synthetic diagnostics have been implemented in several codes
- GYRO [Ernst PoP 2016]
- **ELMFIRE** [Leerink PRL 2012, Gusakov PPCF 2013]
- **GENE** [Happel PPCF 2017]

High-k Scattering Synthetic Diagnostics Still Under Development

- Coherent scattering synthetic diagnostic must take into account
 - Spatial sample volume
 - Scattering geometry
 - Wavenumber sensitivity in 3-D (k_R, k_{pol}, k_{tor})
- Mapping to gyrokinetic code geometry is nontrivial, and is area of active research
 [Poli APS 2010, Ruiz Ruiz APS 2016, TTF 2017]

Similar to Turbulence Diagnostics, Simulations Often Cover Limited k-range

- Turbulence diagnostics are "single-scale", one measurement does not probe all unstable k
- Most validation work has been done with single- scale simulations
- Multi-scale simulations are possible, but are very computationally expensive

Recent Multi-Scale Gyrokinetic Simulations Raise New Questions

- Realistic mass (m_i/m_e = 3600) multi-scale simulations of C-Mod plasmas [Howard PoP 2014]
- Multi-scale simulations show increases in electron heat flux expected
- Increase in ion heat flux due to cross-scale interactions not expected [Howard PoP 2014, PPCF 2015, Maeyama PRL 2015, Howard NF 2016, NF 2017]

Engineering Perspective: When is Ion-Scale Model Good Enough?

H-mode case from C-Mod shows that BOTH ion-scale simulation (red) and multi-scale simulation (blue) can match experiment within error bars

A. E. White - EFTC 2017

"Predict First": Multi-Scale Predictions for Turbulence Can Be Compared with Experiment

- Changes in turbulence predicted by multi-scale simulations cannot be modeled in single-scale simulations
- Test prediction, further constrain model
- DIII-D experiments conducted using Doppler Reflectometer [Howard, Weds Poster]
- Predict first initiative important frontier in gyrokinetic validation

Documenting Code Predictions In Advance Is Important Aspect of Validation

- Run nonlinear gyrokinetic simulations before an experiment, "Predict first initiative" [Mantica NF 2017, EU-TTF Summary]
- Predictive experimental design can leverage existing simulations from past validation studies
- In example here, nonlinear GYRO runs were used to predict a change in phase angle with increased Te/Ti, later tested experimentally

DIII-D nT-phase "predict first" example

"Predict First" with Nonlinear Gyrokinetics for New Fusion Device – W7-X

- Nonlinear GENE simulations have been used to predict turbulence characteristics in W7-X
- Stellarators: prospects for optimizing turbulenttransport [Xanthopoulos ISHW 2009, 2013]
- W7-X will have several turbulence diagnostics for experimental campaigns (PCI, CECE)

https://www.pavlosipp.com/

Validation Can Be Used to Inform Reduced Model Development

- Development of reduced, quasi-linear transport models
 e.g. QuaLiKiz [Bourdelle PoP 2026]
- Build on physics knowledge gained from validation of nonlinear gyrokinetic simulation [Staebler PoP 2016, TGLF SAT1]
- Brings us back to our other goal of validation, engineering perspective

Transport model predictions for ITER temperature profile

Current Devices are Excellent Platforms for Validation, Should Expand our Efforts

- Experiment and simulation have driven each other forward
- Turbulence measurements provide critical constraints on gyrokinetic codes
- Validation has been essential to study of physics of turbulent transport
- This informs reduced model development, predictions for ITER performance

Current Devices are Excellent Platforms for Validation, Should Expand our Efforts

Thank you very much!

