Impurities in a Reactor

T. Pütterich1, E. Fable1, R. Dux1, M. O’Mullane2,
R. Wenninger3, R. Neu1,4, M. Siccinio1

1Max-Planck-Institut für Plasmaphysik, D-85748 Garching, Germany
2CCFE, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB, United Kingdom
3EUROfusion Programme Management Unit, 85748 Garching, Germany
4Technische Universität München, 85748 Garching, Germany

Acknowledgements

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.
Overview

- Introduction
 - Impurities in Fusion Plasmas

- Impurity limits
 - Simple 0D and 0.5D approach
 - 1D ASTRA model

- What Physics Issues Need to be Addressed?
Overview

- Introduction
 - Impurities in Fusion Plasmas

- Impurity limits
 - Simple 0D and 0.5D approach
 - 1D ASTRA model

- What Physics Issues Need to be Addressed?
Impurity Sources
Impurity Sources

- Erosion from first wall
 (e.g. W, Be, C.....)
Impurity Sources

- Erosion from first wall (e.g. W, Be, C.....)

- Production of He in reactor core

\[^2_1 D + ^3_1 T \rightarrow ^4_2 He + ^1_1 n \]

\[3.5\text{MeV} \quad 14.1\text{MeV} \]
Impurity Sources

- Erosion from first wall (e.g. W, Be, C.....)

- Production of He in reactor core

\[
\begin{align*}
\frac{2}{1}D + \frac{3}{1}T & \rightarrow \frac{4}{2}He + \frac{1}{1}n \\
3.5\text{MeV} & \ 14.1\text{MeV}
\end{align*}
\]

- Intentionally injected impurities (e.g. N, Ne, Ar, Kr...)
Overview

- Introduction
 - Impurities in Fusion Plasmas

- Impurity limits
 - Simple 0D and 0.5D approach
 - 1D ASTRA model

- What Physics Issues Need to be Addressed?
$$A) \text{ Power balance: } \quad P_\alpha = P_{rad} + P_{transp}$$

$$P_\alpha = \frac{n_e^2}{4} \langle \sigma u \rangle E_\alpha (1 - 2c_{He} - Z_i c_i)^2$$

$$P_{rad} = n_e^2 \left((1 - 2c_{He} - Z_i c_i)L_H + c_{He} L_{He} + c_i L_i \right)$$

$$P_{transp} = \frac{3kTn_e}{2\tau_E} (2 - c_{He} - (Z_i - 1)c_i)$$

$$\Rightarrow \quad n_e T \tau_E = f(T, c_{He}, c_i)$$

$$B) \text{ He balance: production = losses}$$

$$\frac{n_e^2}{4} \langle \sigma u \rangle (1 - 2c_{He} - Z_i c_i)^2 = \frac{n_e c_{He}}{\tau_{He}}$$

\[\text{define: } \rho^* = \frac{\tau_{He}}{\tau_E}\]

\[\Rightarrow \quad a_3(\rho^*, T, c_i)c_{He}^3 + a_2(\rho^*, T, c_i)c_{He}^2 + a_1(\rho^*, T, c_i)c_{He} + a_0(\rho^*, T, c_i) = 0\]
A) Power balance: \[P_{\alpha} = P_{rad} + P_{transp} \]

\[
P_{\alpha} = \frac{n_e^2}{4} (\sigma u) E_{\alpha} (1 - 2c_{He} - Z_ic_i)^2
\]

\[
P_{rad} = n_e^2 ((1 - 2c_{He} - Z_ic_i)L_H + c_{He}L_{He} + c_iL_i)
\]

\[
P_{transp} = \frac{3kTn_e}{2\tau_E} (2 - c_{He} - (Z_i - 1)c_i)
\]

\[
\Rightarrow n_eT\tau_E = f(T, c_{He}, c_i)
\]

- Fix \(\rho^*, T \) and \(c_i \)
- \(\leq 2 \) meaningful solutions for \(c_{He} \)

B) He balance: production = losses

\[
\frac{n_e^2}{4} (\sigma u) (1 - 2c_{He} - Z_ic_i)^2 = \frac{n_e c_{He}}{\tau_{He}}
\]

define: \(\rho^* = \frac{\tau_{He}}{\tau_E} \)

A+B \[a_3(\rho^*, T, c_i)c_{He}^3 + a_2(\rho^*, T, c_i)c_{He}^2 + a_1(\rho^*, T, c_i)c_{He} + a_0(\rho^*, T, c_i) = 0 \]
0D-Model - Simple Power Balance

\[P_\alpha = P_{rad} + P_{transp} \]

- For fixed \(\rho^* \) and variation of \(c_{Xe} \)
 => plots with burn curves
- Burn curves become a single dot for maximum impurity level
- low-Z impurities decrease via dilution
- high-Z impurities increase

Pütterich, EPS 2015

Reiter, NF 1990
For fixed ρ^* and variation of c_{Xe} as
\Rightarrow plots with burn curves

- Burn curves become a single dot for maximum impurity level
- low-Z impurities decrease via dilution
- high-Z impurities increase

\[P_\alpha \]

\[P_{rad} \]
W from wall, seeded impurities, He-ash
- W from wall, seeded impurities, He-ash
- W from wall, seeded impurities, He-ash
- Burn window becomes small
W from wall, seeded impurities, He-ash
Burn window becomes small

Is the situation changing for more realistic assumptions?
Implementation of T- and n-Profiles – Model Still Very General

Profiles of n,T vs. r/a using circular plasma

Any Plasma may be mapped onto a circular one

Approximation: Linear Profiles, Flat Impurity Concentration

Parametrized via peaking $R_T = T_0/<T>$, $R_n = n_0/<n>$

Results are size independent

For $\rho^*<5$ small effect (<20%)

Pütterich, EPS 2015 – now improved model
Implementation of finite Q also Possible

\[Q = \frac{P_{fus}}{P_{aux}} = \frac{5P_\alpha}{P_{aux}} \]

- Q > 30 economically viable
- Finite Q can be seen as an artificially increased \(P_{\alpha,eff} \)
 \[P_{\alpha,eff} = P_\alpha + P_{aux} = \frac{Q+5}{Q} P_\alpha \]
- Note: Fixed Synchrotron radiation can be taken into account, but depends on \(B_t \) & \(R \)

=> Talk today by E. Fable

Pütterich, EPS 2015 – now improved model
Implementation of finite Q also Possible

\[Q = \frac{P_{\text{fus}}}{P_{\text{aux}}} = \frac{5P_\alpha}{P_{\text{aux}}} \]

- Q > 30 economically viable
- Finite Q can be seen as an artificially increased \(P_{\alpha,\text{eff}} \)

\[P_{\alpha,\text{eff}} = P_\alpha + P_{\text{aux}} = \frac{Q + 5}{Q} P_\alpha \]

- Note: Fixed Synchrotron radiation can be taken into account, but depends on \(B_t \) & \(R \)

\[\rho^* = \frac{\tau_{He}}{\tau_E} \]

\(\rho^* = 0, c_{Xe} = 0 \), \(c_{Xe} = X/2 \), \(c_{Xe} = X \)

EP DEMO1 2015

Pütterich, EPS 2015 – now improved model

\(T_0, 0.5D \) Models, \(R_t = 2.1, R_n = 1.3, Q = \infty, 40, 10 \)
Implementation of finite Q also Possible

\[Q = \frac{P_{fus}}{P_{aux}} = \frac{5P_\alpha}{P_{aux}} \]

- Q>30 economically viable
- Finite Q can be seen as an artificially increased \(P_{\alpha,\text{eff}} \)

\[P_{\alpha,\text{eff}} = P_\alpha + P_{aux} = \frac{Q+5}{Q} P_\alpha \]

- Note: Fixed Synchrotron radiation can be taken into account, but depends on \(B_t \) & \(R \)

\[\rho^* = \frac{\tau_{He}}{\tau_E} \]

Pütterich, EPS 2015 – now improved model
Realistic Boundary Conditions also Define Reactor Design: Dilution, Radiative Fraction

- Strong Dilution of fuel makes a fusion power plant inefficient
- Radiative Fraction must be considerable to provide power exhaust

(Q, sync. rad. and profile peaking match EU DEMO1 2015)
Realistic Boundary Conditions also Define Reactor Design:

Dilution, Radiative Fraction

- Strong Dilution of fuel makes a fusion power plant inefficient
 => assume >71% D+T
- Radiative Fraction must be considerable to provide power exhaust
 => assume >50% radiative fraction

(Q, sync. rad. and profile peaking match EU DEMO1 2015)
Realistic Boundary Conditions also Define Reactor Design: Dilution, Radiative Fraction

- Strong Dilution of fuel makes a fusion power plant inefficient
 => assume >71% D+T
- Radiative Fraction must be considerable to provide power exhaust
 => assume >50% radiative fraction

(Q, sync. rad. and profile peaking match EU DEMO1 2015)
Overview

- Introduction
 - Impurities in Fusion Plasmas

- Impurity limits
 - Simple 0D and 0.5D approach
 - 1D ASTRA model

- What Physics Issues Need to be Addressed?
Overview

- Introduction
 - Impurities in Fusion Plasmas

- Impurity limits
 - Simple 0D and 0.5D approach
 - 1D ASTRA model (fusion+radiation profile, transport, $Q < \infty$)

- What Physics Issues Need to be Addressed?
Why does radiation in a reactor not degrade confinement?

- Wall protection necessary
- ~500MW of alpha power
- Threshold in Turbulence Activity
 - Stiff gradients for power fluxes above threshold
 - Power flux may be reduced down to threshold, wo. confinement degradation

\[\frac{\nabla T}{T} \]
Why does radiation in a reactor not degrade confinement?

- Wall protection necessary
- ~500MW of alpha power
- Threshold in Turbulence Activity
 - Stiff gradients for power fluxes above threshold
 - Power flux may be reduced down to threshold, wo. confinement degradation
Reactor Core is more Vulnerable to Radiation

- Power flux at mid radius larger than in center
 - Volume vs. Surface for flux surface
 \[V_{circ.} = 2\pi^2 R r^2 \]
 \[S_{circ.} = 4\pi^2 R r \]
Reactor Core is more Vulnerable to Radiation

- Power flux at mid radius larger than in center
 - Volume vs. Surface for flux surface
 \[V_{\text{circ.}} = 2\pi^2 R r^2 \]
 \[S_{\text{circ.}} = 4\pi^2 R r \]
- Seeded Impurities should radiate at the plasma edge
Core Radiation May Damage Temperature Profiles

- ASTRA simulations of a DEMO-like reactor
- T-profiles calculated using TGLF (Staebler PoP 2007)
- Localized radiative cooling
 - Core cooling damages T-profiles
 - Edge cooling with small impact

E. Fable NF 2017
Core Radiation May Damage Temperature Profiles

- ASTRA simulations of a DEMO-like reactor
- T-profiles calculated using TGLF

![Graph showing temperature profiles with Gaussian $P_{\text{rad}}(r)$, width = 0.1]
Are Xe, Kr and Ar better 'Mantle Radiators' than W?
Are Xe, Kr and Ar better ‘Mantle Radiators’ than W?

- In Reactor, the radiative mantle is between ~5keV and ~20keV

- What is the best radiator at the mantle for a certain ‘damage’ in the plasma core?
 - Ratio of core vs mantle radiation
 - W is slightly better than Xe, Kr and Ar!
 - Differences between radiators less than factor 2 (~uncertainties)
Are Xe, Kr and Ar better 'Mantle Radiators' than W?

- In Reactor, the radiative mantle is between ~5keV and ~20keV
- What is the best radiator at the mantle for a certain 'damage' in the plasma core?
 - Ratio of core vs mantle radiation
 - W is slightly better than Xe, Kr and Ar!
 - Differences between radiators less than factor 2 (~uncertainties)
- Note: core impurity transport is easily as important
EU-DEMO1 design 2015 modelled with ASTRA

- Full 1D ASTRA model (Wenninger NF 2014)
- EU DEMO 2015 design (Wenninger NF 2017)
- Profiles of 50MW auxiliary heating and radiation
- \(P_{\text{fusion}} \) calculated => fusion yield \(Q = \frac{P_{\text{fusion}}}{P_{\text{aux.heating}}} \)
- Impurity seeding to obtain \(P_{\text{separatrix}} = 160 \text{MW} \)
- Heat & particle transport may be modelled, here: fixed density profiles, ad-hoc heat transport

<table>
<thead>
<tr>
<th>Parameter</th>
<th>EU DEMO1 2015</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R [m])</td>
<td>9.1</td>
</tr>
<tr>
<td>(A)</td>
<td>3.1</td>
</tr>
<tr>
<td>(B_T [T])</td>
<td>5.7</td>
</tr>
<tr>
<td>(I_P [MA])</td>
<td>20</td>
</tr>
<tr>
<td>(H) (rad. cor.)</td>
<td>1.1</td>
</tr>
<tr>
<td>(\beta_{N,tot} [%])</td>
<td>2.6</td>
</tr>
<tr>
<td>(f_{bs} [%])</td>
<td>35</td>
</tr>
<tr>
<td>(P_{\text{sep}}/R [MW/m])</td>
<td>17</td>
</tr>
<tr>
<td>(\tau_{\text{burn}} [h])</td>
<td>2</td>
</tr>
<tr>
<td>(P_{\text{fusion}} [MW])</td>
<td>2037</td>
</tr>
<tr>
<td>(Q)</td>
<td>40</td>
</tr>
</tbody>
</table>
1D ASTRA: Operational Space Larger at Cost of Q

- Find Condition:
 Reduce power flux to 1.2^*P_{LH} at pedestal-top

- Steady-State operation possible for large

- But: Sacrifices in Q
 - Efficiency of power plant
 - Cost of electricity

\[\rho^* = \frac{\tau_{He}}{\tau_E} \]
Find Condition: Reduce power flux to $1.2 \times P_{LH}$ at pedestal-top.

- Steady-State operation possible for large Q.

$$\rho^* = \frac{\tau_{He}}{\tau_E}$$

- But: Sacrifices in Q:
 - Efficiency of power plant
 - Cost of electricity

T. Pütterich, EFTC 2017, Athens - 37
1D ASTRA: Operational Space Larger at Cost of Q

- Find Condition:
 Reduce power flux to $1.2 \times P_{LH}$ at pedestal-top

- Steady-State operation possible for large

- But: Sacrifices in Q
 - Efficiency of power plant
 - Cost of electricity

$\rho^* = \frac{\tau_{He}}{\tau_E}$

Small difference to 0.5D!
0.5D and 1D ASTRA Give Similar Answers

Pütterich, EPS 2015 - now improved model
What Physics Issues Need to be Addressed?

- Core radiation from Xe, Kr and Ar is as good/bad as from W
 ⇒ Impurity profiles should be preferably hollow (high-Z)

- How do the plasma profiles look in a reactor?
 ⇒ Realistic plasma transport

- Combine reactor performance (Q) with radiative cooling
 ⇒ Impurity profiles should be preferably hollow (low-Z)

 ⇒ Avoid divertor radiator in main plasma
 ⇒ divertor compression of N, Ne, Ar…
 ⇒ High-Z radiation (if tolerable) is preferable to low-Z dilution

 ⇒ Pump He well (divertor compression of He)
What Physics Issues Need to be Addressed?

- Core radiation from Xe, Kr and Ar is as good/bad as from W
 ⇒ Impurity profiles should be preferably hollow (high-Z)
 true if turbulent transport dominant (Angioni NF 2017)

- How do the plasma profiles look in a reactor?
 ⇒ Realistic plasma transport

- Combine reactor performance (Q) with radiative cooling
 ⇒ Impurity profiles should be preferably hollow (low-Z)
 true if turbulent transport dominant (Angioni NF 2017)
 ⇒ Avoid divertor radiator in main plasma
 ⇒ divertor compression of N, Ne, Ar…
 ⇒ High-Z radiation (if tolerable) is preferable to low-Z dilution
 ⇒ Pump He well (divertor compression of He)
Divertor Compression Crucial

ASTRA + SOL model

- If low-Z radiators leak into main plasma, fusion losses may be large
- Surprising solution may be mid-Z radiator for divertor radiation
- Too few divertor compression of He-ash is a danger independently of solution for radiative cooling

Core radiator (here Xe) may have to be complemented by edge radiator

M. Siccinio, PPCF 2016