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The explicit stability threshold of the toroidal ion temperature gradient mode instability is
analytically derived using the standard reactive fluid model. It is shown that in the peak density
region, the threshold gets significantly smaller due to finite ion Larmor radius effects, and the
marginal unstable modes acquire finite wavelengths. ©2005 American Institute of Physics.
fDOI: 10.1063/1.1883179g

Low-frequency electrostatic turbulence driven by spatial
gradients is believed to be the main source of anomalous
transport in magnetically confined fusion plasmas.1,2 During
the last years, a significant number of both theoretical and
numerical investigations in plasma dynamics has been fo-
cused on the effects related with the development of the ion
temperature gradientsITGd mode instability.3 This is due to
the successful interpretations of various experimental
trends—related to the observed levels of turbulent transport
in tokamak plasmas—which are based on the dynamics of
the ITG mode instability.4

The derivation of a general ITG model can be obtained
either from a low-frequency expansion of the general fluid
equations5 based on the drift velocity ordering, or by using as
a starting point the nonlinear gyrokinetic equation as in Ref.
6. For the development of the ITG instability, the ion tem-
perature gradient is necessary to be combined with other ef-
fects. The magnetic curvature, the parallel incompressibility,
or the presence of impurity species7 are main examples of
such additional effects.

However, in a toroidal system the instability is mainly
driven by the magnetic field curvature8 and it is termed tor-
oidal ITG mode instability. The associated marginal instabil-
ity threshold has been determined and analyzed in numerous
works and in a variety of interacting physical processes, such
as negative magnetic shear, electron trapping, or ion Landau
damping. For instance, we may refer to the analysis based on
the advanced fluid model9—in Ref. 10 or more recently in
Ref. 11. However, to our knowledge, the relevant investiga-
tions have derived the marginal stability threshold without
taking explicitly into account the finite ion Larmor radius
sFLRd effects. As a result, the derived thresholds either de-
pend on the wave numbers of the marginally unstable modes,
or correspond—as we will show here—to larger values than
the actual instability threshold. The resulting inaccuracy is
reflected on the asymptotic behavior of the conventional sta-
bility curve hisen,td→` whenten→0 se.g., Ref. 9, p. 125d.

In what follows, the standard advanced reactive fluid
model by Weiland9 is adopted and the linear stability prop-
erties of the toroidal ITG driven modes are investigated by
keeping rigorously the FLR terms. Effects attributed to par-

allel ion dynamics, magnetic shear, electron particle trap-
ping, Landau damping, or finiteb effects are omitted. By
using a low-frequency expansion based on the standard drift
velocity ordering, the ion continuity and the ion temperature
equations, which describe the dynamics of the ITG modes,
can be written in the following normalized form,12 respec-
tively:
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The curly brackets in the right-hand side of Eqs.s1d ands2d
denote the Poisson bracket defined byhA,Bj=]xA]yB
−]xB]yA. Details on the derivation of these equations may be
found in Ref. 9. The length and the time scales have been
normalized with respect tors=cs/vci andLn/cs, respectively,
wherecs

2=Te/mi is the ion sound velocity defined at electron
temperature,vci=eB0/mic is the ion gyrofrequency, and
Lg

−1=−d ln gsrd /dr describes the inverse characteristic scale
length of inhomogeneity, along the radial direction, of the
plasma parametergsrd. The electrostatic potential has been
normalized byf=edf /TeLn/rs, the perturbed density byn
=dn/n0Lnrs, and the perturbed ion temperature byTi

=dTi /Ti0Ln/rs. Furthermore, the curvature of the magnetic
field lines R and the ion temperature inhomogeneity scale
length LTi

are given in terms of the plasma inhomogeneity
scale lengthLn by en=2Ln/R and ni =Ln/LTi

, respectively.
Furthermore,t denotes the ratio of ion to electron tempera-
ture, t=Ti /Te.

Considering quasineutral oscillations and assuming Bolt-
zmann distribution for the electron density response, i.e.,ne

=ni =f, we linearize Eqs.s1d and s2d and by applying the
usual Fourier expansion for the perturbed quantities, i.e,
g̃sr ,td= g̃ expsik' ·r − ivtd, the dispersion relation for the to-
roidal ITG modes is derived. Here,k' denotes the wave
vector perpendicular to the toroidal axis of the magnetic field
andv the frequency of the toroidal ITG mode. The solutionadElectronic mail: sandberg@central.ntua.gr
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of the dispersion relation leads to the determination of the
real frequencyvr and the growth rategk of the mode, which
are given by
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respectively. The polynomialfsk'
2 d under the square root of

Eq. s4d can be written in the following suitable form:
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The parametershB andhC are given by
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The development of the toroidal ITG instability requires the
condition fsk'

2 d.0 to be hold. As a consequence, unstable
modes will be those with perpendicular wave number in the
range defined by the roots of equationfsk'

2 d=0, which are
given by

k'±
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A sufficient condition for the development of the instability
is these roots to be real and at least one of them to be posi-
tive. Inspection of Eqs.s8d ands9d leads us to the conclusion
that for hi ,hB,hC the toroidal ITG instability cannot take
place sincek'±

2 ,0. On the other hand, instability certainly
occurs when the conditionhi .hC holds, independently on
the value ofhB. In this case, it isk'−

2 ,0, and consequently
the wave numbers of the unstable toroidal ITG modes range
as 0,k'

2 ,k'+
2 . The valuehC is the conventional threshold

of the toroidal ITG instability11,12 obtained from Eq.s5d in
the limit of negligible FLR effects. However, when FLR ef-
fects are taken into account,hC becomes the marginal stabil-
ity thresholdonly when hC,hB, and the marginal unstable
mode has wave numberk'=0. In the opposite case, i.e.,
when hB,hC, the thresholdhth is expected to behB,hth

,hC.

Before we proceed with the determination ofhth, we first
investigate under which conditions the relationhC.hB

holds. Thus, we need to express the differencehC−hB as
follows:
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For en,1, it is hC.hB for any t. The same inequality is
valid also for en.1 when t belongs to the interval 0,t
,tCBsend. The parametertCBsend is given bytCBsend=3fen

−1+Îsen−1ds7en−3d /5g /4en, and defines a curve where
hC=hB. It is evident now thathC is the actual marginal sta-
bility thresholdonly whenen.1 and t.tCB.

In what follows, we limit our analysis in the casehC

.hB and we seek for a threshold in the rangehB,hth

,hC. Since necessary condition for the existence of the to-
roidal ITG instability is Dh.0, the roots of equationDh

=0 are appropriate candidates for the threshold. These are
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A rigorous analysis of Eqs.s6d, s7d, s10d, ands11d shows that
in the range of present interest, i.e.,hC.hB, the derived
rootsh* , h± obey the following ordering:

h− , h+ , hB , h* whenen , 1 for anyt,

h− , h+ , hB , h* whenen . 1 for t , t*send,

h− , h* , hB , h+ whenen . 1 for t*send , t , tCBsend.

The parametert*send is given byt*send=3s1−1/end /2, and
defines a curve whereh*sen,t*d=h+sen,t*d=hBsen,t*d.
From the analysis above, we conclude that the explicit
threshold of the toroidal ITG instability is given by

hthsen,td =5
h* for en , 1,

h* for en . 1 when 0, t , t* ,

h+ for en . 1 whent* , t , tCB,

hC for en . 1 whent . tCB.
6 s12d

It is evident that FLR effects are destabilizing for values
of en smaller than unity, and reduce slightly the threshold in
the flat density regime. These results are in qualitative agree-
ment with the Nyquist analysis of the full gyrokinetic disper-
sion relation in Ref. 6, where the authors claimed that critical
condition for the instability to take place ishi .2/3.

The threshold valueh* is similar to that derived by ap-
plying the necessarysbut not sufficientd conditiongk=0 in a
three pole reactive model in Refs. 9 and 11. The authors
claimed that the growth forhi ,hC is attributed to the par-
allel dynamics. However, a careful inspection of Ref. 11
leads to the conclusion that the particular derivation is pos-
sible only for finite values of the FLR terms. In view of the
present results—where ion parallel dynamics is excluded—it
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becomes clear that the growth forhi ,hC is attributed to the
FLR effects and not to the parallel compressibility, as was
erroneously considered so far.9,11

By substitutingen with gen,
12 and hth by hth/ s1− fed,

10

one may obtain the corresponding thresholds from Eq.s12d
for the cases of elongated flux surfaces and trapped electrons,
respectively. Here,g denotes the geometrical factor in the
ratio between curvature and diamagnetic drift velocities, i.e.,
gen=vD /v* , due to the elongated flux surfaces andfe the
fraction of the trapped electron population.

In Fig. 1, we depict the areas of the planesen,td where
the different expressions for the threshold are applicable, ac-
cording to Eq.s12d. In region I sen,1 and en.1 with t

,t+d the threshold ish* , in region II sen.1 with t.tCBd it
is hC, and in region IIIsen.1 with t+,t,tCBd it is h+. In
Fig. 2 we present the marginal stability curvehthsend for
different values oft. The stability diagram shows the trend
for increasing deviation from marginal stability as we move
towards the edge. In order to stress the contribution of the
FLR effects, we present in Fig. 3 the stability curveshthsend
andhthstd in comparison with the conventional threshold—
derived in the absence of FLR effects—which behaves as-
ymptotically hCsen,td→` as ten→0. It is evident that for
small values oft anden, the stability threshold gets signifi-
cantly smaller compared tohC. In Fig. 4 the normalized

growth rate of the unstable ITG modes given by Eq.s4d is
depicted versusk'

2 sad and versusen sbd for different values
of en andk', respectively, and forhi slightly above the sta-
bility threshold. It is evident that the unstable modes acquire
finite wavelengths forhi ,hC, while FLR effects stabilize
the large wavelength modes, i.e., those in the range 0,k'

,k−.
Furthermore, there always exist a critical wave number

k'm where a maximum growth occurs for given conditions.
This wave number can be determined by the condition
dgk/dk'

2 =0, which leads to the following cubic equation:
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Close to the marginal stability conditions, i.e.,fsk'm
2 d.0,

Eq. s13d can be approximately solved giving the following
solutions:

FIG. 1. Instability thresholds in the planesen,td. The exact marginal stabil-
ity threshold is given byh*sen,td in the black regions, byhCsen,td in the
white region, and byh+sen,td in the gray one.

FIG. 2. Marginal stability curveshisend for different values oft. The black
solid parts of each curve corresponds toh* sregion I in Fig. 1d, the dotted
parts tohC sregion II in Fig. 1d, and the gray solid parts toh+ sregion III in
Fig. 1d.

FIG. 3. The marginal stability curvehi: sad vs en, for
t=0.6 andsbd vs t, for en=0.3. The white and the gray
areas denote the unstable and stable regions, respec-
tively, as defined by the exact threshold. The dashed
line represents the thresholdhC which is valid in ab-
sence of FLR effects.
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These expressions are in excellent agreement with the wave
numbers of the most unstable modes in Fig. 4sad. The first
solution corresponds to the wave number of the most un-
stable mode whenhB,hth.hi ,hC sregions I and III in
Fig. 1d and corresponds to the marginal unstable mode given
by Eq. s8d for Dh=0. The second solution is valid fork'

2

!1, corresponds to the wave number of the most unstable
mode whenhi .hth=hC,hB sregion II in Fig. 1d and be-
comes equal to zero forhi =hth=hC as expected.

In this work, the explicit marginal stability threshold for
the development of the toroidal ITG instability was derived
in the frame of the standard advanced reactive fluid model. It
was shown that FLR effects can decrease significantly the
marginal instability threshold. These results predict that a
significant activity of toroidal ITG turbulence can be present
at regions of peaked plasma density, such as the plasma edge,
modifying the confinement in the hot ion mode regime of
tokamak operation. Furthermore, it was shown that toroidal
ITG modes may acquire finite wavelengths as they deviate
from stability. It is worthwhile to mention here that these
consequences can be rather crucial regarding the properties
of the large scale flows that are attributed to the development
of the toroidal ITG instability near marginal conditions.
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FIG. 4. The normalized growth rategk of the toroidal
ITG instability for purely poloidal propagationskx=0d
and t=0.8: sad vs k'

2 , for sid en=0.8,hi =1.005h* sre-
gion I in Fig. 1d, sii d en=1.1,hi =1.005hC sregion II in
Fig. 1d, and siii d en=1.8,hi =1.0002h+ sregion III in
Fig. 1d; sbd vs en for three distinct ITG modes;k'

2

=0.1, 0.3, and 0.5 forni =1.005h* .
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