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Validation in Science and Engineering

• Science

– Extends scientific method into areas where understanding 

theory requires extensive numerical simulation

– Seeking explanations, deeper understanding of physics 

• Engineering

– No claim that the model in question is correct or complete, 

only that it is useful

– Seeking the "best approximate model”
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In Core of Fusion Plasmas Turbulence 

Plays Important Role in Transport
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• Eddies are on scales of electron 

gyro-radius and ion gyro-radius 

re ≈ 0.06mm 

ri ≈ 3.6mm

at 10keV and 5.4 T

• Size of plasma a ≈ 1m

• Frequencies 10kHz to over 1 MHz

• Fluctuation amplitudes, 

ñ/n ≤ 0.1-10%

• Broad spatiotemporal range 

presents challenge for experiments 

and simulations
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Core Turbulence In Fusion Plasmas Is 

Described By Nonlinear Gyrokinetics
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• Gyrokinetics describes turbulence 

in stellarators and tokamaks 

(J. Alonso and F. Parra – Thurs. Talks)

• Theory actively being developed

• Details of fast ion – turbulence 

interactions 

(G. Wilkie – afternoon talk)

• Effects of a non-axisymmetric 

3-D equilibrium magnetic field 

(A. Zocco Tues. Talk) 

• Numerical approaches are also 

evolving; e.g. electromagnetic 

gyrokinetic simulations 

(A. Mishchenko - next)
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ITG	turbulence	in	W7X,	study	with	GENE,
showing	high-resolution	simulation	output

Xanthopoulos PRL	2007



A (Very) Brief History of Comparing 

Gyrokinetic Codes with Experiment
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• 1980s-1990s, rough models 

available and discrepancies 

with experiments were orders 

of magnitude 

• 1990s-2000s, higher physics 

fidelity led to breakthroughs

– Demonstration of Zonal Flow 

– turbulence interactions 

[Lin Science 1998] 

– Ability to match ion and 

electron thermal diffusivities 

within experimental error 

[Candy PRL 2003]
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Turbulence Measurements Were Key 

Element of the First  “Validation”  Paper

• Nonlinear gyrokinetic simulations 

of DIII-D L-mode [Ross PoP 2002] 
– Electron & ion heat fluxes
– Long-wavelength density 

fluctuations measured with Beam 
Emission Spectroscopy (BES) 

• Different	models	run	with	GS2	–
with	and	without	ExB shear

• Understanding	discrepancies	
would	be	addressed	with	further	
experiment	and	simulation
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Experimental	low-k	(kqrs <	0.5)	
density	fluctuation	level

Simulation	results	(three	different	models)
for	density	fluctuation	level
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Validation Work Has Most Often Been 

Done Using “df ” Gyrokinetic Codes

• Conventional “df ” formulation, GK equations are derived using 

expansion in small r* = ri/a , starting from the Fokker–Planck equation 

• At first order, fluctuations and fluxes are calculated as code outputs

• A single code can be used to run many different models 

• Validation has revealed importance of

ü Realistic geometry
ü Kinetic electrons
ü Collisions 
ü Effects of ExB shear and Zonal Flows
ü Electromagnetic effects (sometimes)
ü Multi-scale effects (ITG-TEM-ETG)

(sometimes)

https://fusion.gat.com
/theory
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Validation Efforts Have Revealed Many 

Challenges to Quantitative Comparison

8

• Experimental Gradients 

Usually Close to Critical 

Gradient

• Very stiff: ~10% change 

in a/LTi gives 10x 

increase in heat flux

• Within experimental 

range of a/LTi, move from 

stable to unstable

• Parameter scans 

(multiple code runs) 

must be used to address

model sensitivity

A.	E.	White	– EFTC	2017

How
ard	PPCF	2014

GYRO simulations of C-Mod L-mode plasmas



Validation Requires Dedicated 

Experiments to Optimize Comparisons
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• Nonlinear gyrokinetic 

codes take experimental 

data as input

• Experimental goals: 

• reduce error and 

uncertainty on the

inputs to the code

• reduce error on 

measured turbulence 

and inferred fluxes that 

are compared to code 

outputs

[1]	http://genecode.org/ [3]	https://fusion.gat.com/theory[2]	http://physics.aalto.fi/en/groups/fusion/research/elmfire/

[1]

[2]
[3]
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Magnetic Equilibrium Reconstruction 

Cannot be Taken For Granted 
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^

• Variety	of	codes	in	the	
experimental	community

• EFIT		widely	used	in	the	US
• CLISTE	used	at	AUG

• Iterating	with	magnetic	and	kinetic	
data	or	MSE/Polarimeter helps	
constrain	results,	reduce	mapping	
errors	that	affect	pressure	profiles

• Error	in	equilibrium	reconstruction,	
q,	s-hat,	can	be	reduced	<	5-10%

Schneider	FED	2000
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Even High Quality Radial Profile 

Measurements Can Have Large Errors

• Electron temperature 

and density profiles are 

measured reliably with 

high temporal and 

spatial resolution   

a/LTe, a/Ln ~ 10-20 %

• Ion temperature and 

rotation profiles more 

challenging and not 

available in all 

conditions

a/LTi ~ 15-30%

• Redundancy is 

important,  time 

averaging, repeat shots

11
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AU
G	exam

ple,	courtesy	S.	Freethy
APS	2017



Power Balance Calculations Are First Point 

of Comparison With Gyrokinetic Codes

• Codes like TRANSP, ASTRA, etc. 

used to calculate experimental 

transport levels

– Radiated power measurements
– Zeff, measurements of impurities 
– Fast ion pressure 
– Etc. 

• Several internal consistency 

checks are possible to reveal 

systematic errors

• Error analysis of power balance is 

non-trivial, error ~ 10-30% 
[Petty NF 1998, White PoP 2010, 
Holland PoP 2016, Paezi FST 2017]
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Holland	PoP
2016
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Large Uncertainties and Model Sensitivity 

Motivate Comparisons with Turbulence
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• Challenges addressed: 

Fortuitous agreement/disagreement
Discriminating between models

• Fluctuation levels tend to be 

measured most directly, are at 

highest level

• Correlation lengths, cross-phase 

angles are at second level

• Inferred heat fluxes from power 

balance at lowest level, because

not measured directly

Terry	PoP 2008,	Greenwald	PoP 2010

T/T~ n/n~

anTLR,T/T~

Qi Qe

1.

2.

10.?
Power	balance Power	balance
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Primacy Hierarchy 



Many Diagnostics Used To Measure Plasma 

Turbulence And Compare With Simulations
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Beam	Emission	Spectroscopy	(BES)
Low	k,	ITG/TEM	
k� rs <	0.5

Doppler	reflectometer (DR)	
Intermediate	k,	ITG/TEM/ETG
0.5		<	k� rs <	5

High-k	Coherent	scattering	
High	k,	ETG
k� rs>	5

Correlation	Electron	Cyclotron	
Emission	(CECE)	
Low	k,	ITG/TEM
k� rs <	0.5

Density	Fluctuations,	n/n Electron	Temperature	
Fluctuations,	T/T

• UF-CHERS	Ti,	n	fluctuations
• HIBP f, n	fluctuations
• PCI	line	integrated	n/n
• etc.	

And	more…

A.	E.	White	– EFTC	2017

~
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Beam Emission Spectroscopy (BES) Used 

To Measure Low-k Density Fluctuations

• BES sample volume determined 

by optics + atomic physics of 

beam-plasma interaction

• Measurement of absolute 

fluctuation level data is possible

- intensity of light fluctuations

• Good spatiotemporal resolution

• Neutral beam injection required, 

perturbative in some plasmas

• Can measure

• Power spectrum

• Fluctuation level

• Radial and poloidal 

correlation lengths

• Eddy motion, Eddy tilt 15

MAST BES data Field	PPCF	2014

A.	E.	White	– EFTC	2017



Beam Emission Spectroscopy (BES) Used 

To Measure Low-k Density Fluctuations
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DIII-D BES data

M
cKee	2007

A.	E.	White	– EFTC	2017

• BES sample volume determined 

by optics + atomic physics of 

beam-plasma interaction

• Measurement of absolute 

fluctuation level data is possible

- intensity of light fluctuations

• Good spatiotemporal resolution

• Neutral beam injection required, 

perturbative in some plasmas

• Can measure

• Power spectrum

• Fluctuation level

• Radial and poloidal 

correlation lengths

• Eddy motion, Eddy tilt



Beam Emission Spectroscopy (BES) Used 

To Measure Low-k Density Fluctuations
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DIII-D BES data

M
cKee	2007
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• BES sample volume determined 

by optics + atomic physics of 

beam-plasma interaction

• Measurement of absolute 

fluctuation level data is possible

- intensity of light fluctuations

• Good spatiotemporal resolution

• Neutral beam injection required, 

perturbative in some plasmas

• Can measure

• Power spectrum

• Fluctuation level

• Radial and poloidal 

correlation lengths

• Eddy motion, Eddy tilt



Low-k Electron Temperature Fluctuations 

from Correlation ECE (CECE) Radiometers
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First at W7-AS and TEXT [Sattler PRL 
1994, Cima PoP 1995], now widespread 

AUG, C-Mod, DIII-D, TCV, W7X, EAST

A.	E.	White	– EFTC	2017

C-Mod Data

• CECE sample volume is 

determined by optics + physics 

of EC emission

• Correlate two electron cyclotron 

emission signals to extract 

turbulence from noise

• Good spatial resolution, non-

perturbative, passive, but time 

averaging required to reduce 

noise

• Cam measure

• Power spectrum

• Fluctuation level

• Radial correlation lengths



• CECE sample volume is 

determined by optics + physics 

of EC emission

• Correlate two electron cyclotron 

emission signals to extract 

turbulence from noise

• Good spatial resolution, non-

perturbative, passive, but time 

averaging required to reduce 

noise

• Cam measure

• Power spectrum

• Fluctuation level

• Radial correlation lengths

Low-k Electron Temperature Fluctuations 

from Correlation ECE (CECE) Radiometers
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First at W7-AS and TEXT [Sattler PRL 
1994, Cima PoP 1995], now widespread 

AUG, C-Mod, DIII-D, TCV, W7X, EAST

A.	E.	White	– EFTC	2017

TCV Data
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• nT-phase angle measurements 

first done at W7AS [Haese RSI 1999]

• Reflectometer cut-off at one 

frequency at same position as ECE 

resonance at different frequency

• n-T phase diagnostics now 

operating at AUG and DIII-D and 

is proposed for EAST and W7-X

[White PoP 2010, Freethy RSI 2016,    
Cao RSI 2016]

Phase Angle Between Low –k ne and Te Measured 

With Coupled Reflectometer and Radiometer

Figure	from	S.	J.	Freethy,	US/EU	TTF,
Williamsburg,	VA,	April	25-28	2017
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AUG Data

~ ~



Doppler Reflectometer Measures

Intermediate k-range Density Fluctuations

• Doppler reflectometer exploits 

spatial resolution of reflectometery

with wavenumber sensitivity of 

scattering measurements

• Bragg condition (scattering) to 

isolate density fluctuations at 

particular wavenumber

• Frequency spectrum shows peak 

shifted by plasma rotation 

(used to measure rotation)

• Can measure partial 

wavenumber spectrum of 

density fluctuations

21

DIII-D Tokamak Data

Rhodes	RSI	2010
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Doppler Reflectometer Measures

Intermediate k-range Density Fluctuations

• Doppler reflectometer exploits 

spatial resolution of reflectometery

with wavenumber sensitivity of 

scattering measurements

• Bragg condition (scattering) to 

isolate density fluctuations at 

particular wavenumber

• Frequency spectrum shows peak 

shifted by plasma rotation 

(used to measure rotation)

• Can measure partial 

wavenumber spectrum of 

density fluctuations
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Stellarator TJ-K Data

F.	Fernandez-M
arina	N

F	2014

r/a	=	0.75

r/a	=	0.65
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High-k ETG Scale Density Fluctuation 

Measurements from Coherent Scattering
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• Coherent scattering measures 

density fluctuations at high 

wavenumbers

• Scattering volume sets spatial 

resolution, optics/geometry 

sets the wavenumber detected

• Recent advances in coherent 

scattering diagnostics allow 

spatially resolved high-k 

measurements  DIII-D [Rhodes 
PoP 2007] and NSTX [Smith PRL 
2008] and KSTAR [Lee RSI 2016]

NSTX high k scattering data

Ruiz	Ruiz	PoP
2015

A.	E.	White	– EFTC	2017



24

^
Fluctuation Diagnostics Cannot Measure 

the Turbulence Perfectly

• Each fluctuation diagnostic samples limited range of wavenumbers

• BES, CECE, nT-phase:  Low-k, k� rs <	0.5
• Doppler Reflectometer: Intermediate-k, 0.5 < k� rs <	5
• Coherent scattering: High-k, 5 < k� rs

• Measurements are made in the lab frame – plasma is rotating

• Gyrokinetic codes output fluctuation spectra as function of 

wavenumber over broad range, in the plasma frame

• Synthetic diagnostics are needed to convert simulation outputs into 

measurable quantities in lab-frame: frequency and wavenumber 

spectra, fluctuation levels, correlation lengths, etc.

• Sensitivity scans (multiple code runs) used to probe uncertainties
GYRO nonlinear output

Density fluctuations in NSTX H-mode

Courtesy J. Ruiz Ruiz MIT
A.	E.	White	– EFTC	2017



Simplest Synthetic Diagnostics Take Spatial 

Averaging and/or k Sensitivity Into Account
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Figure	from	Bravenec Rev.	Sci.	Instrum.	88	(l),	January	1995	

•  Spot-size or sample 

volume of diagnostic 

comes into play for 

measurements like BES, 

CECE, nT-phase etc. 

• Wavenumber matching, 

scattering physics and 

spot-size effects 

relevant for Doppler 

reflectometer, coherent 

scattering

Spot	size	<	wavelength,	
Wave	is	detected

Spot	size	>	wavelength,	
Wave	is	NOT	detected

A.	E.	White	– EFTC	2017



26

Applying Synthetic Diagnostic Models Is Like 

Applying Filters to Raw Simulation Data

Figures from White APS 2007, 
Numerical details in Holland PoP 2009

A.	E.	White	– EFTC	2017



Synthetic Diagnostic for BES Gives 

Example of Several General Results

• Low-pass filter in k-space leads 

to reduced fluctuation level and 

increased correlation length

• Without the synthetic 

diagnostic, simulation results 

cannot match experiment 

within error bars

27

Holland	PoP
2009

• BES synthetic diagnostics have 

been implemented in several 

codes

• GYRO [Holland PoP 2009]
• NEMORB [Field PPCF 2014]
• GS2 [Bravenec RSI 2006]

A.	E.	White	– EFTC	2017

Tokamak	DIII-D



Synthetic Diagnostic for CECE Gives An 

Example of Importance of Doppler Shift
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• CECE synthetic diagnostic is a 

low-pass filter in k-space, similar 

to  BES in that respect

• Synthetic diagnostic must include 

effects of background plasma 

rotation to get frequency spectrum

• Doppler shifts leads to shift in peak 

of spectrum, and broadening

• CECE synthetic diagnostic 

implemented in several codes

– GYRO [Holland PoP 2009]

– GENE [Goerler PoP 2014]

A.	E.	White	– EFTC	2017

Tokamak	C-Mod

Sung	PoP
2016



nT-Phase Synthetic Diagnostics Have Also 

Employed Simple Low-pass k Filters

• nT-phase has been compared to 

gyrokinetic simulations on 

DIII-D with GYRO and GENE

[White PoP 2010, Goerler PoP 2014]

• Interesting measurement, because

linear phases are often in good 

agreement with nonlinear phases 

over a broad parameter range

• nT-phase may be insensitive to 

many small changes in inputs,

but tracks large changes 

(e.g. ITG vs TEM dominance)

29

W
hite  PoP

2010

A.	E.	White	– EFTC	2017

Tokamak	DIII-D



Doppler Reflectometer Synthetic Diagnostic Work 

Shows Importance of Intermediate-k Turbulence
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• Synthetic diagnostic takes into 

account the finite sample 

volume, and wavenumber 

sensitivity of measurement

• In DIII-D experiment, in one 

case, TEM turbulence could be 

isolated using synthetic 

diagnostics

• Synthetic diagnostics have been 

implemented in several codes

• GYRO [Ernst PoP 2016]
• ELMFIRE [Leerink PRL 2012, 

Gusakov PPCF 2013]
• GENE [Happel PPCF 2017]

Tokamak	FT-2

Tokamak	DIII-D
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High-k Scattering Synthetic Diagnostics 

Still Under Development
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PoliAPS	2010

• Coherent scattering synthetic 

diagnostic must take into 

account

– Spatial sample volume

– Scattering geometry

– Wavenumber sensitivity in 

3-D (kR, kpol, ktor)

• Mapping to gyrokinetic code 

geometry is nontrivial , and is 

area of active research

[Poli APS 2010, Ruiz Ruiz APS 
2016, TTF 2017]

A.	E.	White	– EFTC	2017

Tokamak	NSTX



Similar to Turbulence Diagnostics, 

Simulations Often Cover Limited k-range

• Turbulence diagnostics 

are ”single-scale”,

one measurement does 

not probe all unstable k

• Most validation work has 

been done with 

single- scale simulations

• Multi-scale simulations 

are possible, but are 

very computationally 

expensive

32
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BES,	CECE
nT-phase

Doppler	
Reflectometer

Coherent	
Scattering

60
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^
Recent Multi-Scale Gyrokinetic

Simulations Raise New Questions

• Realistic mass (mi/me = 3600) multi-scale simulations of C-Mod plasmas 

[Howard PoP 2014]

• Multi-scale simulations show increases in electron heat flux  - expected

• Increase in ion heat flux due to cross-scale interactions – not expected 

[Howard PoP 2014, PPCF 2015, Maeyama PRL 2015, Howard NF 2016, NF 2017]

A.	E.	White	– EFTC	2017
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^
Engineering Perspective: When is 

Ion-Scale Model Good Enough?

H-mode case from C-Mod shows that BOTH ion-scale simulation (red) and 

multi-scale simulation (blue) can match experiment within error bars

A.	E.	White	– EFTC	2017
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^
“Predict First”: Multi-Scale Predictions for 

Turbulence Can Be Compared with Experiment

Multi-scale	simulation
Predictions	for	change	in
Intermediate-k	turbulence

• Changes in turbulence 

predicted by multi-scale 

simulations cannot be 

modeled in single-scale 

simulations

• Test prediction,

further constrain model

• DIII-D experiments 

conducted using Doppler 

Reflectometer  [Howard, 
Weds Poster]

• Predict first initiative –

important frontier in  

gyrokinetic validation

[How
ard	PoP

2016]
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Documenting Code Predictions In Advance

Is Important Aspect of Validation 
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• Run nonlinear gyrokinetic

simulations before an experiment, 

“Predict first initiative”

[Mantica NF 2017, EU-TTF Summary]

• Predictive experimental design

can leverage existing simulations 

from past validation studies

• In example here, nonlinear GYRO 

runs were used to predict a change 

in phase angle with increased 

Te/Ti, later tested experimentally

DIII-D	nT-phase	“predict	first”	example

W
hite	PoP

2010
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“Predict First” with Nonlinear Gyrokinetics 

for New Fusion Device – W7-X
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• Nonlinear GENE simulations 

have been used to predict 

turbulence characteristics in 

W7-X

• Stellarators: prospects for 

optimizing turbulent-

transport [Xanthopoulos

ISHW 2009, 2013]

• W7-X will have several 

turbulence diagnostics for 

experimental campaigns 

(PCI, CECE )

https://www.pavlosipp.com/

A.	E.	White	– EFTC	2017



Validation Can Be Used to Inform

Reduced Model Development

• Development of reduced, 

quasi-linear transport models 

e.g. QuaLiKiz [Bourdelle PoP 2026]

• Build on physics knowledge gained 

from validation of nonlinear 

gyrokinetic simulation

[Staebler PoP 2016, TGLF SAT1]

• Brings us back to our other goal of 

validation, engineering perspective
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TGLF	model	
(ne fixed)
TGLF	model	
(ne	evolved)

Transport model predictions for

ITER temperature profile

Figure  from
 Grierson TTF 2016
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Current Devices are Excellent Platforms for 

Validation, Should Expand our Efforts

39
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• Experiment and simulation 

have driven each other 

forward 

• Turbulence measurements 

provide critical constraints on 

gyrokinetic codes

• Validation has been essential 

to study of physics of 

turbulent transport

• This informs reduced model 

development, predictions for 

ITER performance



Current Devices are Excellent Platforms for 

Validation, Should Expand our Efforts

40
A.	E.	White	– EFTC	2017

Thank you very much!


