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Theory of Cavitons in Complex Plasmas
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Nonlinear coupling between Langmuir waves with finite amplitude dispersive dust acoustic pertur-
bations is considered. It is shown that the interaction is governed by a pair of coupled nonlinear
differential equations. Numerical results reveal the formation of Langmuir envelope solitons composed
of the dust density depression created by the ponderomotive force of bell-shaped Langmuir wave
envelops. The associated ambipolar potential is positive. The present nonlinear theory should be able to
account for the trapping of large amplitude Langmuir waves in finite amplitude dust density holes. This
scenario may appear in Saturn’s dense rings, and the Cassini spacecraft should be able to observe fully
nonlinear cavitons, as presented herein. Furthermore, we propose that new electron-beam plasma
experiments should be conducted to verify our theoretical prediction.
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infinitely small amplitudes, the cavitons in Ref. [12] are
unlikely to be observed in space and laboratory environ-

by combining the electron continuity and momentum
equations as well as by using Poisson’s equation with
More than a decade ago, Rao, Shukla, and Yu [1] pre-
dicted for the first time the existence of linear and non-
linear dust acoustic waves (DAWs) in an unmagnetized
dusty plasma. In the DAWs, the restoring force comes
from the pressures of inertialess electrons and ions, while
the mass of charged dust grains provides the inertia in
order to maintain the waves. The nonlinear dust acoustic
waves have subdust acoustic speed and localized nega-
tive potential, contrary to the usual ion-acoustic solitary
waves [2,3] in an electron-ion plasma which have com-
pressive potential and density variations. A number of
laboratory experiments [4–7] have verified the prediction
of Rao et al. [1]. For typical laboratory conditions, the
dust acoustic wave frequencies (phase speeds) range
between 5 to 25 Hz (0.5 to 10 cm=s), while the wave-
length lies between 0.1 to 0.4 cm. Hence, the visual
images of the DAWs are possible. The possible impact
of nonlinear effects on the dust acoustic waves has also
been presented [8]. The status of linear and nonlinear dust
acoustic waves has been summarized in review articles
[9,10] and books [11–13].

It is well known [14] that finite amplitude Langmuir
waves in a plasma can be excited by electron beams.
Large amplitude Langmuir waves interacting with ion-
acoustic waves produce an envelope of Langmuir waves
which are trapped in a subsonic density cavity that
is created by the ponderomotive force of the Langmuir
waves. Nonlinear structures composed of trapped Lang-
muir waves in a density cavity are known as cavitons or
Langmuir envelope solitons [15–18], and these structures
have been observed in many laboratory plasma experi-
ments [19–21] without dust. A preliminary investigation
of small amplitude cavitons in a dusty plasma has been
presented by Shukla and Mamun [12], based on a model
of the cubic nonlinear Schrödinger equation for the
modulated Langmuir wave envelops. Because of their
0031-9007=03=91(7)=075005(4)$20.00 
ments. Therefore, there is a need to develop a finite
amplitude theory for Langmuir envelope solitons in dusty
plasmas.

In this Letter, we present for the first time a fully
nonlinear theory for cavitons in a complex (dusty) plasma
whose constituents are electrons, ions, and negatively
charged massive dust grains. At equilibrium, we have
ni0 � ne0 � Zdnd0, where nj0 is the unperturbed number
density of the particle species j (j equals i for ions, e for
electrons, and d for dust grains) and Zd is the number of
electrons residing on the dust grain surface. Dust grains
in laboratory plasmas are typically charged negatively
due to collection of electrons from the ambient plasma
[22,23], but under UV radiation dust can also be charged
positively [24]. We suppose that the presence of electron
beams in a dusty plasma generates large amplitude
Langmuir waves whose frequency is ! � �!2

pe �
3k2V2

Te�
1=2, where !pe � �4nee2=me�

1=2 is the electron
plasma frequency, ne is number density of the electrons, e
is the magnitude of the electron charge, me is the electron
mass, k is the wave number, VTe � �Te=me�

1=2 is the
electron thermal speed, and Te is the electron tempera-
ture. Large amplitude Langmuir waves interacting non-
linearly with finite amplitude dust acoustic perturbations
generate a Langmuir wave electric field envelope whose
electric field E evolves slowly in comparison with the
electron plasma wave period according to a nonlinear
Schrödinger equation (see, e.g., Chapter 7.4 in [12])
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where !p � �4ne0e
2=me�

1=2 is the unperturbed electron
plasma frequency and vg � 3kV2

Te=!p is the group ve-
locity of the Langmuir waves. We note that (1) is derived
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fixed ions and retaining the arbitrary large electron
number density perturbation ne1 associated with the
dust acoustic waves in the presence of the Langmuir
wave ponderomotive force. For our purposes, we have

ne � ne0 exp�’�W2�; (2)

where ’ � e�=Te, W2 � jEj2=16ne0Te, and � is the
electrostatic potential of the DAWs whose phase speed is
much smaller than the electron and ion thermal speeds.
The ion number density perturbation associated with the
DAWs is

ni � ni0 exp����’��iW
2��; (3)

where � � Te=Ti, Ti is the ion temperature, �i � me=mi,
and mi is the ion mass. We note that the W terms in
Eqs. (2) and (3) come from the averaging of the nonlinear
term mjvhj 	 rvhj over the Langmuir wave period
2=!pe, where vhj � qjE=mj!pe is the quiver velocity
of the particle species j in the Langmuir wave electric
field, qe � �e, qi � e, and qd � �Zde. The dust dynam-
ics is governed by the dust continuity and momentum
equations
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where �d � Zdme=md, nd is the dust number density, and
ud is the x component of the dust fluid velocity. The phase
speed of the DAWs is assumed to be much larger than the
dust thermal speed. The equations are closed with
Poisson’s equation
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�
; (6)

where �De � �Te=4ne0e2�1=2 is the electron Debye ra-
dius. Thus, our nonlinear theory of cavitons accounts for
arbitrary large amplitude density variations (and associ-
ated space charge potential �) that are associated with
fully nonlinear dispersive DAWs, contrary to the small
amplitude cavitons based on the cubic nonlinear Schrö-
dinger equation [12], which discards nonlinearities and
the departure from the quasineutrality in the plasma slow
motion.

We are interested in quasisteady state solutions
of Eqs. (1)–(6). Accordingly, we insert E�x; t� �
W� � expfi�X�x� � T�t��g, nd�x; t� � nd� ; t�, ud�x; t� �
ud� ; t�, and ’�x� � ’� �, where  � x� Vt, and V is
the constant speed of the soliton and W�x�, X�x�, T�x� are
assumed to be real, into Eqs. (1)–(6) we finally obtain the
coupled set of nonlinear equations

3
@2W

@ 2
� ��� 1�W �W exp�’�W2� � 0; (7)

and
@2’

@ 2
� exp�’�W2� � " exp����’��iW2�� � �1� "�

M������������������������������������������
M2 � 2�’��dW

2�
p � 0; (8)

where  is normalized by �De, � � 2!�1
p �dT=dt� � 3k2�2

De�1� V2=v2
g� represents a nonlinear frequency shift, " �

ni0=ne0, and M � V=CD is the Mach number involving the dust acoustic speed CD � �ZdTe=md�
1=2. Since in complex

plasmas we typically have �i � 1 and�d � 1, the contributions of ion and dust ponderomotive forces in Eq. (8) can be
safely dropped. Thus, the electron ponderomotive force is transmitted to ions and dust via the ambipolar potential.

The system of Eqs. (7) and (8), without the �iW
2 and �dW

2 terms in Eq. (8), admits the first integral in the form of a
Hamiltonian
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q
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where in the unperturbed state (j j � 1) we have used the boundary conditions W � 0, ’ � 0, @W=@ � 0, and
@’=@ � 0. Because we are interested in symmetric solutions defined by W� � � W�� � and ’� � � ’�� �, the
appropriate boundary conditions at  � 0 are W � W0, ’ � ’0, @W=@ � 0, and @’=@ � 0. Hence, from Eq. (11) we
have exp�’0 �W2

0 � � 1 � �� � 1�W2
0 � �"=���exp���’0� � 1� � �" � 1�M�

����������������������
M2 � 2’0

p
�M� � 0, which shows

how the maximum values of W0 and ’0 are related with M and � for given values of � and ". It should be stressed
that the static dust case has to be treated separately, where the last term in the left-hand side of Eq. (9) has to be replaced
by �"� 1�’. Accordingly, the last term in the left-hand side of the simplified Hamiltonian above will be replaced by
�"� 1�’0. A practical application of the Hamiltonian is to check the correctness of any numerical scheme used to solve
Eqs. (7) and (8).

In the absence of the Langmuir waves, the nonlinear DAWs are governed by the energy integral
075005-2
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where the Sagdeev potential is

�’;M� � 1� exp�’� �
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�M�: (11)

Equation (10), which is obtained from Eq. (9) in the limit
of vanishing Langmuir wave electric fields, determines
the profile of nonenvelope (bare) dust acoustic solitary
waves. The latter exist provided that �’� is negative
between zero and �’0. Multivalued solutions of �0�
are ensured provided that @2=@2’ � 0 while, at ’ �
’0��’0�, we must have @=@’ > 0�<0�. The condition
�’0;M� � 0 gives a relation between ’0 and M for
given values of " and �. It turns out that dust acoustic
solitons have subdust acoustic speed, negative potential,
and dust density hump.

In the numerical solution [25] of Eqs. (7) and (8), the
second derivatives were approximated by a second-order
centered difference scheme, and the values of W and ’
were set to zero at the boundaries of the computational
domain. The resulting nonlinear system of equations was
solved with Newton’s method. We used 2000 sampling
points to resolve the solution. The results are displayed in
Figs. 1–3 for dusty plasmas containing micronsized dust
grains with Zd � 103 and md=mi � 1012. The ion to
electron mass ratio is typically 1836 and more depending
FIG. 1. Small Mach number Langmuir envelope solitons
(cavitons) for � � 0:06, � � 2, " � 2, and M � 0:7.
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upon ionized dusty gases. Figure 1 shows the profiles of a
caviton for M � 0:7, � � 0:06, and " � 2, and in Fig. 2
the Mach number was changed to M � 10. Figures 1 and
2 show that the envelope Langmuir solitons in complex
plasmas are composed of a bell-shaped Langmuir electric
field and a dust density hole in association with a positive
localized space charge electric potential. For higher Mach
numbers, the influence of the potential on the dust dy-
namics becomes smaller, as can be seen from the dust
density perturbations in Figs. 1 and 2. Thus, large and
small amplitude cavitons move with subdust and super-
dust acoustic speeds, respectively. By performing several
numerical experiments, we studied the influence of the
electron to ion temperature ratio � on the caviton. We
found that the depth of the caviton decreases as � in-
creases, if the other parameters are kept constant.

In order to see the difference between the cavitons and
the bare dust acoustic solitary waves [12], we integrated
Eq. (10) numerically. The results are displayed in Fig. 3.
The numerical results show that the dust acoustic solitary
waves have subdust acoustic speed and they are associ-
ated with negative space charge potentials and the dust
density hump. As can be seen from Fig. 3, the bare soliton
also develops on a much smaller length scale than the
envelope cavitons in Figs. 1 and 2. Evidently, the proper-
ties of cavitons are very different from the bare dust
acoustic solitary waves.

In summary, we have presented a theory for finite
amplitude cavitons in complex (dusty) plasmas, taking
into the nonlinear coupling between finite amplitude
FIG. 2. High Mach number Langmuir envelope solitons
(cavitons) for � � 0:06, � � 2, " � 2, and M � 10.
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FIG. 3. Bare dust acoustic soliton (W � 0) for � � 2, " � 2,
and M � 0:7.
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Langmuir and dust acoustic waves. In a stationary frame
of reference, the governing equations for coupled Lang-
muir and DAWs have been reduced to a pair of coupled
nonlinear differential equations, which admit a new class
of Hamiltonian. Using appropriate boundary conditions
for localized perturbations, we have numerically ana-
lyzed the coupled differential equations by demanding
that the Hamiltonian is conserved. Numerical results
reveal the existence of cavitons composed of a positive
space charge electric potential and dust density holes in
which localized Langmuir wave envelopes are trapped.
Large amplitude cavitons move slower than the small
amplitude cavitons. Positive space charge electric poten-
tials associated with cavitons have a strong gradient,
which can accelerate negatively charged dust grains in
complex plasmas. We stress that the previously reported
small amplitude Langmuir envelope soliton theory [12],
which is based on a cubic Schrödinger equation, cannot
account for large amplitude cavitons that will necessarily
appear in space and laboratory dusty plasmas. In conclu-
sion, we suggest that new beam-plasma experimental and
computer simulation studies should be conducted for
verifying our theoretical predictions of dust cavitons.
We also hope that forthcoming data from the Cassini
mission will also reveal signatures of magnetic field
aligned large amplitude localized Langmuir electric
fields as well as an associated positive potential and finite
amplitude dust density hole in Saturn’s rings where ne0 �
50 cm�3, ni0 � 950 cm�3, nd0 � 1 cm�3, Zd � 900, the
075005-4
dust radius rd � 1–5 �m, and Te � Ti � 100 eV. In
such a Saturn plasma environment, we expect an ambi-
polar potential of 10 V and a relative dust density deple-
tion of 10% if E� 0:3 mV=m and M � 0:96, which are
within the observable range.
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