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Introduction I

Particle transport in weakly turbulent environments (δB/B << 1) has been
discussed extensively with the use of the
Fokker-Planck (FP) equation,
mostly in combination with the quasi-linear (QL) approximation

Strong turbulence is though also important and abundant

Recent research on the development of strong magnetic turbulence (δB/B ≈ 1)
has shown the importance of two scenarios:

1 Extended current filaments (CF) or multiple interacting CFs develop on fast time
scales into a strongly turbulent environment, fragmented into a collection of small
scale CFs.

2 Propagating Alfvén waves reinforce reconnection at existing CF and new CF are
formed.
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Introduction II

In this context, we address two open questions:

1 Is the FP equation still valid in strongly turbulent environments ?
2 How to model transport when the FP approach is not valid anymore ?

In the following
1 we consider a large scale environment of strong turbulence
2 and we analyze statistically the energization of particles in this environment,

focusing on the high energy part (tail) of the energy distribution.
3 we develop an appropriate transport model

Applications: Solar flares, Earth’s magnetosphere, accretion disks, jets, ...,
may-be the plasma edge in tokamaks ?
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The MHD turbulent environment I

We consider a strongly turbulent environment as it naturally results from the
nonlinear evolution of the MHD equations

We do not set up a specific reconnection geometry

3D, nonlinear, resistive, compressible and normalized MHD equations

∂tρ = −∇ · p (1)

∂t p = −∇ · (pu− BB)−∇P −∇B2/2 (2)

∂t B = −∇× E (3)

∂t (Sρ) = −∇ · [Sρu] (4)

with ρ the density, p the momentum density, u = p/ρ, P the thermal
pressure, B the magnetic field, E = −u× B + ηJ the electric field, J = ∇× B
the current density, η the resistivity, S = P/ρΓ the entropy, and Γ = 5/3 the
adiabatic index.

The MHD equations are solved numerically with the pseudo-spectral
method combined a the strong-stability-preserving Runge Kutta scheme of

Cartesian coordinates
periodic boundary conditions
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The MHD turbulent environment II

initial conditions: superposition of Alfvén waves, with a Kolmogorov type
spectrum
constant background magnetic field B0 in the z-direction.

The mean value of the initial magnetic perturbation is < b >= 0.6B0, its
standard deviation is 0.3B0, so that we indeed consider strong turbulence.

For the MHD turbulent environment to build, we let the MHD equations
evolve until the largest velocity component starts to exceed twice the
Alvfèn speed.

The magnetic Reynolds number at final time is < |u| > l/η = 3.5× 103

The test-particle are tracked in a fixed snapshot of the MHD evolution

Also, we take into account anomalous resistivity effects by increasing the
resistivity to ηan = 1000η locally when the current density J = |J| exceeds a
threshold Jcr .
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The MHD turbulent environment III

Iso-contours of the supercritical current
density component Jz

(positive in brown, negative in violet),
magnetic field lines (green):

clear fragmentation into a large
number of small-scale coherent
structures
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Test-particle simulations I

The relativistic guiding center equations (without collisions) are used for the
evolution of the position r and the parallel component u|| of the relativistic
4-velocity of the particles (X. Tao et al., PoP 14, 092107 (2007))

dr
dt

=
1

B∗||

[
u||
γ

B∗ + b̂×
(
µ

qγ
∇B − E∗

)]
(5)

du||
dt

= − q
m0B∗||

B∗ ·
(
µ

qγ
∇B − E∗

)
(6)

where B∗ = B + m0
q u||∇× b̂, E∗ = E− m0

q u|| ∂b̂
∂t , µ =

m0u2
⊥

2B is the magnetic

moment, γ =
√

1 + u2

c2 , B = |B|, b̂ = B/B, u⊥ is the perpendicular component
of the relativistic 4-velocity, and q, m0 are the particle charge and
rest-mass, respectively.

The test-particles we consider throughout are electrons. Initially, all particles
are located at random positions, they obey a Maxwellian distribution with
temperature T = 100 eV. The simulation box is open, the particles can
escape from it when they reach any of its boundaries.
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Test-particle simulations II

The acceleration process, is very efficient, and we consider a final time of
0.002 s (7× 105 gyration periods), at which the asymptotic state has already
been reached.

4 orbits of energetic particles (reaching
10 MeV), colored according to the
logarithm of their kinetic energy in keV

The energy evolution of the same 4
energetic particles

The particles mostly gain energy in a number of sudden jumps in energy,
the energization process thus is localized,
and there is multiple energization at different current filaments
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Test-particle simulations III

the energy distribution at final time
(blue):
clear power law tail,
power-law index −1.51
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Transport coefficients and classical FP equation I

Question 1
Can the test-particle results be reproduced as a solution of the FP equation ?

For simplification, we consider the FP equation only in energy space

∂n
∂t

+
∂

∂W

[
Fn− ∂[Dn]

∂W

]
= − n

tesc
, (7)

n: the distribution function, W : kinetic energy, tesc: the escape time.
D is the energy diffusion coefficient,

D(W , t) =

〈
(W (t + ∆t)−W (t))2

〉
W

2∆t
, (8)

F is the energy convection coefficient,

F(W , t) =
〈W (t + ∆t)−W (t)〉W

∆t
, (9)

with ∆t a small time-interval.
〈...〉W denotes the conditional average that W (t) = W
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Transport coefficients and classical FP equation II

For the estimate of the coefficients F , D from the simulation data:
we monitor the particle energy at a number of fixed times separated by ∆t ,
the conditional averaging is done through binned statistics

divide the energies of the particles at time t into a number of logarithmically
equi-spaced bins and perform the requested averages separately for the
particles in each bin.

The estimates of F(W ) and D(W ) at
t = 0.002 s as function of the energy:

—> power-law shape,
indices aF = 0.63 and aD = 1.31.

Verification of the estimates of F and D:
insert F and D, into the FP equation and solve it numerically in [0,∞)
(pseudospectral method, based on rational Chebyshev polynomials)

escape time estimate tesc = 0.004 s (assuming the number of particles staying in
the box to decay exponentially)
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Transport coefficients and classical FP equation III

The solution of the FP equation up to
final time 0.002 s:

—> clear power-law tail,

—> much flatter though than the
test-particle simulations.

In Vlahos et al., ApJ 827, L3, (2016) we have shown that the above
procedure can be successful:
Why does it fail here ?
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Transport coefficients and classical FP equation IV

estimates of F and D are based on the
sample of energy increments
wj := Wj(t + ∆t)−Wj(t)
(with j the particle index)

The distribution of increments has a
power law tail (index −1.49)

—> occasionally very large jumps in
energy space: Levy flights

energy increments with a power-law tail imply:
1 The estimates of F as a mean value and D as a variance theoretically are

infinite, and thus in practice they are very problematic
2 The prerequisites for deriving a FP equation are not fulfilled (see below)
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Fractional transport equation (FTE) I

Question 2
How to model transport when the FP approach is not valid anymore ?

General description of transport in energy space: Chapman-Kolmogorov
equation

n(W , t) =

∫
dw

∫ t

0
dτ n(W −w , t − τ) qw (w) qτ (τ)

+n(W , 0)

∫ ∞
t

qτ (τ)dτ (10)

expresses a conservation law, and can be interpreted as a Continuous
Time Random Walk.

qw : probability density for a particle to make a random walk step w in
energy,
qτ : probability density for this step to be performed in a time interval τ

When both qw and qτ have finite mean and variance (i.e. only small
increments) (as e.g. for Gaussians), then the FP equation can be derived
from Eq. (10) through Taylor-expansions
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Fractional transport equation (FTE) II

Here, we do not make the assumption of small increments
distribution of increments, expressed in Fourier (k) and Laplace space (s):

1 distribution of energy increments: symmetric stable Levy distributions
q̂w (k) = exp(−a|k|α), with 0 < α ≤ 2,
which exhibit a power-law tail in energy-space, qw (w) ∼ 1/w1+α for α < 2 and
w large,
and for α = 2 they are Gaussian distributions

2 waiting time distribution: one sided stable Levy distributions,
q̃τ = exp(−bsβ), with b > 0 and 0 < β ≤ 1,
which have a power-law tail, qτ ∼ 1/τ1+β for β < 1 and τ large,
and for β = 1 they equal qτ (τ) = δ(τ − b)

In order to derive a meso-scopic transport equation, we consider the
fluid-limit: w , τ are large, and thus k, s are small, so that the distributions of
increments can be approximated as
q̂w ≈ 1− a|k|α
q̃τ ≈ 1− bsβ .
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Fractional transport equation (FTE) III

Chapman Kolmogorov equation —> make Fourier Laplace transform —>
apply convolution theorems —> insert distributions of increments in the fluid
limit:

bsβ ˜̂n(k, s)− bsβ−1n̂(k, 0) = −a|k|α ˜̂n(k, s) (11)

which can be written as a fractional transport equation (FTE)

bDβ
t n = aDα

|W |n (12)

with Dβ
t the Caputo fractional derivative of order β, defined in Laplace

space as
L
(

Dβ
t n
)

= sβñ(W , s)− sβ−1n(W , 0) (13)

and Dα
|W | the symmetric Riesz fractional derivative of order α, defined in

Fourier space as
F
(
Dα
|W |n

)
= −|k|αn̂(k, t) (14)

We need to estimate two parameter sets, α, a and β, b
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Fractional transport equation (FTE) IV

the order of the fractional derivatives (α, β) is given by the index of the
power-law tail of the distribution of increments, if any

otherwise, if the mean and variance of the increments are finite, then the
classical FP equation is appropriate.

the distribution of energy increments
pw (w) has a power-law tail,
its index z yields
α = −z − 1 = 0.49.

As second method to determine α and also a, we use the characteristic
function approach:
α = 0.49 (as before) and a = 0.36
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Fractional transport equation (FTE) V

"Waiting times": We have considered energy increments over a fixed time
interval ∆t ,
—> we use ’observation/sampling times’, not ’waiting times’
—> "waiting time" distribution pτ (τ) = δ(t −∆t),
—> it follows that β = 1 and b = ∆t .

This approach seems unavoidable if the test-particle data are given in the form
of time-series, where there is no direct information on the waiting times between
scattering events.

Thus, we consider the fractional transport equation to have a first order
derivative in time-direction and a fractional derivative in energy direction,

∂t n = (a/b)Dα
|W |n− n/tesc, (15)

where we also have added an escape term.
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Fractional transport equation (FTE) VI

numerical solution of the FTE:
Grünwald-Letnikov definition of fractional derivatives (e.g.
[Kilbas et al.(2006)]), in the matrix formulation of
[Podlubny et al.(2009), Podlubny et al.(2013)]:
same non equi-distant grid-points in [0,∞) as above for the FP equation

Solution of the FTE at t = 0.002 s:
the FTE reproduces very well the
power-law tail from the test-particle
simulations in its entire extent
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Conclusion I

We posed two questions:
1 Is the FP equation still valid in strongly turbulent environments ?

Answer: No !
2 How to model transport when the FP approach is not valid anymore ?

Answer: With a kind of fractional transport equation (work is still needed)

statistical analysis of the distribution of energy increments:
—> allows deciding whether a FP or a FTE is appropriate
—> in the FP case the estimate of the transport coefficients is based on it
—> In the FTE case, the form of the FTE and its parameters (the order of the

fractional derivative etc), are directly inferred from the simulation data
(and thus they are not universal or unique).

simplifying assumption:
instead of ’waiting times’ we used ’observation/sampling times’
—> did not affect the success of the FTE approach

We made no effort to model the low energy part of the distribution

published in Phys. Rev. Lett. 119, 045101 (2017)
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