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Explicit threshold of the toroidal ion temperature gradient mode instability
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The explicit stability threshold of the toroidal ion temperature gradient mode instability is
analytically derived using the standard reactive fluid model. It is shown that in the peak density
region, the threshold gets significantly smaller due to finite ion Larmor radius effects, and the
marginal unstable modes acquire finite wavelengths2@5 American Institute of Physics
[DOI: 10.1063/1.1883179

Low-frequency electrostatic turbulence driven by spatialallel ion dynamics, magnetic shear, electron particle trap-
gradients is believed to be the main source of anomalouping, Landau damping, or finit® effects are omitted. By
transport in magnetically confined fusion pIasrﬁésDuring using a low-frequency expansion based on the standard drift
the last years, a significant number of both theoretical andarelocity ordering, the ion continuity and the ion temperature
numerical investigations in plasma dynamics has been foequations, which describe the dynamics of the ITG modes,
cused on the effects related with the development of the iosan be written in the following normalized forth,respec-
temperature gradiertTG) mode instability This is due to  tively:
the successful interpretations of various experimental, [ P P

2. 1+ ﬂi)i}vzﬁﬁ‘* — & y[¢+ (N +T))]

trends—related to the observed levels of turbulent transport— - —
at ay ay d

in tokamak plasmas—which are based on the dynamics o

the ITG mode instability. ={$, V2 p—n; + V2 (n; + T))} (1)
The derivation of a general ITG model can be obtained

either from a low-frequency expansion of the general fluig@nd

equation3based on the drift velocity ordering, or by using as JT, 5 4T ( 2) ap  24n, { 2 }
j TR o6
3

a starting point the nonlinear gyrokinetic equation as in Ref. — -~ 76—+ i
) . . gt 3 oy
6. For the development of the ITG instability, the ion tem-

perature gradient is necessary to be combined with other ef- (@)

fects. The magnetic curvature, the parallel incompressibility,-l-he curly brackets in the right-hand side of E¢. and (2)

or the presence of impurity spec?esre main examples of 4anote the Poisson bracket defined %, B}=3,A0,B

such additional effects. . o _ —4Bd,A. Details on the derivation of these equations may be
However, in a toroidal system the instability is mainly ¢5nq’in Ref. 9. The length and the time scales have been

driven by the magnetic field curvatdrand it is termed tor- normalized with respect to,=c./ w,; andL,/cs, respectively,
oidal ITG mode instability. The associated marginal inStabi|'wherec§=Te/mi is the ion sound velocity defined at electron
ity threshold has been determined and analyzed in numeroysmperature,w,=€eB,/mc is the ion gyrofrequency, and
works and in a variety of interacting physical processes, sucp-1=_qn g(r)/dr describes the inverse characteristic scale
as negative magnetic shear, electron trapping, or ion Landagngth of inhomogeneity, along the radial direction, of the
damping. For instance, we may refer to the analysis based qflasma parameteg(r). The electrostatic potential has been
the advanced fluid modekin Ref. 10 or more recently in normalized bygp=ed¢/TL,/ps the perturbed density by
Ref. 11. However, to our knowledge, the relevant investiga—= oningL,ps and the perturbed ion temperature Hy
tions have derived the marginal stability threshold without= ST/ TioLn/ ps. Furthermore, the curvature of the magnetic
taking explicitly into account the finite ion Larmor radius field lines R and the ion temperature inhomogeneity scale
(FLR) effects. As a result, the derived thresholds either de’rength |_Ti are given in terms of the plasma inhomogeneity
pend on the wave numbers of the marginally unstable modegcgle lengthL, by €,=2L,/R and n;=L,/Ly, respectively.
or correspond—as we will show here—to larger values tharkyrthermore denotes the ratio of ion to electron tempera-
the actual instability threshold. The resulting inaccuracy isure, 7=T,/T,.
reflected on the asymptotic behavior of the conventional sta- Considering quagineutra| oscillations and assuming Bolt-
bility curve #(e,,7) —~ whente,—0 (e.g., Ref. 9, p. 126 zmann distribution for the electron density response, ne.,
In what follows, the standard advanced reactive fluid=n,=¢, we linearize Eqs(1) and (2) and by applying the
model by Weiland is adopted and the linear stability prop- usual Fourier expansion for the perturbed quantities, i.e,
erties of the toroidal ITG driven modes are investigated byg(r,t)=g explik | -r —iwt), the dispersion relation for the to-
keeping rigorously the FLR terms. Effects attributed to parroidal ITG modes is derived. Herd,, denotes the wave
vector perpendicular to the toroidal axis of the magnetic field
¥Electronic mail: sandberg@central.ntua.gr and o the frequency of the toroidal ITG mode. The solution
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of the dispersion relation leads to the determination of the  Before we proceed with the determinationspf, we first
real frequencyw, and the growth rate, of the mode, which investigate under which conditions the relatiops> 7

are given by holds. Thus, we need to express the differenge- 75 as
" 10 . follows:
wr"2(1+ki){1 g [7(1”7')4’3””]'9} _ _(en—1)2_106nen—1[ ‘§<1‘1>]
3) e e = de,T 9 e+1 T 2 €/ |
and For ¢,<1, it is > ng for any 7. The same inequality is

valid also fore,>1 when 7 belongs to the interval €
> < 7ce(€y). The parametercg(e,) is given by 7cg(€,) =3[ €,
Vi(k), (4) -1+\/(e,—-1)(7¢,-3)/5]/4¢,, and defines a curve where
nc=7g. It is evident now thaty: is the actual marginal sta-
respectively. The polynomidi(k?) under the square root of bility thresholdonly whene,> 1 and 7> 7cg.

K

KT o1 +k)

Eq. (4) can be written in the following suitable form: In what follows, we limit our analysis in the casg
>ng and we seek for a threshold in the rangg< ny
2y _ 5 _\2,4 2 ) . .
f(%) = = A(1+ 7~ 3€)°K] + 21 + &) (= mp)K] < 75c. Since necessary condition for the existence of the to-

(5) roidal ITG instability isD,>0, the roots of equatiol,,

+de (7 — ).
nTVR T e =0 are appropriate candidates for the threshold. These are

The parametersz and 7 are given by

7 =G EnT S (10)
4e,-1 5 € 4
78= - -2 (6)
e+l 3e+1\ 3 5, o1, 10, 1+56n(1 ' a1
and Mg T T T N g T 42 T g T
2 10 (en— 1)? Arigorous analysis of Eq$6), (7), (10), and(11) shows that

(7)  in the range of present interest, i.e;c> 7, the derived
roots 7., 7. obey the following ordering:

Ne=5+ 5 &t

3 9 de,T

The development of the toroidal ITG instability requires the
conditionf(kﬁ)>0 to be hold. As a consequence, unstable
modes will be those with perpendicular wave number in the

range defined by the roots of equatiétk’ )=0, which are ~ 7- < 7. < 78 < 7= Whene, > 1 for 7 < n(ep),
given by

- < n < pg< m Whene, <1 foranyr,

— 7. < 7 < g < . Whene, > 1 for n(e,) < 7< 1cp(€n).
(en+ D)(77— 78) D,

2 _
Ki.= 5 \2 ®) The parameter-(e,) is given by r(e,)=3(1-1/¢,)/2, and
T\ 1+7- 6 defines a curve wherep(e,, )= 7n.(&,, 7)=7p(€, ™).
From the analysis above, we conclude that the explicit
where threshold of the toroidal ITG instability is given by
D, = (1+&)X(7 — 78)>+ Aeqr(m = 1) (1 + 7 - 3€)°. 7. for e, < 1,
n fore,>1 when O< 7< =,
© o 7) = i (12)

7, for €,>1 whenzn <7< 7,

A sufficient condition for the development of the instability e for e,>1 whenr> reg.

is these roots to be real and at least one of them to be posi-
tive. Inspection of Eqs8) and(9) leads us to the conclusion It is evident that FLR effects are destabilizing for values
that for 7, < g, 7¢ the toroidal ITG instability cannot take of €, smaller than unity, and reduce slightly the threshold in
place sincekzu<0. On the other hand, instability certainly the flat density regime. These results are in qualitative agree-
occurs when the conditiom; > ¢ holds, independently on ment with the Nyquist analysis of the full gyrokinetic disper-
the value of7g. In this case, it iski_<0, and consequently sion relation in Ref. 6, where the authors claimed that critical
the wave numbers of the unstable toroidal ITG modes rangeondition for the instability to take place ig>2/3.

as 0<k2l<k2l+. The valuer is the conventional threshold The threshold valuey is similar to that derived by ap-

of the toroidal ITG instability"*? obtained from Eq(5) in  plying the necessargbut not sufficient condition y,,=0 in a

the limit of negligible FLR effects. However, when FLR ef- three pole reactive model in Refs. 9 and 11. The authors
fects are taken into accounge becomes the marginal stabil- claimed that the growth for; < 7. is attributed to the par-

ity thresholdonly when 7-< 7g, and the marginal unstable allel dynamics. However, a careful inspection of Ref. 11
mode has wave numbde, =0. In the opposite case, i.e., leads to the conclusion that the particular derivation is pos-
when 7g < 75¢, the thresholdy,, is expected to bejg<7y,  sible only for finite values of the FLR terms. In view of the
< 7c. present results—where ion parallel dynamics is excluded—it
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FIG. 1. Instability thresholds in the plarte,, 7). The exact marginal stabil-
ity threshold is given by (e,, 7) in the black regions, by(e,,7) in the

white region, and byp.(<,.7) in the gray one. FIG. 2. Marginal stability curvesy(e,) for different values ofr. The black

solid parts of each curve correspondssto(region | in Fig. 1, the dotted
parts tozc (region Il in Fig. 1), and the gray solid parts tg, (region Il in
Fig. 1).

becomes clear that the growth fgr< 7 is attributed to the

FLR effects and not to the parallel compressibility, as was
erroneously considered so faf* growth rate of the unstable ITG modes given by E4).is

By substitutinge, with ge,,*2 and 7, by 7/ (1-f,),}°  depicted versu&? (a) and versus, (b) for different values

one may obtain the corresponding thresholds from@&a)  Of €, andk,, respectively, and for slightly above the sta-

for the cases of elongated flux surfaces and trapped electrorfdllity threshold. It is evident that the unstable modes acquire

respectively. Hereg denotes the geometrical factor in the finite wavelengths fory, <7, while FLR effects stabilize

ratio between curvature and diamagnetic drift velocities, i.e.the large wavelength modes, i.e., those in the range& 0

ge,=wp/ w«, due to the elongated flux surfaces afdthe <k

fraction of the trapped electron population. Furthermore, there always exist a critical wave number
In Fig. 1, we depict the areas of the plafe, 7) where k., m Where a maximum growth occurs for given conditions.

the different expressions for the threshold are applicable, acthis wave number can be determined by the condition

cording to Eq.(12). In region | (¢,<1 and ¢,>1 with 7 dy/dké =0, which leads to the following cubic equation:

< 7,) the threshold isy., in region Il (e,>1 with 7> 7cp) it

is n¢, and in region ll(e,>1 with 7, <7< 7cp) itis 7. In

Fig. 2 we present the marginal stability curvg,(e,) for K -1 5 \2

different values ofr. The stability diagram shows the trend (kzim)kzm—” * ZTkzlm[ T<l - §6n) K

for increasing deviation from marginal stability as we move o

towards the edge. In ordpr t.o stress the .c-ontribution of the +(1+e)(7g- m)] =0. (13)

FLR effects, we present in Fig. 3 the stability curveg(e,)

and 7,(7) in comparison with the conventional threshold—

derived in the absence of FLR effects—which behaves as-

ymptotically 7c(e,, ) — > as 7e,— 0. It is evident that for Close to the marginal stability conditions, i.d(k3,)=0,

small values ofr and ¢, the stability threshold gets signifi- Eq. (13) can be approximately solved giving the following

cantly smaller compared tay. In Fig. 4 the normalized solutions:

FIG. 3. The marginal stability curvey: (a) vs e,, for
7=0.6 and(b) vs 7, for €,=0.3. The white and the gray
areas denote the unstable and stable regions, respec-
tively, as defined by the exact threshold. The dashed
line represents the thresholbgk which is valid in ab-
sence of FLR effects.
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0.034 \ Ke3
0.025- A . .
\ FIG. 4. The normalized growth ratg, of the toroidal
o 0.02 18 =1 ITG instability for purely poloidal propagatiotk,=0)
0.015 T | = and 7=0.8: (a) vs k2, for (i) €,=0.8, 7,=1.005;. (re-

gion | in Fig. 1), (ii) €,=1.1, 7,=1.005 (region Il in
i Fig. 1), and (iii) ,=1.8,7,=1.0002, (region Il in
i Fig. 1; (b) vs ¢, for three distinct ITG modeskzL
; =0.1, 0.3, and 0.5 fon;=1.005..
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