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Abstract

The drift waves in rotating toroidal plasma are studied for an axisymmetric,
large-aspect-ratio tokamak with concentric and circular magnetic surfaces.
Plasma rotation is driven by the radial electrostatic field typical for the H
confinement mode of plasma in tokamaks. Low-frequency electrostatic
oscillations of low-beta plasma are considered in assumptions of adiabatic
electrons and plasma quasineutrality. In order to describe drift oscillations
in the plasma edge region, where the radial electric field and plasma rotation
velocity are high, a weak coupling approximation that takes into account
the toroidal coupling of normal modes centred on the neighbouring rational
surfaces is considered. The derived eigenmode equation of the Weber type
has two classes of solutions giving either marginally stable global drift modes
or propagating drift waves which experience shear damping. The analytical
dispersion equations, for both global and propagating drift waves are derived
and the simple dispersion relations for some limiting cases are determined.

1. Introduction

It is well known that the L-H transition is usually marked by
an abrupt reduction in the intensity of neutral atom
radiation, H,(D,), and by a substantial change in the radial
electric field at the plasma edge. The experimental results
indicate that the radial electric field at the plasma boundary,
plays a major role in reducing turbulence and establishing
the transport barrier of the H mode (see Ref. [1] and
references therein). It has been found empirically that the
transport barrier exists in a region in which the radial electric
field achieves large absolute values and varies rapidly in
space.

At present, it is generally believed that transport reduction
is strongly connected with decorrelation of turbulence,
which is predominantly electrostatic at the edge. Normally,
the observed transport in tokamak experiments exceeds
greatly that of collisional transport theory. This anomalous
transport is usually attributed to turbulent fluctuations
arising from various microinstabilities, e.g. drift waves or
pressure gradient driven ballooning modes [2].

Microinstabilities and microturbulence of the drift-type
waves have been investigated extensively both theoretically
and experimentally (see reviews by Tang [3] and Liever [4]).
These microinstabilities occur as low frequency collective
oscillations arised from large-scale charged particle
interactions. The oscillation frequency is of the order of
the diamagnetic drift frequency, o ~ w,, and low compared
to the ion gyrofrequency w.. The parallel to the magnetic
field phase velocity lies between the ion and electron thermal
velocities, vry < w/ky < vre, where k) is the component of
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the wave vector parallel to the magnetic field. In a tokamak
however, k| is a function of radius, since the direction of
the magnetic field depends on the radial coordinate. Thus,
the local approximation is not valid and it is necessary to
solve a differential equation to determine the radial structure
and stability of a drift mode [5].

In the uniform plasma slab, magnetic field shear produces
an inherent damping of drift waves [6,7]. This damping
arises because, in the presence of shear, a mode centred
on a given magnetic surface radiates energy outwards from
the surface [5]. However, as it was pointed out by Taylor
[8], in a realistic system, where the field strength and shear
are not uniform, waves associated with different surfaces
are coupled together. This changes the propagation of drift
waves and radiation is inhibited or reflected. In the tokamak
geometry, a mode centred at r with m = nq(r), is coupled
with modes localised on surfaces at r=+ Ar such that
m=+1=nq(r£A4r) (m and n are poloidal and toroidal
wavenumbers, respectively and ¢(r) is the safety factor).
If the coupling to adjacent modes is included, toroidal
coupling effects can form local potential wells which reduce
or eliminate the outward convection of wave energy and
hence, the shear damping [9]. Horton e? al. [10] have found
that the ion toroidal drifts cause the shear stabilizing radial
anti-well to become a radial well which localises the mode
away from the regions of ion Landau damping. In such a
well, marginally stable quasimodes exist for s < 1/2, where
s =rq'(r)/q(r) is the magnetic shear parameter.

Subsequent works [11-14] show that toroidicity-induced
marginally stable quasimodes exist for s > 1/2. However,
modes of this type occur only if the diamagnetic frequency
w4(r) has a maximum at r, and they affect only a small
fraction, O(1//n), of the plasma radius around this
maximum. Recently, Connor et al. [15] and Taylor et al. [16]
have found another class of toroidal drift waves with very
different properties. The new modes have greater shear
damping (closer to that in a plane-slab) than the conven-
tional ones and thus have a higher instability threshold.
However, they occur for any plasma profile and at all radii,
and they have larger radial extent over a fraction O(g) of
the plasma radius (¢ being the inverse aspect radius).

The structure of drift waves in a rotating toroidal plasma
has been discused by Taylor and Wilson [17]. They have
incorporated a Doppler frequency shift that varies from
one magnetic surface to another into the basic model. This
shift variation is due to a sheared plasma velocity vg(r).
The standard ballooning representations are no longer effec-
tive because they are based on the fact that all the magnetic
surfaces are approximately equivalent [18]. This equivalence
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is destroyed by the sheared rotation. In seeking an alterna-
tive to the ballooning representation, Taylor and Wilson [17]
supposed that, although magnetic surfaces are not equiv-
alent to each other in rotating plasma, the relationship of
a surface to its neighbours is still the same for all the
surfaces. This assumption led them to the conclusion that
the shear damping of toroidal drift modes in a rotating
plasma, is no longer reduced by toroidal effects and is similar
to that in cylindric geometry.

Drift waves in rotating toroidal plasma have been inves-
tigated in Ref. [19] on the base of rigorously derived
eigenmode equations, coupled in poloidal mode numbers
through the toroidal effects. In order to avoid the above
mentioned difficulties with employment of the ballooning
representation for rotating plasmas, the treatment by
Horton et al. [10] and Tang [3] with a method by Taylor
[8] was used instead. This method employs the so-called
strong coupling approximation, while assuming that a sig-
nificant number 4; (1 <« 4; « my, my is the poloidal mode
number at the reference rational surface around which
the mode is centred) of poloidal harmonics are coupled
by the equilibrium toroidal variations without the suppo-
sition that the relationship of a surface to its neighbours
is the same for all the surfaces. Therefore, the Fourier
decomposition for the eigenmodes was used instead of
the “Fourier ballooning” representation of Ref. [17]. The
obtained eigenmode equation has two types of solutions
depending on the value of magnetic shear parameter and
on the sign of the Doppler-shifted eigenfrequency. The first
type corresponds to global drift modes with a basic structure
resembling a “‘quasimode”. In the framework of strong
coupling approximation, global drift modes exist for a
strong magnetic shear, s > 1/2, when the Doppler-shifted
eigenfrequency is negative. The solutions of the second type
describe propagating drift waves that experience shear
damping as slablike outgoing waves [5].

The quasimode structure of global drift modes, obtained
in the strong coupling approximation [19], indicates that
the mode can be represented as a sum of degenerate radially
localised normal modes. Each of these component normal
modes is centred on a different rational surface and has com-
parable amplitude to the others. Since the spacing between
rational surfaces is generally much smaller than the typical
equilibrium scale lengths in realistic tokamak plasma con-
ditions, the radial equilibrium gradients can be considered
constants with a good approximation. However as it has
been observed at the tokamaks TEXT [20], JFT-2M [21],
TEXTOR [22], ASDEX [23], DIII-D [24] and JT-60U
[25-27], the plasma poloidal rotation velocity and the radial
electric field change dramatically in the plasma edge region
during the L-H transition. Moreover, the profiles of rotation
velocity and radial electric field are characterised by large
radial gradients in this region. So, the strong coupling
approximation may not be valid near the plasma edge.

In this work, we consider toroidal drift modes in rotating
tokamak plasma in a weak coupling approximation,
truncating the harmonic expansion at two nearest terms.
As in Ref. [19], the performed analysis is based on a
rigorously derived eigenmode equation for drift waves in
an axisymmetric, large-aspect-ratio tokamak with con-
centric, circular magnetic surfaces where the toroidal
coupling effects appear due to ion VB and curvature drifts.
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The eigenmode solutions obtained in the weak coupling
approximation belong to two classes depending on the ratio
o' /w, and the sign of w, (@ being the Doppler-shifted
eigenfrequency). These two classes are the global drift modes
and the propagating (or outgoing) drift waves. The paper is
organised as follows: The basic set of equations described
mode structure and dispersion properties of a drift wave
in a rotating tokamak plasma, is derived in Section 2. This
set is reduced to an ordinary differential equation of the
Weber type by using the weak coupling approximation in
Section 3. The latest equation is analysed and its simple
asymptotic solutions are given for some limit cases for global
and propagating drift modes in Section 4 and 5, respectively.
Summary and discussions follow in Section 6.

2. Basic equations

We consider a toroidal plasma configuration and suppose
that a plasma rotation occurs due to inhomogeneous elec-
trostatic potential @(r). The plasma is confined by the
inhomogeneous magnetic field B with vanishing component
along the equilibrium density, ny(r), gradient. Restricting
ourselves to the case of low — f3 (the ratio of the plasma press-
ure to the magnetic one), we can describe the key features of
collisionless electrostatic drift modes by a system of
two-fluid equations for electrons and ions and the Poisson
equation. The frequency of these modes is low, o K w
and the magnetic field perturbations are negligible. The
smallness of electron inertia compared with their thermal
motion, w < kyvre, permits us to neglect the charge separ-
ation and use the quasineutrallity condition instead of the
Poisson equation. In this limit the electrons are thermalised
along the magnetic field lines, i.e. they follow the Boltzmann
distribution. As a result, we get the electron and ion densities
N. and N;, respectively to be:

ed

Ne = Ni = no(r)exp <7> (D
€

where —e and 7. are electron charge and temperature,

respectively. The drift modes can be described by the con-

tinuity equation

d
&Ni-FV'(NiVi):O (2)

and the momentum equation

1
mi<%+ Vi'V>V1:€<—V¢’+ZViXB> A3)

for cold ions. Here, m; and V; are the ion mass and fluid
velocity, respectively. As it can been seen, we have only kept
the adiabatic electron response and ignored any electron
destabilizing, temperature gradient, or trapped electron
effects.

In dealing with a toroidal coordinate system, we use
simple toroidal orthogonal coordinates r, 8, ¢, where r is
the radius in the minor cross section of the torus, 6 and
¢ are the poloidal and toroidal angles, respectively. For
simplicity, we consider an axisymmetric tokamak, with
large-aspect-ratio, R/r = 1/¢ > 1 (R being the major radius
of the torus) and with circular and concentric magnetic
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surfaces. The equilibrium magnetic field can be expressed as

B = By(r)ép + Bi(1 +gcos0)'e,. 4)

Here, By, and B, are the poloidal and toroidal components of
the equilibrium magnetic field, respectively, and the caret (")
denotes the corresponding unit vector.

Decomposing as usually, electrostatic potential, ion vel-
ocity and density into equilibrium (denoted by the subscript
0) and fluctuating parts, ® =@+ ¢, Vi=vy+v and
N = ngy + n;, we obtain for the equilibrium rotation velocity,
averaged over the poloidal angle 6, the following expression

Vg = (;)B X V@o. (5)

Here, B; = const. according to the usual tokamak approxi-
mation and b= B/B. Since the ratio of the toroidal
component of vy to the poloidal one is of the order of e,
in what follows we neglect the effects of the toroidal plasma
rotation. So, the equilibrium plasma rotation velocity (5)
actually describes plasma drift in the radial electric field
which depends on r only.

In the next order of perturbation theory, we obtain
equations for the perturbed values. The relative size of
the perturbed to the equilibrium quantities is of the order
of e =r/R >~ w/w¢. Then, in the lowest order of &, we get
from Eq. (1) and (2)

d
(8t+v0 V)Yip—i—v v+v-Vinny =0. (6)

The ion motion is assumed to be three-dimensional, i.e. an
adequate model includes the ion dynamics parallel and per-
pendicular to the magnetic field. So, we can express the
perturbed ion velocity in the form

v:vl—l—l;vu (7

withv, = b x (v x 3) and vy = b-v. Taking the dot and cross
products of Eq. (3) with the unit vector b, we obtain the
following equation for the parallel component

aav”+b vo-V)r+b-(v- V)vo_—%b Vo ®)

and for the transverse component

|
vV, =Vg+—X

ci

R+ 0 v+ o Vo ©
of the perturbed velocity. Here, vg = (c/B)l; x V¢ is the
E x B drift velocity. It should be noted, that deriving Eq.
(9) the usual drift expansion was used.

Inserting Eq. (9) into Eqgs (6) and (8) and assuming that the
fluctuating quantities depend on time and toroidal angle as
exp(—iwt —ing) (n being the toroidal wavenumber), we
obtain the following coupled equations for the perturbations
of parallel velocity v and electrostatic potential ¢,

IV() d ad .
(w +— 89) V| 420 <cos@89 —sin 0) v =
ie (0
~ migR (89 in q>¢
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(10)

Lo

iVO d 32(}')
(047 )[¢‘—(ﬁ+?ar
iq v _ldw_dw dinm( - w_dw) |
wgr |2 rdr  dr? ar \ T T or
2ic2 [ . 8(]5 iV A
T ouR [51 o —+ < +3 23 )COS@@}

iT. (0
=0.
+ eqR (80 1nq>v

Here, vy(r) = (¢/By)d®/dr is the equilibrium poloidal
rotation velocity, q(r) =rB;/RB,(r) is the safety factor
and ¢ = T./m; is the ion sound velocity.

The drift modes are known to have long wavelengths
along the magnetic field lines, but short wavelengths in
the radial direction. Let us consider solutions of Eqgs (10)
and (11) for the mode localised on the rational surface
r = ry, defined by my — nq(rg) = 0, where my is the poloidal
mode number at the reference rational surface around
which the mode is centred. It should be noted that
mg > 1 for the drift modes of principal interest. The exci-
tation of my mode results, due to toroidal mode coupling,
in a chain excitation of the modes with poloidal numbers
(mp £ ), which are localised on the neighbouring rational
surfaces. Supposing that the relationship of a magnetic sur-
face to its neighbours is different for different surfaces
due to strong inhomogeneity of equilibrium radial electric
field and poloidal rotation velocity, we search solutions
of Eq. (10) and (11) in form of the Fourier decomposition

19 dinnog
2 902 dr or

1dInng
2 dr

(11)

(r, 0) = exp(imo0) ) _ ¢,(r) exp(il0),
!

(12)
v (r, 0) = exp(imot) Z vi(r) exp(il0).
/

Substituting Eq. (12) into Eq. (10) and (11), we expand the
coefficients that are functions of r into Taylor series in the
vicinity of the reference rational surface, r = ry. In order
to keep the main terms only, we neglect corrections much
smaller than k(,pY (where kg = myg/ry is the local poloidal
wavenumber and p, = ¢/ is the ion Larmour radius
defined at the electron temperature) and the terms with
the second derivative of the equilibrium density n(r), since
they are smaller in the conventional low-f tokamak
ordering. As a result, we reduce Eqs (10) and (11) to
the form

, Vo
'y — keVo (Vl+1+vl 1)+ (V1+1 V) =

(13)

[l = kos(r — ro)l¢,

miqoR
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and
cskopgs
= 19
R (19)

0 0
, 324)1 1 99, 2 Pf
— (W—'—___kgd)]) —Z
r
X [kowci¢1 + koo ﬁ (br31 +d11)
’ 8¢ Vo
—oi ()l

ro or
¢ | 0
[— (b131 — b11) +Ko(bryr + ¢1—1)i|

— ke Vo (¢1+1 +¢1y) — W[l — kos(r — ro)l v

(14)

respectively. Here, Vy = vy(rp) is the local rotation velocity,
= dVo/dr)—y, V= (& Vo/dP),y, g0 = q(ro), o =

w—koVy is the Doppler-shifted eigenfrequency,

~1 = _(dln no/dr),_,, is the inverse scale of density

inhomogeneity and s = roq;,/qo is the magnetic shear with
= (dgo/dr),_,.

In what follows, we exclude from the consideration the
limit case o’ = 0 which corresponds to the ship waves [28].
Then, substituting Eq. (13) into Eq. (14) and neglecting
the terms of the order of &2, we obtain

P, (1 1)\, e\’
2 ()] (s

k9p2 Vo |44
B e (A By
[ + Kyps + o \2 T 0
kop? Vo ,
h w/r; @ei E ~" it

kopses  k SwC,
X (k()Vo —% 0P >(¢/+1 + ¢ 1)

p_gcs

’RBr (¢l+1 ¢/—1) =0
(15)
Introducing a new potential function Uj(r), through
— 1 1
b,(r) = Uy(r) exp|:— i (- - —)] (16)
2 ro Ty

and the dimensionless variable x = (r — ry)/p,, we reduce
Eq. (15) to the form

PU, I\
— DU, U =
e 1+o ( k(apss> i
cskop ro 1oV
ShOPs (10 5 a7
o' R ( 2 ZCSPA>(UI+1+ Ui-1)
ﬁai( 1+1 — Ui—1)
Here,
k Vi
D:1+k§p%_Cs/0ps|: pv 0(1+é)j|
'r a8)
k Vi
+r r(l-e- &)

0
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with & =roV{/Vy and & = roV{/ V.

Equation (17) is an extension of Eq. (7) by Horton et
al.[10] for the case of poloidally rotating plasma. It is the
basic mode equation which describes the mode structure
and dispersion properties of a drift wave in a rotating
tokamak plasma.

3. Weak Coupling Approximation

Equation (17) identifies an infinite system of equations for
harmonics U; with [ =0, 1, 2, .... In the weak coupling
approximation, we truncate this system keeping only the
harmonic / = 0, which corresponds to the reference rational
surface around which the mode is centred and the two
nearest harmonics / = 1. Such approximation is justified,
if the Doppler-shifted eigenfrequency w’ is of the order of
the local drift frequency

_ Py kocs

= (20)
2
T'n] 4 (kgps)
since in this case the ratio of the terms of the right-hand side
of Eq. (17) to the left-hand side ones is of the order of e.
Thus, the system of equations (17) is reduced to the
equation for the reference harmonic / =0

2

T _ py+ 22U = SRebs (|~ 1o _ 1o

0x2 ’R 2r,  2csp; 1)
XUyt + U-1) +— (U+1 U-1)

/RB

and to the following equations for the nearest harmonics
/=+£1

PU. 1\
;tl_DUil+02 XF Uy =
ox kops 22)
cskops (170 _10Vo) :Fi%
'R 2r,  2csp, OT WR ox

Since the right-hand side of Eq. (22) contains the smallness
parameter ¢ << 1, we can solve this equation by the suc-
cessive approximation method. Changing the variable to

J§E<x s ) (23)

we reduce the equation for zero-order functions UY) to a
standard form of the Weber equation

82 U(O) 1 ) ©)
Tl (oc s )Uil =0 (24)
with o = 2.
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The Weber equation (24) has the following even and odd
solutions [29]

: 2
©) — exp(— 112 12 L
(Qﬂkw{‘““ 4y{1+(“+202f+(“+20
5\
<a+§1)4'+ ]
: 3
O)  _ axn(— 12 302 3,
(Ui1>0dd_exp( 4y)[l+<a+21>3!+<a+21)

5
X (a—i—%l)?' + .. ]
(25)

convergent for all values of y. Differentiating only the most
rapidly changing term exp(— %), we obtain an estimation
for the second derivative

RU0 2
7§2:ﬁrvg. (26)

Substituting this estimation instead of & U.;/dx> into Eq.
(22), we find

cskop, ro  roVo
- - Up +
'R ( 2r,  2cp, 0
Multiplying Eq. (21) by D and inserting the approximated

expressions (27) for the functions Uy;, we obtain the
following equation for the function U

Cs BUO
'R dx

DUj:l ~ (27)

U,

7gf+04—4*ﬂ%=0 (28)
with
2 2

D? —2( Sk} (1 — Jo 1l

A= ( 'R )C (2 2r, 2,5p3> (29)
2((1)’513) _D
and
2p

(= (30)

2(5%) D

The eigenfunctions of Eq. (28) describe the radial struc-
ture of the drift eigenmode, localised at the reference
rational surface and the eigenvalues of this equation define
the dispersion properties of excited drift eigenmodes. The
solutions of Eq. (28) belong to two classes depending on
the sign of the parameter (.

4. Global drift mode solutions

In the case

(>0 31)

using the new variable y = C%x, we transform Eq. (28) to a
form of the Hermite equation

F Uy A,
et ()=

The eigenfunctions of Eq. (32) are given through the
Hermite polynomials exp(—y?/2)Hy(p) and the correspond-

(32)
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ing eigenvalues are defined by the dispersion equation

A
L _ON4+1,
VT

It can be easily seen from Eq. (33), that positive eigenvalues
exist only when

N=0,1,2.. (33)

A>0. (34)

This class of solutions describes non-propagating modes
localised inside a “‘potential well”, i.e. the global modes.
In order to simplify the apparent form of the dispersion
equation (33), we use the following assumptions

2 2
¥ ko Vi ¥
D1, Bl Mo<e, 20T (35)
2ry S w p?

which may be considered as typical for the edge plasma
region. Then, the terms of Eq. (18), which contain the first
and second derivatives of poloidal rotation velocity (velocity
shear) are negligibly small. In other words, the poloidal
rotation velocity shear does not effect essentially the disper-
sion properties of global drift modes in this approximation
and under these assumptions.

Substituting the apparent expressions (29), (30), (18) and
(19) into Eq. (33) and taking the above inequalities into
account, we obtain the analytical dispersion equation for
the global drift modes in rotating tokamak plasma

)4
'n Wy 2\rn - cspy
2521 4+ k2p? Wy
QN +1) — (1 -=
@ G () a0

k(?p?

[ G @ o))

4.1. Positive Doppler-shifted eigenfrequency, o' > 0
In this case the conditions (31) and (34) are satisfied

simultaneously, when
1+%mc&}m
kgp? R ‘

Vo o 1 1
l+——(1+- )<—<—+—[1+8
J—R( P4Cs w, 2 2

(37)
If, for example
Vo 1+ k()p;
pﬁ«lmd8ﬁﬁ<ﬁ<l (38)

the conditions (37) and (38) are reduced to the inequalities

R\’ R

8<<<—)(hm92<2wl_ (39)
I'n ro

which lead to the limit

Y 1«1 (40)

Such modes can exist at very low rotation velocities

Vi

M3 (41)

s In
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and in this case the dispersion equation (36) takes the form and the approximate solution of Eq. (47) is given by
R\’(o' \* 1(n)’ '] 1+ kp?
21 (==1) =2(2) = ~2—7
ry Dy 2 I'n W k()px
22 1 \ 2!
(2N+1){%m(1 —2) @)« <R)2+1‘13 <R)2_1(’0+’0V0)2
o %oPs @ I'n 2N + 1)2 52 I'n 2\, CsPy
1 R\’ (o'’ w 2
2222 (2 _ (50)
Jos e )
One can easy check that the solution (50) satisfies the
From the inequalities (37) and (38), it follows that inequalities (49). On the other hand if
7o o'’ 2 2 32 Fn 1 +k2p? (1,
_ _ R . 2 / 2 - T MFs
\/ER < o, < k%p% (R) and (k()ps)mm > R képy <R) >> 1 (51)
(43) . oy
the inequalities (46) are transformed to
Using these estimations, we can express the condition of
smallness of the righ-hand side of Eq. (42) compared to lo'| 1, 1+k5p§ 12
the second term of its left hand side as 0< . R 2 k2 p? ) (52)
N

8qororo

2N +1 .
+ <sr,,R

(44)

Then Eq. (42) can be simplified to the following dispersion
relation

/

w ro
« V2R
172
. 1 1
x 1+(2N+1)i(7—> (fk erf’ 4:3) .

(45)

4.2. Negative Doppler-shifted eigenfrequency, o' < 0

In this case, conditions (31) and (34) are satisfied

simultaneously, when

172
|| I 1 1—|—k)p
0 —= 1+8——52 (= 46
e S T272 Ty (R) (46)
and the dispersion equation (47) takes the form
R\’ (o > Yo\
() () G -
n Wy 2\r,  csp
1+k3 N !
(2N+1)Q|: —T Sehs P © ('w'+1) 47)
q0 kip? ']\
1(R |co|+1 ks
2\r, W, '
If we consider that
1+ k3p?
8——0= () << 1 (48)
kp? <R)
then we have, according to Eq. (46)
'] 1+ k()P
o <2 20 (R) <<1 (49)
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and Eq. (47) can be simplified to the following dispersion
relation

()

~ N4 Y (r—”)zx [(1 * kﬂpx)
q0

R kp?
. 805 (53)
(2N +1)* 8 ( kp? )2 2N +1 so]
+ ) - RN
16 610 1 + kg 22 qo
in the supposition |o'| > w,.
5. Propagating mode solutions
In the case
(<0 (54)

we transform Eq. (28) to a form of the Weber equation

32U0 < A 55)

lf‘y)%:o

with y = /i|¢]2x.

Lebedev [30] shows that the solutions of Eq. (55) are bound

in the whole interval of y, only if N =0, 1,2, .., where N
is defined by the dispersion equation

A
A _ongl (56)
1/IC]
These solutions have the form
Uon(y) = My Hy(p) exp(—3*/2) (57)

where My is an arbitrary constant and H,(z) is the Hermite
function that is an entire function of the complex variable
z and parameter v. For the case v = N the Hermite function
Hy coincides with the Hermite polynomial of the N order.
The boundness of the solution (57) on the whole y interval
corresponds to the outgoing boundary condition introduced
by Perlstein and Berk [3].
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5.1. Positive Doppler-shifted eigenfrequency, @' > 0
In this case, inequality (54) is satisfied if either

o 1 1 1+ k2p? 121"

Z 4|1 s (n

w2 2[ o () (58)
or

0<2 <1, (59)

Wy

The apparent form of the dispersion equation (56) is
R\2/ o 2
)4
I'n Wy 2 I'n
5 5 12 (60)
<R (22 21+k0”vw* o
) \ O k2pr o \o,

where the assumptions (35) have been taken into account.
For the region (58) a simple dispersion can be obtained in
the limit

o\> .
0 °> — LN+ 1)
csp 0

1 +k2p? /r, o}

2— 0 — -1 61
k3 p? (R) < W, D)
The dispersion relation in this case has the form
1/2

o’ 1 (ro  roVo\* 1\ %2
o =1 +£[z<r—°+ ) ~(v+3) =

% n sPs 490 (62)

. 1\ s ry,
—i{N+-)—=.
1< + 2> &R
Here Im o’ < 0, that corresponds to the damping of the drift
wave.

For the region (59) we can also simplify Eq. (60) to the
following dispersion relation

(63)
1\ s r,
- 1<N +§> qo R
for the limit case
1+ k302 /1y o'
22— 00 — <1 4
o () <o < (64)

The dispersion relation (63) also describes weakly damping
drift waves.

5.2. Negative Doppler-shifted eigenfrequency, o' < 0
In this case inequality (54) gives

12
o] 1 1+ k202
SRS P S
o 53|t K2p2 (D)

Physica Scripta 60

(65)

and the dispersion equation (56) takes the form

R 2 ’ 2 1
e
I'n Wy 2\r,

2
il VO) — QN+ 1)
Ccsp 40

R} (] Vo 1+kt o, (101, ]
X <—>< +1> -2—= ( +1) :
T'n Wy k()ps |(L)| Wy
(66)
In the limit case
1 +k2p2 r\2 o]
22— (X)) < — <1 67
o () <o = (67)
the solution of Eq. (56) can be approached by
172
| |1 (g 1oVo 2 1\2s? /
o “R|2\n Tep,) T\ N 12) 2
* n Sps qo (68)
1 8 T
—1-i(N
1( +2) QR
Such solution may exist only if
Vi
N (69)
va Cs

The inequalities (67) and (69) are satisfied simultaneously for
very high values of my. In the limit

|| > wy (70)
the dispersion equation (66) leads to the relation
1/2
/| |1 (ro | 1oV 22"
~—|z|—+ —(N+5) =
.  R|2\rn  cspg 2) q; (1)

. 1\ s 'n
I(N " 2) 90 R
with the inequality (69) taken into account.

It should be noted here that all dispersion relations
obtained above correspond to damping drift waves, i.e. their
shear stabilization. The propagating mode damping due to
magnetic field shear, is found to be the same for all modes
independently of the eigenfrequency sign and value and
the assumptions that we consider in each limit case. Thus,
it seems that the linear damping of the propagating drift
modes depends on the magnetic shear and inhomogeneity
scale, but not on the velocity shear.

6. Conclusions

In summary, the effects of poloidal plasma rotation on a
drift eigenmodes in a tokamak plasma have been studied.
We assume that the plasma rotation is driven by the radial
electrostatic field typical for the H mode of plasma confine-
ment in tokamaks. The low-frequency potential plasma
oscillations are investigated using assumptions of adiabatic
electrons and plasma quasineutrality. We use a simple model
of low-f§ tokamak plasma with concentric, circular magnetic
surfaces and large-aspect-ratio. In order to truncate an infi-
nite set of equations obtained by the above assumptions,
a weak coupling approximation is used. We believe that this
approximation is more suitable to describe drift oscillations
in a plasma edge region, where the radial electric field
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and the plasma rotation velocity (and their radial gradients)
reach high values.

Making use of the weak coupling approximation, we
reduce the basic set of equations to an ordinary differential
equation of the Weber type. The equation has two classes
of solutions depending on the sign of the Doppler-shifted
frequency and the value of its ratio to the diamagnetic drift
frequency. These two classes are the global drift wave modes
and propagating (or outgoing) drift waves.

The global drift mode has a structure of a quasimode
localised in radial direction with a small wavenumber along
the confining magnetic field. It includes a number of rational
magnetic surfaces due to toroidal coupling of the modes
localised on the neighbouring magnetic surfaces. This mode
corresponds to the bound state in a potential well which
is marginally stable.

The propagating drift waves correspond to unbound
states and leave the magnetic surface on which they are
excited. These waves are characterised by a damping which
depends on the magnetic field shear and plasma density
inhomogeneity scale, but not on the poloidal rotation vel-
ocity shear.

We obtain the analytical dispersion equations for both
global and propagating drift waves and define the regions
of plasma parameters, where each class of solutions exists.
Simple dispersion relations are found for some limiting
cases.
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