Analytic characterisation of ideal inertial type instabilities in tokamaks with large edge pressure gradients

D. Brunetti1, J. P. Graves2, E. Lazzaro3, A. Marianil, S. Nowak1, W. A. Cooper1, C. Wahlberg1

1Istituto di Fisica del Plasma IFP-CNRS, Via R. Cozzi 53, 20125 Milano, Italy
2Ecole Polytechnique Fédérale de Lausanne (EPFL), Swiss Plasma Center (SPC), CH-1015 Lausanne, Switzerland
3Department of Physics and Astronomy, P.O. Box 516, Uppsala University, SE-751 20 Uppsala, Sweden

INTRODUCTION

- Tokamak H-mode: High performance accompanied by ELMy (sudden and violent) [1] High energy/particle loads \(\Rightarrow \) Material deterioration/Plasma contamination
- OH-mode: High performance (large edge pressure gradients and high \(r_e \)) with low heat loads. ELMs replaced by low-\(n \) coherent edge MHD activity (Edge Harmonic Oscillations). EHOs always present in OH-mode discharges [2][3]
- EHO physics: Numerical simulations (stability and 3D equilibrium) show unstable equilibrium states with internal-like characteristics localised near the edge (no core activity) [4][5]
- GOAL: Analysis of edge stability with analytic tools focusing on Edge Inertial Modes (EIM)

EXPERIMENTAL EVIDENCE

- Peeling-Ballooning (P-B) theory for large-\(n \) [6] can not catch some EHO features which are:
 - Below P-B stab. bound.
 - Rotation freq. \(\propto n \)\(^{3/2} \) pol.
 - Radial width \(\propto n \)\(^{3/2} \) pol.

- Internal modes: \(m = m \pm 1 \) Coupling (due to Jacobian \(\theta \) oscillation) low-\(n \) (fixed) Fourier modes with nearly resonant flat \(q \) large pressure gradient [7]. Purely toroidal mechanism (common in the core)

Does it work at the edge?

PHYSICAL MODEL

- Ideal MHD, large aspect ratio approximation, shifted circular toroidal surfaces framework
- Equilibrium modelling identifies three regions. Various choices (step-like or tanh) for equilibrium \(q \) and \(\rho \)

STABILITY ANALYSIS

- Low-shear/shared/vacuum treated separately
- Mass density gradients required for explaining \(\rho \)
- Subsonic toroidal rotation (step-like model, simpler)

- Sheared/Vacuum regions \(Q = k^2/\omega^2 + A_1 \) with \(A_1 = \text{ modified } (1 + 2 \rho^2, \nu_2 = a + n^2, a \propto \rho^2) \):
 \[L_{ \text{av} } = 0 \]
 \[L_{ \text{av} } = \frac{1}{2} \frac{2 A_2}{(1 + 2 \rho^2)^2} \]
 No coupling/inertia: \(a \to 0, A_1 \to 0 \)

- Low shear region internal coupled equations:
 \[L_{ \text{av} } \sum_{n} \frac{r_{\text{in}}}{2 \pi m} \]
 \[- \frac{1}{2} \frac{2 A_2}{(1 + 2 \rho^2)^2} \]
 No coupling/inertia: \(a \to 0, A_1 \to 0 \)

- Sheared/Vacuum regions: \(\mu = n/m, q \) monotonic
 \[\mu \text{ (or) } \frac{\mu}{\mu_\text{step}} \]
 \[\mu = \mu_\text{step} \]

- Low shear region: \(\mu = \mu_\text{step} \)

- Three harmonic equations combine in a single one

- Integral-type dispersion relation [8][9]

- Ideal wall: Simplified stability criterion (step model low-shear/-shared)

- Conclusions

References:

European Fusion Theory Conference, Athens, Greece
Brunetti@ipfiuni.it

P2.2