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3D magnetic fields in stellarators

- Magnetic field B
must be 3D (that is,
without direction of
symmetry) if we
want

- steady state

- nested flux surfaces
(surfaces || to B)

- B (mostly) generated
by external currents

- Stellarators have inherent advantages
- No current in the plasma = no current drive, no current instabilities




Neoclassical transport in stellarators
HSX (U. Wisconsin)
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Magnetized particle motion

- Assume steady state Eand B: E=-V ¢ ~ T/eL

- Constant total energy
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- Motion for p. = p/L << 1

- Magnetic moment (= adiabatic invariant) is constant
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- Motion = fast parallel streaming + slow perpendicular drifts
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Parallel motion

- To lowest order, particles move along magnetic field lines
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Perpendicular motion

- Ignore drifts for passing particles

- In ergodic flux surfaces, passing particles sample the whole surface
- Drift parallel to flux surface small compared to fast v
- Radial drift averages out

- Rational flux surfaces are similar due to continuity

- Need drifts for trapped particles

- Trapped particles don'’t leave initial
region without drifts

- Use flux coordinates: rlabels flux
surface, and « labels B lines within
the flux surface

- Use lalong lines B =U'(r)Vr x Va




Kinetic equations with collisions

- Kinetic equation

dx ~
- Low collisionality
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- Lower collisionality than banana regime in tokamaks

-Use f=fO + fO + = fO with f(V = p.f
o VO =0=f = fO(r,aNE )
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- Need to eliminate f to find equation for f©




Trapped and passing particles

- Passing particle f = f,: cannot depend on « because
most flux surfaces are traced by one single field line

fp(ry& €, 1)

- Eliminate f using flux surface average (fV is periodic)
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- Trapped particle f= f,
- Need to use orbit average to eliminate f: <> — 1 (.. .)d—l
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- Trapped particles move with an average drift
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Second adiabatic invariant

- Adiabatic invariant of periodic motion of trapped particles
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- Equations based on second adiabatic invariant
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- Trapped particles move keeping J = const.
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Tokamaks

- In tokamaks, ¢ = ¢(r) = U(l) =uB(l) U=uBmapon

- Then, due to axisymmetry tokamak flux surface
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- Trapped particle equation
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- Only solution, Maxwellian that does
not depend on «

- No transport!

- Need to keep correction f) ~ p. f,, to
recover banana regime




1/v regime
[Galeev et al, PRL 1969]

- For p. << v. << 1, collision operator dominates
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- fmust be Maxwellian, and it cannot depend on a because f, does
not depend on a

~Using f=f,+f t
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- Very large neoclassical transport
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1/v regime
LHSX(U. Wisconsin)
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Very low collisionality regime

- For v. << p., trapped particles follow J = const.
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- In general, J = const. does not coincide with flux surfaces
= very large heat flux!
- Particles move across the machine at drift velocities ~ p.v,

p°nT v, ~ gyroBohm
P P

- Two effects reduce heat flux
- Large ExB drift (= large aspect ratio)
- Optimization




Cases with “smaller” transport

- Basic expansion: J = Jy(r) + §J(r, a), with § << 1
<Vd . V’F> ﬁ << <Vd . VO(> i
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- For v. ~ p.,
(virva), 2~ et~

- For p. <<v. <<1, one recovers 1/v regime
- Forv. << p.,using f=f,+ f; +
5. Ofu
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- No transport! Particles don't scatter, just follow J = const.
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Large E X B drift: Vv regime

[Ho & Kulsrud, PoF 1987]
- Usually justified by aspect ratio expansion € = a/R << 1

- Assuming V¢ ~ T/ea and ¢ = ¢ (r) (consistent)

/
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- Drift parallel to flux surface = v >> radial drift

- For v. = Rv/v, << pla, formula for f; ,is valid
= discontinuity between f, and f, (9f,/0a = 0 # df,/0a)
= collisional boundary layer = “enhanced” scattering

0? 0 ov Vx Vs
VfUtQ—Q ~Vvg - -Va— = it Y — Pl ~ /= %% p.nTv,
Bohm




v regime
. HSX (U. Wisconsin)
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v regime
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- Edge dominated by
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Optimized stellarators

- v is not a choice: determined by gradients of nand T

- In tokamaks, flow moves trapped in direction of symmetry
= f# f(a) and hence if f= f,,;at one «a, f= f,, everywhere
= toroidal rotation is undamped

- In stellarators, trapped particles cannot follow any symmetry
= = f(a), and even if f= f,;at one a, f# f;,in general
= collisions damp flow to achieve f= f,, everywhere

- Radial E given by neoclassical radial current = 0

- For very hot plasmas, v is not large even for € <<'1
- LHD “impurity hole” [Yoshimuna et al, NF ‘09; Velasco et al, NF ‘17]

- When v is not large, need to rely on optimization

J = Jo(r) +dJ1(r,a)
- The parameter § # e measures how well we have optimized




Superbanana-plateau regime

[Shaing et al, PPCF 2009] [Calvo et al, PPCF 2017]
- fdiscontinuous at trapped passing boundary, but now

0J; 0O . .
fie 19w Denominator can vanish!
Jo/0r>Or

* Vg, Vygand v, can cancel each other for some particles
= radial drift does not average out = superbananas

- Collisional boundary layer around particles with dJ,/or =0
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- Large heat flux: O ~ 62 Bohm
- Importantly, ¢ # ¢(r)

- Particles with dJ,/or = 0 tend to have same bounce points, and they
spend a long time in bounce points, giving large n perturbations




Poloidal and toroidal electric field

- For small v, , poloidal and toroidal electric field must be

taken into account
LHD (Japan) [Velasco, ISHW 2017]

Taking the full v4 - Va

Assuming vg - Va ~ vg - Va
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Poloidal and toroidal electric field

- For small v, , poloidal and toroidal electric field must be

taken into account
LHD (Japan) [Velasco, ISHW 2017]
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Summary of neoclassical transport

- Large neoclassical transport for small collisionality
- Can explain transport in core of stellarators

- Neoclassical theory for small v under study

- Probably relevant for some hot stellarator plasmas
- The effect of poloidal and toroidal electric field seems important

- Topics that | haven’'t mentioned
- Impurity accumulation: stellarator neoclassical transport seems to
tend to pinch impurities in
- Bootstrap current: similar to tokamak current (o< orbit width), but
theory does not match simulations too well

- Flow damping: can stellarators be optimized to have flow? (HSX)




Turbulent transport in stellarators

- Much less studied

- Very costly: cannot use symmetry
to run cheap flux tubes

= full flux surface simulations
- Can still assume radially local

- Within the same flux surface,
different flux tubes see different
turbulence drive, different shear...

- "Global” effects due to full flux surface
seem to quench turbulence

- Zonal flow efficiently damp at
large scales [Xanthopoulos et al, PRL 2014]




