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3D magnetic fields in stellarators

• Stellarators have inherent advantages
• No current in the plasma ⇒ no current drive, no current instabilities
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• Magnetic field B
must be 3D (that is, 
without direction of 
symmetry) if we 
want
• steady state
• nested flux surfaces 

(surfaces || to B)
• B (mostly) generated 

by external currents
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Neoclassical transport in stellarators
• Important differences 

between stellarators
and tokamaks at small 
collision frequency 𝜈

• Stellarator particle 
orbits very different 
from tokamak orbits
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Figure 13. Normalized mono-energetic radial transport coefficient
as a function of collisionality for v⋆

E = 3 × 10−3 (black), 1 × 10−3

(red), 3 × 10−4 (light blue), 1 × 10−4 (orange), 3 × 10−5 (green) and
zero (dark blue) for TJ-II at ρ = 0.46. Numerical results from
NEO-2 are depicted as small filled-in circles (•) and those from
DKES as triangles (△) with upper and lower variational bounds
indicated when these lie outside the symbol. Monte Carlo results are
plotted as circles (◦) [12], squares (") [10], stars (✩) [13] and
right-pointing triangles (◃) [15]. For comparison, results for the
equivalent axisymmetric tokamak (r = 0.0815 m, R0 = 1.5106 m,
!ι = 1.4753, b1,0 = −0.0533) are shown by the dotted line for
Er = 0.

the 1/ν regime even though collisional removal of shallowly
trapped particles from the local ripples will persist due to
their smaller values of F . Thus, for a stellarator magnetic
field without drift optimization, the beneficial effects of the
Er×B precession first act on those particles making the largest
contribution to the transport so that only a small additional
decrease in collisionality is necessary to reach the roll-over
point of the D⋆

11 results. By design, however, deeply trapped
particles contribute little to the transport in strongly drift-
optimized stellarators so that νc/%E ≈ 1 is required for
even shallowly trapped particles before the roll-over can occur,
pushing this point to considerably smaller values of ν⋆ [76].

One might also expect the influence of the radial electric
field on D⋆

11 to be modified by more complicated magnetic field
topologies, especially those in which deep secondary minima
in B are present. This was not observed for either W7-AS
or TJ-II, however, the two most likely candidates among the
ICNTS configurations. Instead, the dependence of the radial
transport coefficients on Er was found to be (qualitatively)
identical to that of a classical stellarator as illustrated by
the results for TJ-II plotted in figure 13. The comparatively
poor convergence of the DKES results for this device at low
collisionality is due to its very broad Fourier spectrum of B

in Boozer coordinates; at outer radii this problem is further
exacerbated and convergence is no longer satisfactory for
ν⋆ < 10−4.

Among the configurations optimized for small neo-
classical losses, benchmarking results for D⋆

11 are presented
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Figure 14. Normalized mono-energetic radial transport coefficient
as a function of collisionality for v⋆

E = 3 × 10−3 (black), 1 × 10−3

(red), 3 × 10−4 (light blue), 1 × 10−4 (orange), 3 × 10−5 (green) and
zero (dark blue) for HSX at ρ = 0.5. Numerical results from
NEO-2 are depicted as small filled-in circles (•) and those from
DKES as triangles (△) with upper and lower variational bounds
indicated when these lie outside the symbol. Monte Carlo results are
plotted as circles (◦) [12] and right-pointing triangles (◃) [15]. For
comparison, results for the equivalent helical symmetry
(r = 0.0598 m, R0 = 1.2375 m, !ι = 1.0537, N = 4,
b1,1 = −0.070 39) are shown by the dotted line for Er = 0.

here for HSX (figure 14), NCSX (figure 15), QIPC (figure 16)
and the standard configuration of W7-X (figures 17 and 18).
For comparison with the HSX results the dotted curve
depicts the neoclassical transport in the equivalent helically
symmetric field B/B0 = 1 + b1,1 cos(θ − Nφ), obtained
from a simple isomorphic transformation of the axisymmetric
tokamak results [80]. In plotting the results, however, the
normalization remains the same in all figures, e.g. in the plateau
regime one expects D⋆

11 = (b1,1/ϵt)
2!ι/|!ι − N | ≈ 0.75 for

HSX while for NCSX one has D⋆
11 = 1/κ ≈ 0.36. The

approximation to quasi-helical symmetry is sufficiently good
for HSX that the banana regime of its helically symmetric
counterpart may be identified in the range of collisionalities
satisfying 3 × 10−3 < ν⋆ < 0.03, although typical stellarator
behaviour of the D⋆

11 results is evident at lower values of
collisionality even though its magnitude is small compared
with that of classical stellarators. The NCSX data exhibit
similar properties except that the banana regime appears less
distinctly as this regime first emerges at lower collisionality in
the equivalent axisymmetric device.

Stellarators with predominant b0,n harmonics in their
Boozer-coordinate representations of B are known to exhibit
significantly modified behaviour of D⋆

11 over the range of
collision frequencies in which the plateau regime would
otherwise be expected to appear [81]. QIPC offers an excellent
example of such behaviour as reference to the results for the
equivalent axisymmetric tokamak (dotted curve in figure 16)
clearly illustrates. For ν⋆ < 5 × 10−3, however, all the typical
characteristics of lmfp radial transport in stellarators appear
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Magnetized particle motion
• Assume steady state E and B: E = –∇𝜙 ~ T /eL
• Constant total energy

• Motion for 𝜌* = 𝜌/L << 1
• Magnetic moment (= adiabatic invariant) is constant

• Motion = fast parallel streaming + slow perpendicular drifts
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v2
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Ze�
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Parallel motion
• To lowest order, particles move along magnetic field lines
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dl

dt
= vk = ±

s

2
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p
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Figure 1. Example of e↵ective potential U for four values of µ: µ1, µ2, µ3 and µ4. Note the
minimum and maximum values of U for µ3, Um(µ3) and UM (µ3). We show the bounce points
for a particle with magnetic moment µ3 and an energy E that satisfies Um(µ3) < E < UM (µ3).

d ⇣/dr. We assume that r has units of length, and that ↵ is an angle, that is, it does
not have units. The mapping x(r,↵, l) uniquely determines the position because the
determinant of its Jacobian is always di↵erent from zero,

@rx · (@↵x ⇥ @lx) =
1

rr · (r↵⇥ rl)
=

 0
⇣

2⇡B
, (2.5)

To obtain (2.5), we have used (rr ⇥ r↵) · rl = 2⇡( 0
⇣)

�1

B · rl and B = Bb̂ = B @lx.
Given E and µ, the particle motion along a magnetic field line is given by

dl

dt
= v||( ,↵, l, E , µ) = ±

p

2 (E � U( ,↵, l, µ)), (2.6)

where v||( ,↵, l, E , µ) is the velocity parallel to the magnetic field, and

U( ,↵, l, µ) = µB( ,↵, l) +
Ze�( ,↵, l)

m
(2.7)

is the e↵ective potential for the motion along the magnetic field. Trapped particles satisfy
Um( ,↵, µ) < E < UM ( ,↵, µ), where Um( ,↵, µ) and UM ( ,↵, µ) are the minimum
and maximum value of U(l) along the magnetic field line of interest (see figure 1).
Trapped particles move periodically between the two bounce points lL( ,↵, E , µ) and
lR( ,↵, E , µ), sketched in figure 1. Since the parallel velocity v|| vanishes at the two
bounce points, they are determined by the equation

E � U(lL) = 0 = E � U(lR). (2.8)

Note that here we only display the dependence of U on l to shorten the notation. We
will continue to do this for the rest of the article.

The adiabatic invariant of the quasi-periodic motion in (2.6), known as second adiabatic
invariant, is

J(r,↵, E , µ) =

I

v|| dl = 2

Z lR

lL

|v||| dl = 2
p

2

Z lR

lL

p

E � U(l) dl, (2.9)

where the factor of 2 is due to the fact that we need to consider both signs of the
parallel velocity. The slow average drift across magnetic field lines is related to the second

• ℰ > UM (𝜇) ⇒ v|| does not 
change sign: passing 
particles

• ℰ < UM (𝜇) ⇒ v|| vanishes 
at bounce points: trapped 
particles
• Bounce period = 𝜏b



Perpendicular motion
• Ignore drifts for passing particles

• In ergodic flux surfaces, passing particles sample the whole surface
• Drift parallel to flux surface small compared to fast v||

• Radial drift averages out
• Rational flux surfaces are similar due to continuity

6

• Need drifts for trapped particles 
• Trapped particles don’t leave initial 

region without drifts
• Use flux coordinates: r labels flux 

surface, and 𝛼 labels B lines within 
the flux surface

• Use l along lines

r

↵

B =  0(r)rr ⇥r↵



• Kinetic equation

• Low collisionality

• Lower collisionality than banana regime in tokamaks 
• Use f = f (0) + f (1) + … ≃ f (0), with f (n) = 𝜌*

n f

• Need to eliminate f (1) to find equation for f (0)

Kinetic equations with collisions
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⌫ ⇠ vd

L
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vt
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dx
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·rf = vkb̂ ·rf + vd ·rf = C[f ]

vkb̂ ·rf (0) = 0 ) f ' f (0)(r,↵, l, E , µ)

vkb̂ ·rf (1) + vd ·rf (0) = C[f (0)]



Trapped and passing particles
• Passing particle f = fp: cannot depend on 𝛼 because 

most flux surfaces are traced by one single field line

• Eliminate f (1) using flux surface average (f (1) is periodic)

• Trapped particle f = ft

• Need to use orbit average to eliminate f (1):

• Trapped particles move with an average drift
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Second adiabatic invariant
• Adiabatic invariant of periodic motion of trapped particles

• Equations based on second adiabatic invariant

• Trapped particles move keeping J = const.
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Tokamaks
• In tokamaks, 𝜙 ≃ 𝜙(r) ⇒ U(l) ≃𝜇B(l)
• Then, due to axisymmetry

• Trapped particle equation

• Only solution, Maxwellian that does 
not depend on 𝛼

• No transport! 
• Need to keep correction f (1) ~ 𝜌* f M to 

recover banana regime
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• For 𝜌* << 𝜈* << 1, collision operator dominates

• f must be Maxwellian, and it cannot depend on 𝛼 because fp does 
not depend on 𝛼

• Using f = fM + f1 + …,

• Very large neoclassical transport

1/𝜈 regime
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1/𝜈 regime
• Particles move radially 

until collision happens

• Diffusion coefficient

• Optimize to reduce 
transport
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Figure 13. Normalized mono-energetic radial transport coefficient
as a function of collisionality for v⋆

E = 3 × 10−3 (black), 1 × 10−3

(red), 3 × 10−4 (light blue), 1 × 10−4 (orange), 3 × 10−5 (green) and
zero (dark blue) for TJ-II at ρ = 0.46. Numerical results from
NEO-2 are depicted as small filled-in circles (•) and those from
DKES as triangles (△) with upper and lower variational bounds
indicated when these lie outside the symbol. Monte Carlo results are
plotted as circles (◦) [12], squares (") [10], stars (✩) [13] and
right-pointing triangles (◃) [15]. For comparison, results for the
equivalent axisymmetric tokamak (r = 0.0815 m, R0 = 1.5106 m,
!ι = 1.4753, b1,0 = −0.0533) are shown by the dotted line for
Er = 0.

the 1/ν regime even though collisional removal of shallowly
trapped particles from the local ripples will persist due to
their smaller values of F . Thus, for a stellarator magnetic
field without drift optimization, the beneficial effects of the
Er×B precession first act on those particles making the largest
contribution to the transport so that only a small additional
decrease in collisionality is necessary to reach the roll-over
point of the D⋆

11 results. By design, however, deeply trapped
particles contribute little to the transport in strongly drift-
optimized stellarators so that νc/%E ≈ 1 is required for
even shallowly trapped particles before the roll-over can occur,
pushing this point to considerably smaller values of ν⋆ [76].

One might also expect the influence of the radial electric
field on D⋆

11 to be modified by more complicated magnetic field
topologies, especially those in which deep secondary minima
in B are present. This was not observed for either W7-AS
or TJ-II, however, the two most likely candidates among the
ICNTS configurations. Instead, the dependence of the radial
transport coefficients on Er was found to be (qualitatively)
identical to that of a classical stellarator as illustrated by
the results for TJ-II plotted in figure 13. The comparatively
poor convergence of the DKES results for this device at low
collisionality is due to its very broad Fourier spectrum of B

in Boozer coordinates; at outer radii this problem is further
exacerbated and convergence is no longer satisfactory for
ν⋆ < 10−4.

Among the configurations optimized for small neo-
classical losses, benchmarking results for D⋆

11 are presented
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Figure 14. Normalized mono-energetic radial transport coefficient
as a function of collisionality for v⋆

E = 3 × 10−3 (black), 1 × 10−3

(red), 3 × 10−4 (light blue), 1 × 10−4 (orange), 3 × 10−5 (green) and
zero (dark blue) for HSX at ρ = 0.5. Numerical results from
NEO-2 are depicted as small filled-in circles (•) and those from
DKES as triangles (△) with upper and lower variational bounds
indicated when these lie outside the symbol. Monte Carlo results are
plotted as circles (◦) [12] and right-pointing triangles (◃) [15]. For
comparison, results for the equivalent helical symmetry
(r = 0.0598 m, R0 = 1.2375 m, !ι = 1.0537, N = 4,
b1,1 = −0.070 39) are shown by the dotted line for Er = 0.

here for HSX (figure 14), NCSX (figure 15), QIPC (figure 16)
and the standard configuration of W7-X (figures 17 and 18).
For comparison with the HSX results the dotted curve
depicts the neoclassical transport in the equivalent helically
symmetric field B/B0 = 1 + b1,1 cos(θ − Nφ), obtained
from a simple isomorphic transformation of the axisymmetric
tokamak results [80]. In plotting the results, however, the
normalization remains the same in all figures, e.g. in the plateau
regime one expects D⋆

11 = (b1,1/ϵt)
2!ι/|!ι − N | ≈ 0.75 for

HSX while for NCSX one has D⋆
11 = 1/κ ≈ 0.36. The

approximation to quasi-helical symmetry is sufficiently good
for HSX that the banana regime of its helically symmetric
counterpart may be identified in the range of collisionalities
satisfying 3 × 10−3 < ν⋆ < 0.03, although typical stellarator
behaviour of the D⋆

11 results is evident at lower values of
collisionality even though its magnitude is small compared
with that of classical stellarators. The NCSX data exhibit
similar properties except that the banana regime appears less
distinctly as this regime first emerges at lower collisionality in
the equivalent axisymmetric device.

Stellarators with predominant b0,n harmonics in their
Boozer-coordinate representations of B are known to exhibit
significantly modified behaviour of D⋆

11 over the range of
collision frequencies in which the plateau regime would
otherwise be expected to appear [81]. QIPC offers an excellent
example of such behaviour as reference to the results for the
equivalent axisymmetric tokamak (dotted curve in figure 16)
clearly illustrates. For ν⋆ < 5 × 10−3, however, all the typical
characteristics of lmfp radial transport in stellarators appear
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Very low collisionality regime
• For 𝜈 * << 𝜌*, trapped particles follow J = const. 

• In general, J = const. does not coincide with flux surfaces 
⇒ very large heat flux!
• Particles move across the machine at drift velocities ~ 𝜌*vt

• Two effects reduce heat flux
• Large E×B drift (≈ large aspect ratio)
• Optimization

13

Q ⇠ nTvd ⇠ ⇢2⇤nTvt
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Cases with ”smaller” transport
• Basic expansion: J ≃ J0(r) + 𝛿J1(r, 𝛼), with 𝛿 << 1

• For 𝜈* ~ 𝜌*,

• For 𝜌* << 𝜈* << 1, one recovers 1/𝜈 regime
• For 𝜈* << 𝜌*, using f = fM + f1 + …,

• No transport! Particles don’t scatter, just follow J = const.
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Large E×B drift: √𝜈 regime
• Usually justified by aspect ratio expansion 𝜖 = a/R << 1
• Assuming ∇𝜙 ~ T/ea and 𝜙 ≃ 𝜙 (r) (consistent)

• Drift parallel to flux surface ≈ vE >> radial drift
• For 𝜈* = R 𝜈/vt << 𝜌/a, formula for f1,t is valid                    
⇒ discontinuity between fp and ft (∂fp /∂𝛼 = 0 ≠ ∂ft /∂𝛼)         
⇒ collisional boundary layer ⇒ “enhanced” scattering
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√𝜈 regime
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Figure 13. Normalized mono-energetic radial transport coefficient
as a function of collisionality for v⋆

E = 3 × 10−3 (black), 1 × 10−3

(red), 3 × 10−4 (light blue), 1 × 10−4 (orange), 3 × 10−5 (green) and
zero (dark blue) for TJ-II at ρ = 0.46. Numerical results from
NEO-2 are depicted as small filled-in circles (•) and those from
DKES as triangles (△) with upper and lower variational bounds
indicated when these lie outside the symbol. Monte Carlo results are
plotted as circles (◦) [12], squares (") [10], stars (✩) [13] and
right-pointing triangles (◃) [15]. For comparison, results for the
equivalent axisymmetric tokamak (r = 0.0815 m, R0 = 1.5106 m,
!ι = 1.4753, b1,0 = −0.0533) are shown by the dotted line for
Er = 0.

the 1/ν regime even though collisional removal of shallowly
trapped particles from the local ripples will persist due to
their smaller values of F . Thus, for a stellarator magnetic
field without drift optimization, the beneficial effects of the
Er×B precession first act on those particles making the largest
contribution to the transport so that only a small additional
decrease in collisionality is necessary to reach the roll-over
point of the D⋆

11 results. By design, however, deeply trapped
particles contribute little to the transport in strongly drift-
optimized stellarators so that νc/%E ≈ 1 is required for
even shallowly trapped particles before the roll-over can occur,
pushing this point to considerably smaller values of ν⋆ [76].

One might also expect the influence of the radial electric
field on D⋆

11 to be modified by more complicated magnetic field
topologies, especially those in which deep secondary minima
in B are present. This was not observed for either W7-AS
or TJ-II, however, the two most likely candidates among the
ICNTS configurations. Instead, the dependence of the radial
transport coefficients on Er was found to be (qualitatively)
identical to that of a classical stellarator as illustrated by
the results for TJ-II plotted in figure 13. The comparatively
poor convergence of the DKES results for this device at low
collisionality is due to its very broad Fourier spectrum of B

in Boozer coordinates; at outer radii this problem is further
exacerbated and convergence is no longer satisfactory for
ν⋆ < 10−4.

Among the configurations optimized for small neo-
classical losses, benchmarking results for D⋆

11 are presented
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Figure 14. Normalized mono-energetic radial transport coefficient
as a function of collisionality for v⋆

E = 3 × 10−3 (black), 1 × 10−3

(red), 3 × 10−4 (light blue), 1 × 10−4 (orange), 3 × 10−5 (green) and
zero (dark blue) for HSX at ρ = 0.5. Numerical results from
NEO-2 are depicted as small filled-in circles (•) and those from
DKES as triangles (△) with upper and lower variational bounds
indicated when these lie outside the symbol. Monte Carlo results are
plotted as circles (◦) [12] and right-pointing triangles (◃) [15]. For
comparison, results for the equivalent helical symmetry
(r = 0.0598 m, R0 = 1.2375 m, !ι = 1.0537, N = 4,
b1,1 = −0.070 39) are shown by the dotted line for Er = 0.

here for HSX (figure 14), NCSX (figure 15), QIPC (figure 16)
and the standard configuration of W7-X (figures 17 and 18).
For comparison with the HSX results the dotted curve
depicts the neoclassical transport in the equivalent helically
symmetric field B/B0 = 1 + b1,1 cos(θ − Nφ), obtained
from a simple isomorphic transformation of the axisymmetric
tokamak results [80]. In plotting the results, however, the
normalization remains the same in all figures, e.g. in the plateau
regime one expects D⋆

11 = (b1,1/ϵt)
2!ι/|!ι − N | ≈ 0.75 for

HSX while for NCSX one has D⋆
11 = 1/κ ≈ 0.36. The

approximation to quasi-helical symmetry is sufficiently good
for HSX that the banana regime of its helically symmetric
counterpart may be identified in the range of collisionalities
satisfying 3 × 10−3 < ν⋆ < 0.03, although typical stellarator
behaviour of the D⋆

11 results is evident at lower values of
collisionality even though its magnitude is small compared
with that of classical stellarators. The NCSX data exhibit
similar properties except that the banana regime appears less
distinctly as this regime first emerges at lower collisionality in
the equivalent axisymmetric device.

Stellarators with predominant b0,n harmonics in their
Boozer-coordinate representations of B are known to exhibit
significantly modified behaviour of D⋆

11 over the range of
collision frequencies in which the plateau regime would
otherwise be expected to appear [81]. QIPC offers an excellent
example of such behaviour as reference to the results for the
equivalent axisymmetric tokamak (dotted curve in figure 16)
clearly illustrates. For ν⋆ < 5 × 10−3, however, all the typical
characteristics of lmfp radial transport in stellarators appear
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taking account of finite radial excursions of guiding-centre
orbits [15, 16].

The predicted particle and electron energy fluxes agree
with the experimental estimates within 2/3 of the plasma radius
for #30047, the ion energy flux from experimental sources
is about one order of magnitude larger over all radii. For
discharge #19065, the compliance for the particle fluxes is
restricted to 1/2 of the minor radius, the electron energy fluxes
are too low in the core but exceed the NC predictions for
r/a > 2/3. The ion energy flux does not comply for all
plasma radii as for #30047. The plasma complies with ion-root
conditions [17]: a negative electric field is formed to reduce
the ion transport to the electron level but the absolute value is
more negative in the experiments and hardly compatible with
the uncertainties of NC calculations and experimental errors.

2.2. W7-AS

Figure 3 shows results for the assessed W7-AS discharges.
The ion temperature profile data were determined from neutral
particle analysis (NPA) and charge-exchange recombination
spectroscopy (CXRS). The electron temperature profiles were
determined by Thomson scattering and electron cyclotron
emission radiometry. The measurements of the radial electric
field are from CXRS poloidal rotation measurements and
line-integrated spectroscopy on BIV. There were no Er

measurements for shot #34187. The mapping to effective radii
employs equilibrium calculations. The resulting symmetrized
kinetic profiles were fitted with smooth fit functions which are
the basis for the calculation of the temperature and density
gradients. The experimental particle fluxes were determined
by neutral gas modelling fitting with calibrated Hα emission
signals to determine the recycling neutral fluxes from the wall
and from gas puffing. The particle and power deposition
by neutral beam injection were determined with deposition
calculations. Full power deposition by electron cyclotron
heating was included where applicable. The discharges
#34313 and #34609 have been described in [18] in more detail.

The documentation of shot #34187 is lacking both Er

measurements and the particle sources. We included the
shot as an example for very high confinement time and with
dominating ion transport. The comparison of Er indicates for
the shots #34313 and #34609 agreement of the measurements
and the Er from the ambipolarity condition virtually for the
entire confined plasma. There are discrepancies, however,
close to the last closed flux surface which are not understood.
Local NC theory appears to be not applicable for the fields
observed but experimental results are also contradictory. The
particle fluxes for the shots #34313 and #34609 are in excellent
agreement within 2/3 of the last closed flux surface. The same
applies for the energy flux of both the ions and the electrons.
For #34187 agreement of the NC ion energy flux is found with
experimental results, however, the NC electron energy flux
disagrees significantly. But for this case, Te − Ti appears to
be quite inaccurate and the sum of the ‘NC’ ion and electron
fluxes agrees well with the ‘experimental’ fluxes.

In the plasma core, NC theory complies with the
experimental findings. At outer plasma radii (reff/a > 0.7)
at lower temperatures, NC theory increasingly underestimates
both the particle and the energy fluxes. The region of
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Figure 3. Transport analysis W7-AS (for #34313 and #34609
see [18]). Open red circles are Thomson scattering data (ne, Te).
Magenta diamonds are ECE measurements (Te), blue squares are
from CXRS (Ti, Er ), green stars from NPA (Ti) and magenta circles
from passive BIV spectroscopy (Er ). The grey vertical lines
indicate the position of the last closed flux surface. The markers
attached to lines (crosses) are to indicate lines in a black/white copy.

discrepancy also coincides with some differences of the Er

measurements with the NC ambipolarity condition. The core
region complies with ion-root conditions.

2.3. LHD

Figure 4 shows results for two LHD discharges at the
highest available heating power. The difference of discharge
#109696 (IWD) and #109718 (STD) is mainly the magnetic
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Figure 4. Transport analysis for LHD discharges (#109696 and
#109718). Te and ne come from Thomson scattering, Ti from CXRS
(grey Ti data from inboard-side measurements) and a central value
from x-ray imaging (magenta star). Er data are δt ± 15 ms
weighted-averaged CXRS measurements. The markers attached to
lines (crosses) are to indicate lines in a black/white copy.

configuration. Due to the inward shift of the plasma, the
magnetic configuration shows improved NC confinement
(σ optimization, see [19] for more details). Addressing the
validity of NC theory, the comparison of different NC transport
properties within a single device is of particular interest for this
study.

The ion temperature profile data were determined from
CXRS and a measurement of a newly installed x-ray imaging
spectroscopy is added to confirm the CXRS data. The
electron temperature profiles are determined by Thomson
scattering. The measurement of the radial electric field is from
CXRS polodial rotation measurements. The experimental data
were mapped from real space coordinates to effective radii
using mapping routines based on a database of equilibrium
calculations [20]. The resulting profiles are fitted with smooth
fit functions which are the basis for the calculation of the
temperature and density gradients. The particle and power
deposition by neutral beam injection are determined with
deposition calculations [21].

The measurement of the radial electric field tends to agree
for #109696 but appears to be systematically more negative
than the predicted ambipolar radial electric field. The CXRS

Er measurements suffer from beam attenuation effects due
to high densities. Due to the resulting small signal-to-noise
ratio, the measurements are weighted averaged (±15 ms) over a
period considerably smaller than variation times of the plasma
parameters. For #109718 there are large discrepancies in the
core between measurements and predictions of the ambipolar
field. Experimentally, again high densities may affect the Er

measurement. The relevance of non-local effects [15, 16, 22]
needs further assessments.

The energy fluxes are mainly found to be in agreement
with the NC prediction obtained with the DGN/LHD transport
package [26] in the plasma core. The region of agreement
appears to be somewhat larger for the STD configuration than
for the inward-shifted configuration. The NC electron heat
transport in the inward-shifted case, however, is significantly
lower than the results from the analysis with the DGN/LHD
transport package. Since the experimental kinetic energy
content is found to be smaller than the diamagnetic energy,
a systematic sensitivity study was carried out to quantify the
effect of a ±10%-β variation. The result is a +30%/ − 15%
variation in the electron energy flux and somewhat lower
for the ions. A more thorough assessment of the impact of
NBI slowing down particles on Wdia is to be addressed in
forthcoming studies. The assessed cases comply with ion-
root conditions. It is also noted that the NC ion energy flux
sensitively depends on the specific value of the radial electric
field and decreases with a more negative radial electric field in
the

√
ν transport regime. All discharges show a hollow density

profile which stays constant or varies on time scales larger
than the energy confinement time. The hollowness apparently
indicates thermodiffusion compensating the inward directed
particle flux driven by the positive density gradient in the core
plasma. Experimental data for the particle sources are lacking
and the particle balance will be addressed in forthcoming
studies extending existing analyses of the particle transport
[29] to collisionalities as addressed in this study.

3. Core energy transport and the impact on energy
confinement

In order to discuss the transport mechanism in the assessed
medium- to high-density, lmfp discharges, figure 5 shows more
details of the NC power balance for the previously discussed
LHD discharge #109696. The plasma is heated in its volume
by NBI with no specific peaking of the heating sources. The
ratio of electron to ion heating is affected by the proportion of
fast negative NBI with dominant electron heating and slower
positive NBI with more ion heating. The NBI also fuels the
discharges from the peripheral region up to the centre. Particle
sources at the edge are due to recycling fluxes and gas puffing.

The resulting ion and electron temperature profiles are
peaked in the centre and the density profiles are hollow with
a flat region in the centre and a density maximum in the
peripheral region at about the maximum penetration depth of
the recycling fluxes (reff/a ≈ 0.8). A detailed discussion of
particle transport, however, is not addressed in this paper. The
particle transport in LHD has been discussed in [29].

Figure 5(a) indicates that the main outward pointing
thermodynamic forces are the electron and ion temperature
gradients (L−1

T = |∇T |/T ). The negative ambipolar radial
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Optimized stellarators
• vE is not a choice: determined by gradients of n and T

• In tokamaks, flow moves trapped in direction of symmetry             
⇒ f ≠ f (𝛼) and hence if f = fM at one 𝛼, f = fM everywhere              
⇒ toroidal rotation is undamped

• In stellarators, trapped particles cannot follow any symmetry         
⇒ f = f (𝛼), and even if f = fM at one 𝛼, f ≠ fM in general                  
⇒ collisions damp flow to achieve f = fM everywhere

• Radial E given by neoclassical radial current = 0
• For very hot plasmas, vE is not large even for 𝜖 << 1

• LHD “impurity hole” [Yoshimuna et al, NF ‘09; Velasco et al, NF ‘17]

• When vE is not large, need to rely on optimization

• The parameter 𝛿 ≠ 𝜖 measures how well we have optimized

18
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Superbanana-plateau regime
• f discontinuous at trapped passing boundary, but now

• vE, v∇B and v𝜅 can cancel each other for some particles
⇒ radial drift does not average out ⇒ superbananas

• Collisional boundary layer around particles with ∂J0 /∂r = 0

• Large heat flux: Q ~ 𝛿2 Bohm
• Importantly, 𝜙 ≠ 𝜙(r)

• Particles with ∂J0 /∂r = 0 tend to have same bounce points, and they 
spend a long time in bounce points, giving large n perturbations
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Poloidal and toroidal electric field
• For small vE , poloidal and toroidal electric field must be 

taken into account
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Large tangential electric fields in plasmas close to temperature screening
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Motivation

Standard scenario of impurity accumulation:
I In stellarator, ion root plasmas usually display a large negative Er.
I According to numerical simulations, the component of the electric field that

is tangent to the flux surface (i. e. the variation of the electrostatic potential
on the flux surface '

1

) is unable to drive impurities outwards [Regaña 2017].

Here, two e↵ects that can potentially modify those scenarios are discussed.
I In low collisionality plasmas, the contribution of the electrons to Er can make

it negative but small, bringing the plasma close to impurity temperature
screening [Velasco 2017].
. At very low collisionality, such as impurity hole plasmas of LHD screen-
ing may actually occur.

I If Er is small, the tangential magnetic drift must be kept in order to
correctly compute '

1

[Calvo 2017], which can be larger than expected.

This can have a strong impact on the impurity flux, as we illustrate using the
newly-developed code KNOSOS (Kinetic Orbit-averagin-SOlver for Stellarators).

Equations
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where g(r,↵, v,�) is the dominant piece of the non-adiabatic component of
the deviation of the ion distribution function from a Maxwellian FM , solution of
the bounce-averaged drift-kinetic equation:
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I v is the magnitude of the velocity, � = v2

?/(v
2B) is the pitch-angle coordi-

nate (integration in � is done over trapped particles), and vk = �
p
1 � �B

and v? are the parallel and perpendicular components of the velocity.
I r is the radial coordinate, and l and ↵ are coordinates along and perpendic-

ular to B within the flux surface.
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I C is the pitch-angle collision operator.
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are the magnetic and E ⇥ B drifts.

The term v

M

· r↵ @↵g is:

I typically neglected in neoclassical calculations (large aspect-ratio);
I the more relevant the smaller |Er| at low collisionalities;
I known to change radial transport, specially close to Er = 0;
I theoretically predicted to have a large e↵ect on '

1

[Calvo 2017].

Here we show first simulations for LHD (inward-shifted) discussing this e↵ect.

We use KNOSOS: KiNetic Orbit-averaging SOlver for Stellarators [Velasco 2017].
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In these first calculations, we write B as a quasisymmetric magnetic field
plus a perturbation, and use the equations derived in [Calvo 2017].
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Preliminary results

Electrostatic potential variation
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Discussion

I First simulations including superbanana-plateau regime contribution to '
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.
. Amplitude and phase of '
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change.
. Strong impact on radial impurity flux

I Next: comparison with analytical theory and systematic parameter study.
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Motivation

Standard scenario of impurity accumulation:
I In stellarator, ion root plasmas usually display a large negative Er.
I According to numerical simulations, the component of the electric field that

is tangent to the flux surface (i. e. the variation of the electrostatic potential
on the flux surface '

1

) is unable to drive impurities outwards [Regaña 2017].

Here, two e↵ects that can potentially modify those scenarios are discussed.
I In low collisionality plasmas, the contribution of the electrons to Er can make

it negative but small, bringing the plasma close to impurity temperature
screening [Velasco 2017].
. At very low collisionality, such as impurity hole plasmas of LHD screen-
ing may actually occur.

I If Er is small, the tangential magnetic drift must be kept in order to
correctly compute '

1

[Calvo 2017], which can be larger than expected.

This can have a strong impact on the impurity flux, as we illustrate using the
newly-developed code KNOSOS (Kinetic Orbit-averagin-SOlver for Stellarators).
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where g(r,↵, v,�) is the dominant piece of the non-adiabatic component of
the deviation of the ion distribution function from a Maxwellian FM , solution of
the bounce-averaged drift-kinetic equation:
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)·r↵ @↵g + (v
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E

) · rr FM⌥ = C(g)

I v is the magnitude of the velocity, � = v2

?/(v
2B) is the pitch-angle coordi-

nate (integration in � is done over trapped particles), and vk = �
p
1 � �B

and v? are the parallel and perpendicular components of the velocity.
I r is the radial coordinate, and l and ↵ are coordinates along and perpendic-

ular to B within the flux surface.
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I C is the pitch-angle collision operator.
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� ZieEr

Ti
.

I
v

M

and v

E

are the magnetic and E ⇥ B drifts.

The term v

M

· r↵ @↵g is:

I typically neglected in neoclassical calculations (large aspect-ratio);
I the more relevant the smaller |Er| at low collisionalities;
I known to change radial transport, specially close to Er = 0;
I theoretically predicted to have a large e↵ect on '

1

[Calvo 2017].

Here we show first simulations for LHD (inward-shifted) discussing this e↵ect.

We use KNOSOS: KiNetic Orbit-averaging SOlver for Stellarators [Velasco 2017].
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In these first calculations, we write B as a quasisymmetric magnetic field
plus a perturbation, and use the equations derived in [Calvo 2017].
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Preliminary results

Electrostatic potential variation
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Discussion

I First simulations including superbanana-plateau regime contribution to '
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.
. Amplitude and phase of '
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change.
. Strong impact on radial impurity flux

I Next: comparison with analytical theory and systematic parameter study.
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Poloidal and toroidal electric field
• For small vE , poloidal and toroidal electric field must be 

taken into account

21

LHD (Japan) [Velasco, ISHW 2017]

Large tangential electric fields in plasmas close to temperature screening
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Motivation

Standard scenario of impurity accumulation:
I In stellarator, ion root plasmas usually display a large negative Er.
I According to numerical simulations, the component of the electric field that

is tangent to the flux surface (i. e. the variation of the electrostatic potential
on the flux surface '

1

) is unable to drive impurities outwards [Regaña 2017].

Here, two e↵ects that can potentially modify those scenarios are discussed.
I In low collisionality plasmas, the contribution of the electrons to Er can make

it negative but small, bringing the plasma close to impurity temperature
screening [Velasco 2017].
. At very low collisionality, such as impurity hole plasmas of LHD screen-
ing may actually occur.

I If Er is small, the tangential magnetic drift must be kept in order to
correctly compute '

1

[Calvo 2017], which can be larger than expected.

This can have a strong impact on the impurity flux, as we illustrate using the
newly-developed code KNOSOS (Kinetic Orbit-averagin-SOlver for Stellarators).
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where g(r,↵, v,�) is the dominant piece of the non-adiabatic component of
the deviation of the ion distribution function from a Maxwellian FM , solution of
the bounce-averaged drift-kinetic equation:
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I v is the magnitude of the velocity, � = v2

?/(v
2B) is the pitch-angle coordi-

nate (integration in � is done over trapped particles), and vk = �
p
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and v? are the parallel and perpendicular components of the velocity.
I r is the radial coordinate, and l and ↵ are coordinates along and perpendic-

ular to B within the flux surface.
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I C is the pitch-angle collision operator.
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and v
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are the magnetic and E ⇥ B drifts.

The term v

M

· r↵ @↵g is:

I typically neglected in neoclassical calculations (large aspect-ratio);
I the more relevant the smaller |Er| at low collisionalities;
I known to change radial transport, specially close to Er = 0;
I theoretically predicted to have a large e↵ect on '

1

[Calvo 2017].

Here we show first simulations for LHD (inward-shifted) discussing this e↵ect.

We use KNOSOS: KiNetic Orbit-averaging SOlver for Stellarators [Velasco 2017].
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In these first calculations, we write B as a quasisymmetric magnetic field
plus a perturbation, and use the equations derived in [Calvo 2017].
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Discussion

I First simulations including superbanana-plateau regime contribution to '
1

.
. Amplitude and phase of '
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change.
. Strong impact on radial impurity flux

I Next: comparison with analytical theory and systematic parameter study.
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Summary of neoclassical transport
• Large neoclassical transport for small collisionality

• Can explain transport in core of stellarators

• Neoclassical theory for small vE under study
• Probably relevant for some hot stellarator plasmas
• The effect of poloidal and toroidal electric field seems important

• Topics that I haven’t mentioned
• Impurity accumulation: stellarator neoclassical transport seems to 

tend to pinch impurities in
• Bootstrap current: similar to tokamak current (∝ orbit width), but 

theory does not match simulations too well
• Flow damping: can stellarators be optimized to have flow? (HSX)
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Turbulent transport in stellarators
• Much less studied
• Very costly: cannot use symmetry 

to run cheap flux tubes
⇒ full flux surface simulations

• Can still assume radially local
• Within the same flux surface, 

different flux tubes see different 
turbulence drive, different shear…
• ”Global” effects due to full flux surface 

seem to quench turbulence
• Zonal flow efficiently damp at 

large scales
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The final elements needed to close this system are equa-
tions for the evolution of the magnetic geometry. In particu-
lar, the magnetic field can be specified in an axisymmetric
system if given the poloidal flux $ and the toroidal flux
function I$$%. The toroidal flux function is evolved by taking
the toroidal component of Faraday’s law and flux surface
averaging
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with the B ·"A0 /"t term obtainable from the neoclassical
equation (Eq. $9%). Equations $9% and $14% are then coupled to
the Grad–Shafranov equation, which uses the updated mac-
roscopic pressure from Eq. $4% to obtain $ and close the
system
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III. NUMERICAL METHOD

We describe in this section the numerical model we have
developed for solving the system described by Eqs. $2%–$15%.
This model is implemented in the multiscale gyrokinetic
transport solver TRINITY.21 Currently, there are a few addi-
tional assumptions employed in TRINITY to simplify the mul-
tiscale system presented in Sec. II. In what follows, we pro-
vide a numerical prescription for solving the full system,
pointing out the places where the TRINITY model has been
simplified.

A simple sketch of our multiscale numerical model is
given in Fig. 1. A direct numerical simulation would require
a fine space-time mesh over the full device volume and over

at least a confinement time. We exploit the scale separation
present in the system to drastically reduce the domain over
which a fine mesh is required. Our assumption of time scale
separation between the turbulence and the equilibrium allows
us to fix equilibrium quantities while we evolve the turbu-
lence to saturation. Additionally, it allows us to use steady-
state, time-averaged fluxes in our transport equations. Con-
sequently, we need only to resolve turbulence time scales for
short periods of time, between which we can take large time
steps characteristic of the confinement time. As the separa-
tion of scales gets wider, the simulation domain savings from
this approach grows: the cost of simulating small %" devices
is no greater than that for moderate %" devices. The time
domain savings for a device like ITER is a factor of
hundreds.

Similarly, spatial scale separation allows us to assume
that macroscopic quantities $and their associated gradient
scale lengths% are constant across the radial domain in which
we simulate turbulent dynamics. As long as the turbulence
simulation domain is wide enough in each dimension, the
turbulence at the ends of the domain is uncorrelated. Statis-
tically periodic boundary conditions then apply. The result of
this local approximation is a flux tube simulation domain for
the turbulence $Fig. 1%, which can be used to periodically
map out a flux surface. Comparisons between local and glo-
bal gyrokinetic simulations have shown that the local ap-
proximation is valid for small %",36 as it must be for the
gyro-Bohm scaling suggested by high confinement
experiments33 to hold. Once again, the spatial domain sav-
ings increases with the scale separation. On small %" devices,
the simulation volume is reduced by a factor of tens.

A. Discretization of the transport equations

The transport equations (Eqs. $2%–$4%) are stiff, nonlinear
partial differential equations. In order to take the large time
steps required by our multiscale scheme, we must treat them
implicitly. We allow for a general, single-step time discreti-
zation, but we primarily use first-order backward differences
for steady-state systems and second-order backward differ-

FIG. 1. $Color online% $Left% Cartoon of multiscale space-time grid used in TRINITY. Vertical and horizontal regions represent the radial and time domains,
respectively, over which a fine mesh is used to calculate turbulent fluxes. The overlapping regions denote the reduced space-time domain used in TRINITY.
These patches, each of which corresponds to a nonlinear gyrokinetic flux tube simulation $right%, are grid points in the coarse space-time mesh used to solve
the transport equations. The flux tube visualization is taken from a GS2 simulation of electron-scale turbulence in MAST.
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FIG. 1. Root-mean-squared electrostatic potential fluc-
tuations caused by ion-temperature-gradient-driven turbu-
lence in units of Ti⇢

⇤/e, where Ti is the ion temper-
ature, e is the electron charge and ⇢⇤ = 1/125 is
the normalized ion gyroradius. The strongest fluctua-
tions are contained in the red stripe on the outboard
side of the surface. The resolution for the 5D simu-
lation box reads (L̂r/Nr, L̂y/Ny, L̂z/Nz, L̂v/Nv, L̂µ/Nµ) =
(177/128, 128/480, 2⇡/128, 3/64, 9/8), where r, y, z are the
spatial (radial, binormal, parallel) dimensions, v is the ve-
locity parallel to the magnetic field and µ is the magnetic
moment. L̂r is the dimensionless length and Nr the num-
ber of discretization points in the radial direction etc. The
normalized ion temperature gradient is �a/Ti dTi/dr = 2.

tic length Lc, corresponding to the variation of curvature
on the surface in the direction perpendicular to the mag-
netic field. For W7-X, this length is very close to the
minor radius and thus ⇢⇤ is a pertinent scaling parame-
ter. In a tokamak, on the other hand, Lc is roughly half
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FIG. 2. (Color online) Ion-heat-flux scaling for di↵erent ⇢⇤

values from flux-surface GENE simulations. Here Pi is the
ion pressure, a is the minor radius of the torus, r denotes the
radial coordinate, ci is the ion sound speed and ⇢i is the ion
gyroradius.

the poloidal circumference, and the fluctuations cover al-
most the entire outboard side. In this case, the relevant

parameter is ⇢⇤c = ⇢i/Lc, which is much smaller than ⇢⇤,
and therefore flux-surface tokamak simulations do not
deviate significantly from the gyro-Bohm scaling.
These results have implications for the long-debated

issue of transport sti↵ness. In tokamak experiments, the
energy transport is usually observed to be sti↵, in the
sense that the heat flux is very small below a critical tem-
perature gradient and increases sharply above it [18, 19].
The temperature profile is therefore almost independent
of the heating power and deposition profile but highly de-
pendent on the boundary condition at the plasma edge
[20]. In stellarators, a critical gradient is still observed,
however no abrupt increase of the heat transport is usu-
ally reported [21–23]. This property, which has never
received a generally accepted explanation, could be ad-
dressed by the GENE flux-surface simulations, suggest-
ing a mild heat-flux scaling for su�ciently large ⇢⇤.
The possibility that reactor-sized stellarators, charac-

terized by small ⇢⇤, might su↵er from sti↵ transport
makes it desirable to control turbulence by optimizing
the magnetic geometry. To demonstrate the feasibility of
this concept, we present in Fig. 3 a novel stellarator-field
design, called MPX, as a modification to W7-X (specifi-
cally, its “high-mirror” configuration) in such a way that
the ITG transport scaling is improved while excellent
neoclassical confinement is maintained. The MPX design

FIG. 3. The turbulence-optimized MPX stellarator design.
Shown is the magnetic field strength (Tesla) over a magnetic
surface. MPX is the first example of a quasi-omnigenous stel-
larator, similar to W7-X, but with reduced turbulent trans-
port. For this proof-of-principle configuration no attempt has
been made to minimize the bootstrap current (which, how-
ever, takes acceptable values) or the alpha-particle losses.

was obtained by using the STELLOPT code to explore
the configuration space by means of Di↵erential Evolu-
tion, a population-based global search algorithm used
previously for neoclassical optimization studies [24]. In
order to reduce the ITG-mode intensity (the same prin-
ciple holds also for electron-temperature-gradient-driven
modes [25]), a cost function defined as �2

ITG = �
r (g

rr)2,
where �

r is the negative part of the radial covariant com-
ponent of the curvature and grr the radial contraviariant
metric element, was minimized. STELLOPT thus had
the opportunity to suppress ITG transport by making

[Xanthopoulos et al, PRL 2014]


