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Abstract

The effects of sheared plasma rotation on the toroidal drift eigenmodes are

studied for an axisymmetric, large aspect-ratio tokamak with concentric,

circular magnetic surfaces. The performed analysis is based on a consistent

derivation of the drift eigenmode equations, which are coupled in the poloidal

mode numbers due to toroidicity. Analytical dispersion relations for both

global and propagating drift waves are obtained and their approximative

solutions are found. It is shown that the type of the mode is defined by the sign

of the Doppler-shifted eigenfrequency that varies from one magnetic surface to

another due to sheared poloidal and toroidal plasma rotation velocities. The

global drift mode existence is attributed to the case of the negative Doppler-

shifted eigenfrequencies, whereas the propagating drift waves are generated by

the positive ones.

1. Introduction

An important issue for high-temperature plasma confine-
ment in toroidal magnetic configurations is to understand
and to determine the cause of cross-field transport. It is
generally believed that under normal operating conditions,
the plasma turbulence is almost always driven by micro-
instabilities associated with low frequency drift modes. For
static equilibria, these microinstabilities driven by the
expansion of free energy associated with the density and
the temperature gradients of the confined plasma, have
been reviewed by Tang [1] and Liewer [2].
It was shown that for the most interesting applications

(plane plasma slab with strongly sheared magnetic field,
tokamak) the local approximation for the description of
drift waves is not valid. Thus, in order to determine the
radial structure and stability of the drift modes it is
necessary to solve the eigenvalue problem [3].
In absence of toroidal effects [4,5] the collisionless drift

modes are always stable. However, as Taylor [6] has
pointed out, in a realistic system with non-uniform
magnetic field strength and shear, the waves associated
with different surfaces are coupled to each other. This
coupling changes the characteristics of the drift waves. In
the tokamak geometry, drift modes are coupled to each
other due to toroidicity. Such coupling effects can form
local potential wells which reduce or eliminate the outward
convection of wave energy and hence, the shear damping
[7]. The ion toroidal drifts cause the shear stabilizing radial
anti-well to become radial well, localizing the mode away
from the regions of ion Landau damping [8]. In such a well,
marginally stable quasi-modes exist for s<1=2; where s is

the magnetic shear parameter. These are the so-called
global modes which are localized in both radial and
poloidal directions and correspond to bound states in the
potential well. For s > 1=2 the results [6,8] predict that the
shear damping is further enhanced by the toroidal
coupling, due to the anti-well shape of the coupling
induced potential.

Experimental and theoretical investigations during the
last decade have revealed the importance of plasma
rotation in the confinement of tokamak plasma. Both
poloidal and toroidal plasma rotations have been observed
in various tokamaks [9–19]. Usually the poloidal plasma
rotation is associated with the E� B drift, induced by a
strong inhomogeneous radial electric field Er whereas the
toroidal plasma rotation is attributed to external sources.

Obviously, both poloidal and toroidal plasma rotations
introduce a Doppler shift into the eigenfrequency of the
drift wave that varies from one magnetic surface to another
due to sheared plasma rotation velocity v0ðrÞ: Therefore,
the conventional ballooning representation is no longer
appropriate, since the necessary equivalence [20] of the
normal modes localized on neighboring magnetic surfaces
is now violated by the sheared rotation [21].

The problem of drift eigenmodes in poloidally rotating
tokamak plasma has recently drawn much attention [22–
25]. Here the plasma rotation was incorporated into the
toroidal coupling term of the model equation and it was
shown that the instability may be stabilized by the velocity
curvature, in both collision and collisionless limits. How-
ever, the introduction of the sheared plasma rotation into
the final model equation looks somewhat artificial due to
several approximations in the derivation of this model
equation. A consistent way to study the sheared rotation
effects on the drift eigenmodes should introduce the
inclusion of the sheared plasma flow from the starting
equations. Therefore, the effects of radially varying
poloidal flow on the collisionless drift eigenmodes in
tokamak plasma have been revised in Refs. [26,27]. The
analysis was based on a consistently derived eigenmode
equation coupled in poloidal mode numbers through
toroidal effects, in the strong and weak coupling approx-
imations respectively. In order to avoid the difficulties with
the employment of the ballooning representation for
sheared rotating plasmas, the treatment by Horton et al.
[8,28,29] was used which follows the method by Taylor [6]
but employs a Fourier decomposition for the eigenmodes
instead of the ‘‘Fourier ballooning’’ representation used by
Taylor and Wilson [21] and earlier by Hastie et al. [30]. It
was shown that both global drift modes localized in the
corresponding potential well and propagating drift waves
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outgoing from rational magnetic surfaces may exist in
rotating tokamak plasmas depending on the plasma
parameters and the poloidal rotation velocity. In particular,
for sufficient high rotation velocity, global drift modes can
exist even for large values of the magnetic shear s>1=2; in
contrast to the criterion mentioned above for non-rotating
plasmas. On the contrary, the propagating drift waves move
freely experiencing the magnetic shear damping.
At the present paper we study the effects of both

poloidal and toroidal sheared plasma rotation on the
toroidal drift eigenmodes in tokamaks. In what follows, we
restrict ourselves to the collisionless or ‘‘universal’’ drift
modes [31]. We assume the presence of both toroidal and
poloidal velocity components attributed for example to the
NBI lines aimed at the plasma. The two fluid model is used
and the performed analysis is based on a consistent
derivation of the eigenmode equations for collisionless
drift oscillations in axisymmetric, large aspect-ratio toka-
mak with concentric, circular magnetic surfaces, where the
toroidal coupling effects appear due to ion rB and
curvature drifts. The dispersion relations for the drift-
type eigenmodes are obtained using both the strong and the
weak coupling approximations. The former assumes that a
large number of poloidal harmonics are coupled by the
equilibrium toroidal variation, whereas the latter is
appropriate, when a given harmonic is coupled only with
its nearest neighbors.
This paper is organized as follows: The theoretical model

and the basic set of differential–difference equations which de-
scribe drift eigenmodes in rotating tokamak plasma are given
in Section 2. These eigenmode equations are reduced to a one-
dimensional equation by employing the strong and the weak
coupling approximations in Sections 3 and 4 respectively,
where solutions of both global and propagating drift eigen-
modes are found. Concluding remarks follow in Section 5.

2. Basic equations

Let us consider collisionless electrostatic drift waves in a
rotating toroidal plasma. The plasma is confined by an
inhomogeneous magnetic field B with vanishing compo-
nent along the equilibrium density gradient, and rotates in
both toroidal and poloidal directions. This situation is
typical for high confinement modes in most of the modern
tokamaks with supplementary heating.
To model a large aspect-ratio tokamak with circular,

concentric magnetic surfaces, we use the toroidal orthogo-
nal coordinate system r; ’; �; where r is the radius in the
minor cross section of the torus, and �; ’ are the poloidal
and toroidal angles respectively with the inverse aspect
ratio as a characteristic small parameter, "ðrÞ � r=R � 1 (R
being the major radius of the torus). In this approximation,
the equilibrium magnetic field takes the form

B ¼ B�ðrÞ�̂� þ B’ð1þ " cos �Þ
�1 ’̂’

where, B�ðrÞ is the poloidal component, B’ ¼ const in the
toroidal one, and the caret (^) denotes the corresponding
unit vector.
Furthermore, we assume that the radially varying

equilibrium rotation velocity for the ion fluid has sheared
poloidal and toroidal components, v0ðrÞ ¼ v0�ðrÞ þ v0’ðrÞ

that can be attributed to various sources of rotation such as
to Neutral Beam Injection. In our previous considerations
[26,27], the poloidal plasma rotation was assumed to be the
result of an arbitrary external steady state potential and the
possibility of toroidal rotation was ignored. To describe the
key features of collisionless electrostatic drift waves in a
low-� plasma (the ratio of plasma pressure to the magnetic
field one) we use the two fluid plasma model.

The analysis of linearised electron fluid equations shows
that as long as electrons are freely move along the magnetic
field lines and cancel space charge, the Boltzmann relation
is fulfilled. There are however some effects (e.g., electron–
ion collisions, Landau damping, electron inertia or
inductance) that can limit electrons mobility. In that case,
a phase shift � between the perturbed density ne and the
potential � can be incorporated in order to represent the
various electron dissipative mechanism effects [32]

ne
n0

¼
e�

Te
ð1� i�Þ

where n0 is the equilibrium plasma density. Using the
quasineutrality condition ne ¼ ni; we reduce the set of the
linearised electron and ion fluid equations to the ion
momentum and ion continuity equations. The ion velocity
and electrostatic potential can be divided into equilibrium
and fluctuating parts, assuming that the relative size of the
spatial and temporal scales of the fluctuating parts to the
equilibrium ones is of the order of " � !=!ci � 1; where !
is the oscillation frequency and !ci is the ion gyro-
frequency. It is convenient to subdivide the ion fluid
velocity into parts perpendicular and parallel to the
magnetic field, v ¼ v? þ bvk; with v? ¼ b� ðv� bÞ;
vk ¼ b � v and b ¼ B=B: In the low-frequency limit
!=!ci � 1; the ion polarization drift can be consider as a
correction to the electric drift vE: This is the usual drift
ordering and allows us to express the perpendicular
component of the ion velocity by a perturbation expansion,

v? ’ vE þ
b

!ci
�

�
@vE
@t

þ ðv0 � rÞvE þ ðvE � rÞv0

�
ð1Þ

where

vE ¼
c

B
b� r�:

Similar, we obtain for the parallel component of the ion
fluid velocity the following equation,

@vk
@t

þ b � ðv0 � rÞvþ b � ðv � rÞv0 ¼ �
e

mi
b � r� ð2Þ

where mi is the ion mass. Inserting Eq. (1) into the
linearized ion continuity equation and Eq. (2), we obtain a
system of two equations for the perturbed electrostatic
potential � and the parallel velocity vk: Since the symmetry
of the magnetic configuration is not broken in the toroidal
direction, we express the fluctuating quantities into Fourier
component form as

�ðr; �; ’; tÞ ¼ �ðr; �Þ expð�i!tþ in’Þ;

vkðr; �; ’; tÞ ¼ vkðr; �Þ expð�i!tþ in’Þ
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where n is the toroidal mode number. Then, the equations
for the functions �ðr; �Þ and vkðr; �Þ take the following form

iTe

eqR

�
@

@�
þ inq

�
vk ¼ !̂!

�
@2�

@r2
þ
1

r

@�

@r
þ

1

r2
@2�

@�2

�

þ
iv00’
qR

�
@

@�
þ inq

�
@�

@r
þ

i

r

�
v0�
r2

�
v00�
r
� v000� �

s� 1

qR
v00’

þ
"ðrÞ

q
v00’

�
@�

@�
þ
d ln no
dr

�
!̂!
@�

@r
þ

i

r

�
1þ "ðrÞ cos �

�
v0�
r
� v00� þ

"ðrÞ

q
v00’

�
@�

@�

�
þ i

2

R
sin �

@�

@r
þ
cos �

r

@�

@�

� �

� ð1� i�Þ !̂!þ "ðrÞ cos � i
v0�
r

@�

@�
þ
nv0’
R

�

� �� �
ð3Þ

and

!̂!vk ¼ �i
e

TeqR

��
@

@�
þ inq

�
�

�
v0�
r
þ v00� þ

v0’q

r
cos �

þ
v00’q

"ðrÞ
1þ "ðrÞ cos �ð Þ

�
@

@�
� v0’q sin �

@

@r

�
� ð4Þ

with

!̂! � !þ i
v0�
r

@

@�
�
nv0’
R

:

We note here that we have normalized the space and the
time variables with respect to the ion Larmor radius
(� ¼ Cs=!ci) defined at the electron temperature Te; and to
the ion angular gyrofrequency !ci; respectively. As a
consequence the velocities are normalized with respect to
the ion sound velocity C2

s ¼ Te=mi: Furthermore,
qðrÞ ¼ rB’=RB�ðrÞ is the safety factor, sðrÞ ¼ rq0ðrÞ=qðrÞ is
the magnetic shear parameter, and the prime denotes the
derivative with respect to the normalized radial coordinate r:
It should be noted that we only keep the leading order
terms in the left-hand side of Eq. (4).
The dependence of Eqs. (3) and (4) on the poloidal angle

� implies that the azimuthal modes are coupled to each
other. This coupling is due to toroidicity and arises from
the rB drift. As it was already pointed out in Section 1, the
standard ballooning transformation is not appropriate for
the rotating plasma, since the necessary equivalence
between the rational magnetic surfaces is destroyed by
the sheared rotation [21]. Therefore we make use of the
method employed by Horton et al. [8], instead, seeking for
solutions of Eqs. (3) and (4) which are localized about
some rational magnetic surface with radius r ¼ r0 defined
by m0 þ nqðr0Þ ¼ 0: Since the perturbed potential and
parallel velocity must be periodic functions with respect
to the poloidal angle �; we represent these functions in the
form of the Fourier expansion

�ðr; �Þ ¼ expðim0�Þ
X
l

�lðrÞ expðil�Þ;

vkðr; �Þ ¼ expðim0�Þ
X
l

vklðrÞ expðil�Þ ð5Þ

where the summation is over the index of the lth
neighboring to m0 poloidal mode. In the limit of a large
aspect ratio we have, from the definition of m0; that
��1ðrÞ=�0ðrÞ
�� �� ’ "� 1: The drift eigenmode localized on
the rational surface r ¼ r0 is coupled with the eigenmodes
of the neighboring surfaces r0 ��r such that
m0 � 1þ nqðr0 ��rÞ ¼ 0: Thus, the excitation of m0

mode corresponds to a group excitation of modes with
poloidal numbers m0 � l: For the drift waves of principal
interest we have that m0 	 1 and the spread of azimuthal
modes number �l can be regarded as small compared with
m0: Here, �l is a measure of the dominant harmonics in the
sums (5).

Substituting Eqs. (5) into Eqs. (3) and (4), we expand the
radial dependent equilibrium parameters into the Taylor
series in the vicinity of the reference magnetic surface
r ¼ r0: Due to the smallness of the last term of Eq. (3), we
may neglect the velocity harmonic coupling and eliminate
the vk term from Eqs. (3) and (4) reducing our problem to a
set of �l coupled equations for the potential poloidal
harmonics. Thus, by keeping only the main terms and
introducing a new dimensionless variable, x ¼ r� r0 we
obtain the following differential equation for the coupled
harmonics of the potential,

@2�l

@x2
þ ½A1 þ A2ðl� k�sxÞ


@�l

@x
þ ½A3 þ A4ðl� k�sxÞ

þ A5ðl� k�sxÞ
2

�l þ ½A6 þ A7ðl� k�sxÞ
ð�lþ1 þ�l�1Þ

þ ½A8 þ A9ðl� k�sxÞ

@

@x
ð�lþ1 ��l�1Þ ¼ 0 ð6Þ

with the following coefficients

A1 ¼ r�1
0 � r�1

n ; A2 ¼ �
�’

r0q0R

V’
!0
;

A3 ¼
k�
!0rn

1�
!0

!�

�
V�
r0

ð1þ ��Þ þ
V’
q0R

�’

� �
þ i�;

A4 ¼
k�
!0

A2; A5 ¼ ð!0q0RÞ
�2;

A6 ¼ "0
k�
2!0

rn
�1 � 2r�1

0 þ Vð1� i�Þ
� �

;

A7 ¼ �k�ð1þ �’Þ
q0V’
2

A5; A8 ¼ �ð!0RÞ�1;

A9 ¼ �
q0V’
2

A5 ð7Þ

where "0 ¼ r0=R; q0 ¼ qðr0Þ; k� ¼ m0=r0 is the normalized
local poloidal number, rn ¼ �ðd ln n0=drÞ

�1
r¼r0

is the char-
acteristic scale of inhomogeneity, !0 ¼ !� k � v0ðr0Þ ¼
!� k’V’ � k�V� is the Doppler-shifted eigenfrequency
with k’ ¼ n=R;V�;’ ¼ v0�;’ðr0Þ are the normalized local
poloidal/toroidal rotation velocities with corresponding
shears ��;’ ¼ r0�

0
�;’ðr0Þ=V�;’; and V ¼ V� þ "0q

�1
0 V’: It

should be noted, that in the expressions of the coefficients
(7) we have neglected high order corrections with respect to
"2 assuming that the Doppler-shifted eigenfrequency !0 has
the same order of magnitude as the diamagnetic drift
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frequency,

!� �
k�r

�1
n

1þ k2�
:

The drift eigenmode described by the set of Eqs. (6) is
broad in its radial dependence being composed of a
superposition of normal modes. The plasma rotation is
not necessary for the existence of such eigenmodes, but it
can affect substantially their type and structure. In
particular as it was shown in Ref. [26], poloidal plasma
rotation changes the criterion of existence of global drift
modes from s < 1=2 for !0 > 0 to s > 1=2 for !0 < 0: For
further analytical progress with the set of equations (6), we
have to replace the discrete set of functions �lðxÞ by a
continuous function of two variables �ðx; lÞ; or to truncate
the set of equations. This can be done by applying the so
called strong and weak coupling approximations. The
corresponding results are presented in the following two
sections respectively.

3. Strong coupling approximation

Assuming that a large number �l 	 1 of poloidal
harmonics are coupled due to equilibrium toroidal varia-
tions, we can consider Eq. (6) as an infinite set of coupled
equations for the harmonics �l with l ¼ 0;�1;�2; . . . :
Then, following Horton et al. [8], in the limit m0 	 �l 	 1
that is called the strong limit, we replace the discrete set of
functions �lðxÞ by a continuous function �ðx; lÞ of two
variables using the ansatz

�l�1ðxÞ ! �ðx; lÞ �
@�ðx; lÞ

@l
þ
1

2

@2�ðx; lÞ

@l2
: ð8Þ

Substituting Eq. (8) into Eq. (6) we obtain a partial
differential equation with respect to x and l; i.e., a
two-dimensional (2D) drift mode equation with radial
variable x and ‘‘poloidal’’ variable l: Since it is a
formidable task to find a general solution of the 2D
eigenmode equation, one should try to make some
simplifying assumptions to reduce essentially the problem
to a one-dimensional (1D) one. The assumption that the
basic structure of a drift mode resembles a quasi-mode (see
review by Tang [1] and references therein), i.e., a mode
which can be represented as a sum of normal modes with
components centered on different rational surfaces, allows
the reduction of the 2D equation to a 1D one by choosing a
special combination of two variables x and l: Here, we
consider the special case of solutions �ðx; lÞ ¼ �ð yÞ with
y ¼ x� l=k�s; which permit us to reduce the obtained 2D
eigenmode equation to the following ordinary second order
differential equation,

ða0 þ a1yÞ�
00ð yÞ þ ðb0 þ b1yÞ�

0ð yÞ

þ ðco þ c1yþ c2y
2Þ�ð yÞ ¼ 0 ð9Þ

with coefficients given by

a0 ¼ 1þ A6ðk�sÞ
�2

þ 2A8ðk�sÞ
�1; a1 ¼ 2A9 � A7ðk�sÞ

�1;

b0 ¼ A1; b1 ¼ �A2k�s; c0 ¼ A3 þ 2A6;

c1 ¼ �ðA4 þ 2A7Þk�s; c2 ¼ A5ðk�sÞ
2: ð10Þ

Supposing !0 � !�; subsonic rotation velocities V�;’ < 1;
and using the plasma parameter ordering written below (in
dimensional form)

� � rn � r0 and r2n=�R � 1; ð11Þ

one can see that the term a1y in Eq. (10) is much smaller
than a0 even for the upper limit values of the variable y;
namely y � r0: This ordering seems to be realistic for the
edge region of modern tokamaks.

For example, in the distance of a few cm within the last
closed magnetic surface of the DIII-D tokamak [11]
rn ’ 3 cm; � ’ 2 cm and r0 ’ 20 cm while R ’ 1:75m (the
dimensional parameters).

This implies that we can divide Eq. (9) by ða0 þ a1yÞ and
expand over the small parameter a1y=a0 � 1: After some
algebraic manipulations, we reduce Eq. (9) to a second
order ordinary differential equation

�00ð yÞ þ Pð yÞ�0ð yÞ þQð yÞ�ð yÞ ¼ 0 ð12Þ

with the polynomials Pð yÞ and Qð yÞ given as combinations
of the coefficients (10),

Pð yÞ ’
1

a0
b0 þ b1 � a1b0=a0ð Þy½ 
;

Qð yÞ ’
1

a0
c0 þ c1 � a1c0=a0ð Þyþ c2y

2
� �

:

Introducing the function �ð yÞ by

�ð yÞ ¼ �ð yÞ exp �
1

2

Z y

P y0ð Þ dy0


�

we eliminate the first derivative term. Then, for the new
variable  ¼ yþ ðc1 � c0a1=a0Þ=2c2; Eq. (12) takes the
form

d2�

d 2
þ ð	� 
 2Þ�ð Þ ¼ 0 ð13Þ

with the parameters

	 ¼
k�

a0rn!0

� 1�
!0

!�

þ "0 þ "0rnV 1� i�ð Þ ��þ i
�

k�
rn!

0

� �
ð14Þ

and


 ¼ �
1

a0

k�s

!0Rq0

� �2

ð15Þ
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where

a0 ¼ 1þ
"0

2k�s2!0
2 2s� 1ð Þr0

�1 þ rn
�1 þ V 1� i�ð Þ

� �
ð16Þ

and

� ¼
V�
r0

1þ ��ð Þ �
V’
q0R

�’: ð17Þ

In the above expressions we have retained only the first
order corrections with respect to ": Equation (13) is an
extension of Eq. (23) in Ref. [26], which includes the effects
of toroidal rotation. It has the form of the Schrödinger
equation, but the parameters (14) and (15) contain small
imaginary parts. Nevertheless, we shall use this analogy for
the clearness of further interpretations. Equation (13) has
two types of solutions depending on the sign of the
parameter 
: For 
 > 0 this equation describes localized
states in a potential well (global eigenmodes), whereas the
case 
 < 0 corresponds to a potential hump which results to
unbound states (propagating eigenmodes). These two types
of solutions are analyzed in the next two subsections.

3.1. Global modes

A global mode has a structure of a non-propagating quasi-
mode [33] that can be considered as a sum of degenerated
normal modes localized on different magnetic rational
surfaces. It has a substantial radial extent and includes a
large number of rational surfaces due to toroidal coupling.
This mode corresponds to the bound state in a potential
well which is marginally stable. The dissipative effects, for
the energy levels of such a well, lead to a broadening of the
spectral lines, without changing the dispersion properties.
Therefore, in the analysis of the global modes, we can omit
the phase shift � which was introduced to represent the
electron dissipative mechanism effects. So, through this
subsection, we imply that 	 ¼ Re½	
 and 
 ¼ Re½

 for Eq.
(13). In the case of 
 > 0; Eq. (13) has the form of a
Schrödinger equation with a parabolic potential well. It is
well known that the eigenfunctions of this equation are
given through �N / expð�

ffiffiffi



p
 2ÞHNð


1=4 Þ; where HN is
the Hermite polynomial of the Nth order and the
corresponding eigenvalues are defined by the dispersion
equation

	=
ffiffiffi



p
¼ 2Nþ 1; N ¼ 0; 1; 2 . . . ð18Þ

The necessary condition for the global mode existence in
the strong coupling approximation is 
 > 0; i.e., a0 < 0 as
follows from Eq. (15). This inequality is satisfied for the
positive Doppler-shifted eigenfrequencies !0 > 0; when

V þ rn
�1 þ 2 2s� 1ð Þr0

�1 < 0:

We have to consider the probability of existence of global
drift modes in this case as very low, for the considered
plasma parameter ordering (11) at least in the limit of
subsonic plasma rotation velocities. For the case of
negative Doppler-shifted frequencies, !0 < 0; the condition

of global drift mode existence a0 < 0 is rewritten as

j!0j

!�

<
"0rn
2s2

1þ k�2
�

	 

V þ rn

�1 þ 2 2s� 1ð Þr0
�1

� �
:

This inequality is satisfied easily for the ordering (11),
and one can see that the role of plasma rotation in the
formation of the global drift mode is much more crucial
than that of magnetic shear. Thus, for the considered
plasma parameter ordering, the global drift eigenmode
existence may be attributed to the negative Doppler-shifted
frequencies (i.e., ! < k � v0). In this case inserting Eqs. (14)
and (15) for 	 and 
 respectively into Eq. (18), we obtain
the following dispersion equation for the global mode,

j!0j

!�

þ 1þ "0rnV �� ¼ 2Nþ 1ð Þ
rns

q0R

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
"0

2j!0jk�s2
V þ rn�1 þ 2 2s� 1ð Þr0�1½ 
 � 1

r
: ð19Þ

The latter takes the form of a cubic algebraic equation for
the value � ¼ j!0j=!�;

�3 þ 2 1þ ð Þ�2 þ 1þ 2þ Lð Þ�� �L ¼ 0 ð20Þ

where the following parameters,

 ¼ "0rnV ��; ð20aÞ

L ¼ 2Nþ 1ð Þ
2 rns=q0Rð Þ

2; ð20bÞ

� ¼
"0rn
2s2

1þ k�2
�

	 

2 2s� 1ð Þr�1

0 þ r�1
n þ V

� �
ð20cÞ

are introduced. It is a formidable task to find the general
solutions of Eq. (20), since the coefficients L and � vary in
wide ranges depending on the values of N and k�:However,
one can easily obtain an approximative solution for�� 1:
In this limit, the first two terms of Eq. (20) are negligible
and we find

� ’ �L= 1þ 2þ Lð Þ: ð21Þ

The requirement of smallness of � is ensured either for
arbitrary L in the limit �� 1 or for substantially small
values of k�; with small numbers N; when L � 1: It should
be noted that the solution (21) is valid even for the values
� � 1 in the limit L 	 1:

3.2. Propagating drift waves

In the case of 
 < 0; the potential of the Schrödinger
equation (13) becomes a hump and this equation describes
drift waves which leave the magnetic surface, where they
were generated, and propagate radially. Since a propagat-
ing wave can be substantially affected by dissipative
processes, we retain the imaginary corrections due to the
phase shift � and hence, Eq. (13) is a complex one.
Introducing the new variable z ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
ij
j1=2

p
 ; we transform

Eq. (13) into a Weber-type equation [34],

@2�

@z2
þ

	

i
ffiffiffiffiffi
j
j

p � z2
� �

� ¼ 0 ð22Þ
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which has eigenfunctions of the form �� / expð�z2ÞH�ðzÞ;
where H� is the complex Hermite function with the index �
defined by the equation 2�þ 1 ¼ 	=i

ffiffiffiffiffi
j
j

p
: If � ¼ N; with

N ¼ 0; 1; 2 . . . ; the Hermite function H� coincides with the
Hermite polynomial HN: The requirement that the solution
of the Weber equation has to be limited in the whole z
interval including the infinite points, leads to the condition
that the parameter � has to be a real integer [34]. So, the
eigenvalues of Eq. (22) are defined by the dispersion
equation

	=i
ffiffiffiffiffi
j
j

p
¼ 2Nþ 1: ð23Þ

It should be noted that the binding of the solution in the
whole z interval corresponds to the outgoing boundary
condition as was introduced by Perlstein and Berk [3]. The
necessary condition Re½

 < 0; for propagating drift wave
existence is reduced to Re½a0
 > 0: This is easily satisfied for
positive Doppler-shifted eigenfrequencies, !0 > 0; but
practically not for !0 < 0; due to the reason that global
modes are impossible for !0 > 0; (see previous subsection).
Thus, we may attribute the propagating drift waves
to the case of positive Doppler-shifted eigenfrequencies
!0 > 0 ð! > k � vÞ: The dispersion equation for these waves
is obtained by substituting Eqs. (14) and (15) for 	 and 

respectively, into Eq. (23),

!0

!�

� 1� "0 � "0rnV 1� i�ð Þ þ�� i
�rn!

0

k�

¼ �i 2Nþ 1ð Þ
rns

q0R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

"0
2!0k�s2

V þ rn�1 þ 2 2s� 1ð Þr0�1½ 


r
:

ð24Þ

Here, the eigenfrequency !0 has complex value, with
Re½!0
 ¼ !0

0 giving the characteristic frequency and
Im½!0
 ¼ � representing the growth (� > 0) or the decre-
ment rate (� < 0) of the propagating wave. Using the
ansatz !0 ¼ !0

0 þ i�; with j�j < !0
0; we separate the

dispersion equation (24) into real and imaginary parts.
From the real part we determine the frequency of the
propagating drift mode

!0
0

!�

’ 1þ ; ð25Þ

and from the imaginary part of Eq. (24), we find the
growth/damping rate of this wave

�

!�

’
�ð1þ Þ

1þ k2�
� 2Nþ 1ð Þ

srn
q0R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

!�

!0
0

�

r
: ð26Þ

The situation when electrostatic potential lags behind the
density � > 0 corresponds to the destabilization of the drift
wave. The resulting microinstability is usually referred to
as ‘‘universal drift instability’’ [31] and it is described by the
first term in the right hand side of Eq. (26). The stability of
the mode is now influenced by the sheared plasma rotation.
Indeed, as can be seen from Eqs. (17) and (20a), for

subsonic rotation velocity and strong velocity shear (i.e.
�� ’ r0L

�1
E ), the parameter  can be approximated by

 ’ �V��=LE; where the ‘‘shear length’’ LE is given by

L�1
E ¼ j@ lnðv0�=rÞ=@rjr¼r0 : If the ratio V�rn=LE which

characterizes the steepness of the flow shear, is held fixed
and larger than one, then  < �1 and the universal drift
instability will essentially be suppressed by the poloidal
shearing. Similar result can be obtained from the estima-
tion of the eddy decorrelation rate of turbulence due to
poloidal flow shear. As it was predicted recently, from a
two-point non-linear analysis [35], the reduction of the
radial correlation length below its ambient turbulence
value and the consequent fluctuation suppression occur
when the shearing rate !s ’ Lr@ðv0�=rÞ=@r

�� ��
r¼r0

(Lr is the
radial correlation length of the ambient turbulence) exceeds
the decorrelation rate of the ambient turbulence �!T:
Assuming that �!T scales like the diamagnetic drift
frequency �!T � !� (this assumption is supported by
fluctuation measurements [36], as well as by gyrokinetic
and gyrofluid simulations [37]), the condition of flow-
shear-induced suppression of turbulence is given by

!s

�!T
�

Lr

r0

rn
LE

V� > 1: ð27Þ

Theories of the toroidal drift instability turbulence
indicate for the scaling of the radial correlation length,
Lr ’ �1��r�m (rm is the minor radius of the tokamak), that �
ranges 1=2 < � � 1: Hence, one can estimate the radial
correlation length Lr by a length typically of the order of
minor radius. Hence, the fluctuation reduction (!s > �!T)
takes place if V�rn=Le > 1: This coincides with the
condition of stabilization of drift instability by flow shear
as derived above. Using the approximation LE ’ � for the
‘‘shear length’’ [35], we conclude that the condition (27) can
easily be satisfied.

For weak magnetic shear the characteristic length of the
mode structure may become smaller than the shear length.
In this case the velocity shear does not distort the mode
structure any longer [38] and the universal instability may
be stabilized by the magnetic shear. This stabilization effect
is described by the second term in the right hand-side of
Eq. (26). It is worthwhile to note that these results are
obtained for the ordering described in Eqs. (11) and thus
are related to edge turbulence. In the center of a tokamak,
the shear rate of the poloidal plasma rotation is usually
much less than the linear mode growth rate [39] and hence
does not play any substantial role on the drift wave
stability.

4. Weak coupling approximation

The weak coupling approximation implies a truncation of
the harmonic expansion (5) and hence, of the set of Eq. (6).
However, we will simplify Eq. (6) before proceeding
further. First of all, we note that the coefficients in the
terms containing harmonics �l�1 are of the order of "
compared to the coefficients in the terms with �l: One can
also see this in Eq. (3) where the terms with cos � and sin �;
which are responsible for the appearance of the harmonics
�l�1; contain the small parameter ": Moreover, by
assuming that in the transition from a given rational
surface to its nearest neighboring surface, the change of the
value ðl� k�sxÞ is of the order of unity, we see that the
ratios A7=A6 and A9=A8 are of the order of "0 � !0: So, we
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can neglect the terms containing A7 and A9 in Eq. (6), since
they are of the order of "2: Furthermore by introducing a
new potential function by

�ðxÞ ¼ UlðxÞ exp �
1

2

Z x

½A1 þ ðl� k�sx
0ÞA2
 dx

0

� �

we eliminate the first derivative terms in Eq. (6). In the
following, we truncate the harmonic expansion at l� 1;
restricting ourselves in the equations for the fundamental
harmonic l ¼ 0;

U00
0 þ A3 �

A2
1

4

� �
� A4k�sxþ A5ðk�sxÞ

2

� �
U0

¼ �A6ðU1 þU�1Þ � A8 U0
1 �U0

�1

	 

þ 1

2A1A8ðU1 �U�1Þ; ð28Þ

and for the two nearest harmonics l� 1;

U00
�1 þ

��
A3 �

A2
1

4
þ A5 � A4

�
� ðA4 � 2A5Þk�sx

þ A5ðk�sxÞ
2

�
U�1 ¼ �ðA6 �

1
2A1A8ÞU0 � A8U

0
0;

ð29Þ

where we have neglected small terms considering that the
right-hand side of Eq. (28) is a small correction of the order
of " to the left hand side. In the case of weak coupling with
the nearest harmonics only, we can assume following
Horton et al. [8], that the variation of the variable x is
limited by the distance between the neighboring rational
surfaces �x � ðk�sÞ

�1; and thus, the second derivative term
U00

�1 may be estimated as U00
�1 ’ ðkrÞ

2U�1; where
kr � r�1

0 � k�: In addition to this we neglect the coeffi-
cients A4 and A5 as small compared with A3 and A1: These
approximations allow us to write Eq. (29) in the form

A3 �
A2

1

4

� �
U�1 ¼ � A6 �

1
2A1A8

	 

U0 � A8U

0
0:

In what follows, we substitute the latter equation into Eq.
(28), we introduce a new function �wðxÞ by U0ðxÞ ¼
�wðxÞ exp A1A

2
8d

�1
0 x

	 

where d0 ¼ A3 � A2

1=4 þ2A2
8; and

we change to a new variable  w ¼ x� A4ð2A5k�sxÞ
�1: As

a result, Eq. (28) takes the form of Eq. (13) with parameters
	 ¼ 	w and 
 ¼ 
w; given by

	w ’ ½ðA2
3 � A2

1=4Þ
2
� 2A2

6
d
�1
0 ð30Þ

and


w ’ � A3 � A2
1=4

	 

A5 k�sð Þ

2d�1
0 : ð31Þ

Here and in what follows, we use the subscript ‘‘w’’ to mark
the variables and the parameters for the weak coupling
approximation in order to distinguish them from the
corresponding ones in the strong coupling approximation
in Section 3.

4.1. Global modes

As discussed in Section 3, Eq. (13) has the solutions of the
global type for 
 > 0: Substituting the apparent expressions
for the coefficients (7) into Eq. (31) and neglecting, as
previously, the imaginary corrections due to the phase shift
�; the inequality 
w > 0 takes the form

1

d1
<
!0

!�

<
1þ ð1þ 4d1d2Þ

1=2

2d1
ð32Þ

for the positive Doppler-shifted frequencies, !0 > 0; and

0 <
j!0j

!�

<
ð1þ 4d1d2Þ

1=2
� 1

2d1
ð33Þ

for the negative Doppler-shifted frequencies, !0 < 0; where

d1 ¼ 1þ
1

4r2n
1þ k2�
	 
�1

and d2 ¼
2r2n
R2

1þ k2�
k2�

:

Substituting the apparent expressions for 	w and 
w; (30)
and (31) respectively, into (18), we obtain the dispersion
equation for the global drift modes in the weak coupling
approximation,

!0

!�

d1 � 1þ�

� �2
� 1

2 "
2
0ð1þ rnVÞ

2

¼ ð2Nþ 1Þ
srn
q0R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!0

!�

d1 � 1

� �
!�

!0
d2 �

!0

!�

d1 þ 1

� �s
ð34Þ

where � has been defined at Eq. (17). One can see that the
interval (32) of the positive Doppler-shifted global drift
eigenmodes is very narrow. Further analysis show that for
the considered ordering (11) the positive solutions of Eq.
(34) contradict to the condition of positiveness of the left
hand side of the dispersion equation (34). Therefore, in the
considered limits positive Doppler-shifted global drift
eigenmodes do not exist. For the case of negative
Doppler-shifted eigenfrequencies, !0 < 0 of the range
(33), the dispersion relation (34) has approximative
solutions

j!0j

!�

’ d2 1þ ð2Nþ 1Þ�2 q
2
0R

2

r2ns
2

� ��1

: ð35Þ

The spectrum of these eigenfrequencies ranges from zero-
order line

j!0
0j

!�

’
2r4ns

2

q20R
4
ð1þ k�2

� Þ up to the accumulation point

j!0
1j

!�

’
2r2n
R2

ð1þ k�2
� Þ:

Thus, in the weak coupling approximation and for the
considered plasma parameter ordering, the existence of the
global drift eigenmode can be attributed to the negative
Doppler-shifted frequencies !0 < 0 (i.e., ! < k � v0).
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4.2. Propagating Drift Waves

The existence of propagating waves in the case of weak
coupling is attributed to the condition 
w < 0: Employing
Eqs. (7) and (31), we find that this condition is satisfied in
the intervals

0 < ð!0=!�Þd1 < 1 ð36Þ

and

ð!0=!�Þd1 > 1þ d1d2 ð37Þ

for the positive Doppler-shifted eigenfrequencies, !0 > 0;
and in the interval

j!0j

!�

> d2 ð38Þ

for the negative Doppler-shifted eigenfrequencies, !0 < 0:
The general dispersion equation for the propagating waves
has the form of Eq. (23) for 	 ¼ 	w and 
 ¼ 
w;

1���
!0

!�

d1 �
i�

1þ k2�

� �� �2
�
"20
2
½1þ rnVð1� i�Þ
2

¼ ið2Nþ 1Þ
srn
q0R

sgn d2 þ
!0

!�

�
!02

!2
�

d1

� �

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!�

!0
1�

!0

!�

d1

� �
d2 þ

!0

!�

�
!02

!2
�

d1

� �s
: ð39Þ

From the real part of (39) we obtain two approximative
solutions for the frequency ranges of (36) and (37),

!0
0

!�

’ 1���

ffiffiffi
2

p

2
"0ð1þ rnVÞ

" #
d�1
1 ð40Þ

where � has been defined by (17). The solution with the
upper sign contradicts to the right-hand side of inequality
of (36) since � � "0 for the considered ordering (11) and
for subsonic plasma rotation velocities. Thus, the disper-
sion relation for the propagation drift waves with
frequencies in the range (36) corresponds to the case of
lower sign of (40). Similarly, one can see that dispersion
relation for the range (37) corresponds to the case of the
upper sign of (40). From the imaginary part of Eq. (39), we
find

�

!0
0

’
�ð1��Þ

1þ k2� þ ð1=4r2nÞ
� Nþ 1

2

	 
 srn
q0R

ð41Þ

for both signs of (40), which is similar to Eq. (26) obtained
in the case of the strong coupling approximation. Again,
the ‘‘universal drift instability’’ described by the first term
in the right hand side of Eq. (39) may essentially be
suppressed by the strong velocity shear ð�� ! r0=LEÞ for
subsonic plasma rotation velocities as it was discussed in
Section 3.2. On the other hand if the condition (27) is not
satisfied, then, the propagating drift wave will experience
the magnetic shear damping described by the second term.
Finally, for the negative Doppler-shifted frequencies of the

range (38), we see that the dispersion relation (40) does not
have any solution for the accepted ordering.

5. Conclusions

In conclusion, we have studied the effects of sheared
plasma rotation on the structure of toroidal drift eigen-
modes, for low-� plasma in a tokamak with concentric,
circular magnetic surfaces and large aspect-ratio. The two
fluid model is used and the performed analysis is based on a
consistent derivation of the eigenmode equations for
collisionless drift oscillations in terms of the usual drift
ordering, where the toroidal coupling effects appear due to
ion rB and curvature drifts.

Both strong and weak coupling approximations are
implied in order to take into account the toroidal coupling
of local normal modes centered on neighboring rational
magnetic surfaces. In the strong coupling approximation it
is assumed that a large number of poloidal harmonics is
coupled due to toroidicity, whereas in the weak coupling is
considered that the given harmonic is coupled only with its
nearest neighbors. It is shown that two types of eigenmodes
exist for both approximations. The first one corresponds to
global drift modes that have a structure of a quasi-mode
localized in both radial and poloidal directions with a small
wave number component along the confining magnetic
field. This mode corresponds to the bounds states in a
potential well which is marginally stable. The other type of
eigenmodes corresponds to the propagating drift wave,
which leaves the magnetic surface, where it was generated,
propagates radially and experiences the shear damping.

The results obtained in both strong and weak coupling
approximations are similar qualitatively. The Doppler-
shifted eigenfrequency varies from one magnetic surface to
another due to sheared poloidal and toroidal plasma
rotation velocities, whereas its sign depends on the values
and directions of the velocities. For the considered plasma
parameter ordering, the existence of the global drift mode
is attributed to the case of negative Doppler-shifted
eigenfrequencies, whereas the propagating waves are
possible for positive Doppler-shifted eigenfrequencies.
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