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Large-scale flows and coherent structure phenomena in flute turbulence
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The properties of zonal and streamer flows in the flute mode turbulence are investigated. The
stability criteria and the frequency of these flows are determined in terms of the spectra of turbulent
fluctuations. Furthermore, it is shown that zonal flows can undergo a further nonlinear evolution
leading to the formation of long-lived coherent structures which consist of self-bound wave packets
supporting stationary shear layers, and thus can be characterized as regions with a reduced level of
anomalous transport. @005 American Institute of PhysidDOI: 10.1063/1.1883183

I. INTRODUCTION drodynamic generalization of this resonant type flow insta-
) )  bility also exists leading to the generation of large-scale
Low-frequency electrostatic turbulence, driven by spatiakys\ys. The nonlinear evolution of these instabilities can lead

gradients, is believed to be the dominant source of an0mag, {he formation of long-lived coherent structures in the drift-

lous transport in magnetically confined fusion plasma. SPeyave zonal flow syste?ﬂ which constitute paradigms for

cial emphasis has been given lately on the properties Gfiormittency in drift wave turbulence and manifests itself by
large-scale anisotropic flows generated by the drift-type tur-

- . X regions with a reduced level of anomalous transport.
bulence, due to the critical role they play in the regulation of

low-f drift instabilit q iy of the | In this work, we investigate the interactions and the as-
ow-requency dritt insta '2' €S and consequently T IN€ 1eV-, iated instabilities between the large-scale flows and the
els of turbulent transpoiLt. The spontaneous generation of

. . background magnetic-curvature-driven flute turbulence. The
large-scale flows driven by electrostatic wave turbulence has . : . .
magnetic-curvature-driven flute instability belongs to the

been experimentally observed in plasma discharges in vari- A S
n y P g lass of reactive instabilities, so that no dissipation is needed

ous machines, e.g., in Texas Experimental Tokamak, in thg "~ L
reversed field pinch experiment, and in the doublet 1lI-D or its devel_opment and growth. In the flute I|n(|kH—_0),
tokamak(DIII—D).3'4 Zonal (or poloida) flows correspond to plasma particles do not follow the Boltzmann relation and

structures which spatially depend on the radial coordinate cannot cancel the charge separation mdu_ced by the dlffe_r-
(the coordinate along the axis of plasma inhomogeheity ence between the perturbed electron and ion curvature drift

while radial flows or streamers are radially elongated strucvelocities. This leads to the development of an electric field

tures which spatially depend on the poloidal coordir;a?e comp_c_ment pelrp.e;ndicular to tlhe mag.netic field direction that
In tokamak plasmas, zonal flows have the ability to limit @MPplifies the initial perturbation, which becomes unstable.
the radial size of turbulent eddies through the shear decorrd-h€ flute instability is also termed interchange instability, as
lation mechanisrfi,and hence to regulate turbulent transport.it tends to interchange “flux tubes” of different pressure
As a consequence, the high plasma confinement modes af@using convective transport. Thus, it is considered to be one
attributed to the presence of the zonal flows. Streamers, Oﬂf the most dangerOUS instabilities in thermonuclear fusion
the other hand, are ineffective at inhibiting radial transportdevices.
and, due to their long radial correlation length, may lead to ~ The generation of large-scale flows in flute turbulence
enhanced or bursty levels of transpbfthe flow formation —has been studied analytically in Ref. 13 and numerically in
is commonly attributed to several mechanisms such as ReyRef. 14, where it was shown that streamers can be generated
nolds stresSor modulatiofl instabilities. The radially depen- through both linear and nonlinear mechanisms, while zonal
dent zonal flows, as well as the poloidally dependent streanflows can be excited only nonlinearly. In contrary to the
ers, have relatively larger structure, and thus may dominatgsual drift wave turbulence, the diamagnetic component of
the turbulent transport in magnetized plasmas. Therefore, thidae polarization drift nonlinearity, attributed to the finite ion
study of the interplay between different spatiotemporalLarmor radius, becomes important and leads to a direct cas-
scales of turbulence is rather important. As it was shown focading of the fluctuation energy towards short scalddn-
the case of drift wave—zonal flow turbulence, zonal flows carder some conditions, this may result in the suppression of the
be spontaneously generated as a result of a resonant interdarge-scale flows.
tion between the flow and the modulation of the small-scale  The interaction between disparate scales of flute turbu-
turbulence'®!* Later on'? it was shown that a coherent hy- lence can be described by employing the evolution equations
for the mean flow and the wave kinetic equation for an ac-
dElectronic mail: sandberg@central.ntua.gr tionlike invariant of the wave turbulence, with slowing vary-
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ing parameters due to the mean sheared flows. The solutiatensity by the unperturbed density. Furthermorepy=vge

of these equations results in the determination of a stability-vg;. Linearizing Egs.(1) and (2), one obtains the linear
criterion in terms of the spectra of the flutelike electrostaticdispersion relation of the magnetic-curvature-driven flute
oscillations. Furthermore the formation of coherent strucimodes given by

tures, which corresponds to propagating shear layer “domain K _ 5
walls” between regions of different flow velocities, is de- = - M(l +erll _%) 3)
picted. 2 T

The rest of the paper is organized as follows; in the
following section, we briefly present the model of equations_

that degcrlbe the flute n_10des._ _Th_e evolqﬂon Of, Iarge-scalcaf the linear instability perpendicular wave number as the
flows driven by the flute instability is considered in Sec. IlI, modes of finite poloidal wave number with <k, are lin
~ r -

and in Sec. IV we present the properties of the zonal an%arly unstable
streamer flows. Finally, the summary and conclusions follow '
in Sec. V.

Here, e= (Uni+vge)/(vni_vge) >0 and k(2:r54vg(vne
vgg/(umwggz determines the critical for the development

IIl. COUPLED DYNAMICS OF FLUTE MODE

TURBULENCE AND LARGE-SCALE FLOWS
Il. BASIC EQUATIONS o _
For the description of the dynamics of large-scale

Flute (or interchange modes are low-frequencyo  plasma flows that vary on a longer time scale compared to
<) electrostatic oscillations of a nonuniform magneto-the small-scale fluctuations, a multiple scale expansion is
plasma which are elongated along the magnetic field angsyally employed assuming that there is a sufficient spectral
may become unstable due to the combined effects of thgap separating the large- and the small-scale motions. In

density inhomogeneity and the curvature of the magnetiQNhat follows,[ab(r_,t),ﬁ(r,t)] denote the small-scale fluctua-

field lines, which always exist in the magnetic confinement )
devices. To describe flute modes we use the two-fluid'©"S and[n(r,t),&(r, )] the large-scale ones. By averaging

equationsl,6 for a weakly inhomogeneous magnetized plasmrqu'(l) and(2), we get

Wlth characterlstlc inhomogeneity s_cale lendithalong the = Uniﬁy)VZﬁP + 0N = -RP-R,, (4)
radial axisx. For the slab geometny=(x,y), we model the
curved magnetic field byB(x)=By(1-x/R) and b=2 _ — =
-(z/R)%, whereB(x) is the magnitudeb is the unit vector, (6 + vgeA)N + (Une ~ Vge) dy® = {1, D}, (5
andR(>L,) is the curvature radius of the curved magneticynere R(b:{&) Vz(})} is the standard Reynolds force due to
field lines. the polarization drift nonlinearity andR"=7{n, Vi&b}

Assuming flute-type (k;=0), quasineutral, low- e i )
frequency, electrostatic oscillations, it is found that the®7tV.n. V. ®}is the diamagnetic Reynolds force due to the

magnetic-curvature-driven flute modes are described by thiluctuating ion pressure and it is a finite ion Larlmor radius
following set of dimensionless coupled equations for the per-eﬁeCt' The equations above describe the for_mguon of large-
turbed electrostatic potentidt and densityn:t7 scalg structures by the flute tyrbulence. This is en;ured .by
the inverse cascade properties of the polarization drift

(0 = vidy) V3 P +vgd,n = 7di{V D, n} +{V] D, D}, nonlinearity’® However, the diamagnetic component of the
(1) polarization drift nonlinearity leads to direct energy cascade

towards short scal€s.Hence, the description of the forma-

(9 + vgedy)N+ (Vpe = Vg 9, P = {Nn, D}, (2)  tion of large-scale flows during the temporal evolution of

. ) flute turbulence is more complicated compared to the elec-
where{f,g}=2x Vf-Vg denotes the Poisson bracket. The {;qstatic drift wave turbulence.

first equation originates from the quasineutrality condition Equations(1) and(2) conserve the following energy in-
V. [n(w;-0ve)]=0 and the second one results from the elec'tegral:

tron continuity equation. Here, we have neglected the effect
I ) {

of temperature gradient and the collisional viscosity of the
stress tensor. The system of equatigh)sand(2) generalizes
previous descriptions of the magnetic-curvature-driven flute
instability™® as it includes rigorously the diamagnetic drift,
vnj=Ti/(eBL,), the magnetic curvature drift, vy, which shows that the modulations of flows and turbulence
=2T;/(eRB), of both electron and ion fluidg§j=i,e), and  are coupled and cannot be addressed in isolation. The propa-
similar to Refs. 18 and 19, the finite ion Larmor radius effectgation of the flute modes in weakly inhomogeneous media
which is described here by the term proportional 0 can be described by employing the wave kinetic equation for
(=T,/T,) in the right-hand sidérhs) of Eq. (1). For details on  the wave-action density,(r,t) in ther-k space. The source
the derivation of these equations, we refer to Refs. 13 andf the slow spatial and temporal variations are the large-scale
17. In Egs.(1) and (2) the electrostatic potential has been flows induced by the velocity and the density perturbations.
normalized byT./e, the time by the ion cyclotron frequency The wave kinetic equation for the generalized wave action
wg, the length scales by the ion Larmor radips cs/ wg; allows us to determine the modulationsMf(r,t) due to the
defined at the electron temperatlamerecnge/mi), and the mean flow. In the flute mode turbulence, we deal with two-

2+ 72 - Zne” Doer vy )2 4 (V&:)Z]}dx dy
Ug
= const, (6)
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field (® andn) perturbations and thus, we have to determinequency which includes the linear growth rate and a nonlinear
a proper combination of these fields in order to form theshift andV is the group velocity defined by 4= dw,/ k. In
action invariant. The method of constructing the adiabatia weakly nonlinear regime it isR(Q,q, dw,) — 78(Q
invariant has been previously discussed in Ref. 21. By intro—q-Vg), while for a wide fluctuating spectrum
ducing the variableV, =n,+ o, ®, and following the standard R(,q, dwy) —1/5w,. The broad spectrum of large-scale
method, the parametey, is determined to bexk:ki[(vm structures regulates the flute turbulence by the process of
+vgg)/2vg](1—ivk§r/ki—1) for the case under consideration. random shearing which is now understood to be a key
As a consequence, the generalized action density is found twechanism that governs the self-regulative and saturation

be mechanism of the flute mode turbuleriée.
. 2|2 The process of the random shearing of the flute turbu-
Ny = |[W, 2= k‘i(vn'—v%> = -1 |d % (7)  lence can be expressed in terms of the diffusion of the sta-
Ug ki tionary spectra in th& space. Indeed, substituting E4.2)

into Eq. (10), the following diffusionlike equation foNﬁ is

The WKB-type wave kinetic equation which describes the .
obtained:

evolution of the generalized action invariai{(r ,t) in the
flute mode turbulence due to the interaction between the aNE 9 aNE

mean flow and the small fluctuations is givertby Tt kP 0 13
NL NL

N + INgdan ™ dr INg = % Ng— Ay N2 (8) F'o'r the case of shearing by a zonal fléay>q,), thg diffu-

a G ar ok sivity in_ the radial wave number is Dy

The nonlinear frequency is defined throughl" = w,+k -V, ;(q§k§/4)|a|2R(Q,qx,5wk). Similarly, for the case of shear-
where the nonlinear shift is due to the presence of the largdd by & streamer flowg, > g, the diffusivity in the poloidal
scale flows and it is given by =V +V,, where wave number iy =(qyk/4)[®’|*R(Q,qy, swy) as in Ref.
13. Here,®'=®d+7n/2. In what follows, we focus on the
1_— T o— i i i
Ve=—=(VD X2, V,=--(VnX2). (9)  dynamics and the properties of the large-scale flows in the
2 4 presence of flute mode turbulence.

The nonlinear frequency shiffw, in the rhs of Eq(8) rep-

resents the part of the nonlinear interactions among the flute

modes which balance the linear growth rate. IV. LONG TERM DYNAMICS OF LARGE-SCALE
Considering small deviations of the spectrum functionFLOWS

from the equilibrium, we may write the adiabatic action in- Calculating the averaged Reynold stress forces in Eqs
. N0, N 0_ . .

varlg_nt _as asum =N+ Ny, whereNk-<Nk>ge§cr|bes the (4) and(5), we obtain the equations describing the evolution

equilibrium part of the turbulent spectrum aNg is the per-  of the mean flows. First, we consider zonal flows with

turbed part. For the equilibrium part, we may consider aq(ay, Gy) =d(ay, 0). The resulting equations become decou-
balance between the terms in the right-hand side of(8q. pled and can be written, similar to Ref. 13, as

which corresponds to the case of stationary turbulence and  _

gives N522yk/Awk. Using the standard quasilinear theory, z9<1)qx_ Vni o 1% 120
the quasilinear equation foi) has the following form: Pl I E [yf* d%, (14)
g
NS [ o N _
—X_{ Z(k-Vo—=)=0. (10) ng
ot

The perturbed density of the “quasiparticl&;’ can be cal-
culated by the linearized wave kinetic equation, for a uni-
form equilibrium N2/ ar =0, and becomes

The second term in the right-hand side of Ety) is attrib-
uted to the ion diamagnetic drift and to the finite ion Larmor
radius. As one may see, the ion diamagnetic effects may lead
aNk 9 INg 0 ﬁNE ~ to the suppression of the zonal flow generation. Adding the
T oletk 'VO)Tr ~ ootk Vo =t = - Nk equations above and using E¢8) and(9), we get a relation
which connects the zonal flow velocity with the spectra of
(11 the short-scale fluctuations,

In the local approximation, i.edwy/dr =0, Eq.(11) can be Noy 14

solved by assuming that the large-scale variation of the ac-  — = =5=" Ky £ (K, )| W 2dk. (16)
tion density is of the formN,~exdigr—iQt]. This yields
the resonant part of the distribution Here{(k,) is defined by
~ d AN? 1 v 2 v K2 -
NiEs= —~(k - Vo)— *R(Q,, 6wy). (12) (k)= 5 o (_J_l> s
kK " or o gk k T2 (0 + g\ K vy K2

Here R is the response function defined IR((),q, dw,) Closure conditions for thé&\, modulations in terms of the
=i/(Q-q-Vg+idwy), dwy is the total decorrelation fre- mean flow are provided by E@8).
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In the presence of a turbulent induced zonal figmMgy ~ 1 dou\N L 9 | [ 9w\ TaNe
N2 = (Vo) =] —| | == ] —=*
=0 andVy,=0), the resonant response of the spectrum modu- k= 5(kVoy) :
Lo 2 Iy ) Ik \ k) Ky
lation is given by T
o, N Including the total responsey,=Ng+N"+N? into
N°= —(kyvoy)—kkR(Q,qx, Swy). (18  Eq. (16), we obtain, similar to the case of the drift wave-
ax I zonal flow turbulencé® a nonlinear equation which de-
Inserting Eq.(18) into Eq.(16) and assuming the large-scale Scribes the evolution of the zonal flow:

variations to be of the fornvy, ~ exgigyx], we obtain P # P 9 9
Uy~ Voy + b=V, — D=3 Voy = —— Voy- 21
&VO ., Xr7X2 Oy X&XZ Oy XX(?XB Oy It IX Oy ( )
gt _QXDxxVOy-
The coefficienth, in the nonlinear term is given by
This equation determines the stability of the zonal flow since 1 g0\ 1 3 [ { geon\"LaNO
) .. . . 3 k k k
=q2D,,. The coefficienD,, is given b b :—fk k (—) —[(—) —}dzk.
Vz£= 0y Dxx xx 1S 9 y x= 4 xky§( L) (9kx 07kx 6?kx &kx
1 Ny
Dy=-5 f kxkia—hg(kL)Rm,qx, Sy dk. (19) (22)

] It is interesting to see here that E®1) admits localized
As it turns out the zonal flow gets unstable whBp>0.  gq|ytions. Indeed, for the family of stationary solutions of the

This instability can be interpreted as a result of the resonar’tglpe Voy(X—Ugd), EQ. (21) can be solved by integrating
interaction between zonal flow and the small-scale modulagice Y

tions of the turbulence. In the fluid dynamics the analogous
mechanism of spontaneous excitation of large-scale struc-
tures from the small-scale turbulence is known as a negative
eddy viscosity. The sign dD,, depends strongly on the sign o . ,
of the productk(aNY/ dk)(2vg/v,~K2 ) along the distriby-  Considering now the boundary conditiolg, — Vi, Vo,=0
tion in thek space. for X— = apd Voy— Vay, Vo, =0 for x— oo, vzve de.termme
In the flute turbulence, where it is usuaky(dNO/ok,) € integration constanC=(Ugc+ Uy Vay+b,Vy, while Vs,

<0, the zonal flow may become unstable due to the contri= ~Vay~ (Uox+U) /b, Note that these boundary conditions
bution of the modes Witlki<2vg/vm, according to the in- correspond to the solitary wave solution with different

tegral (19). A part of these modes is expected to be linearly@SyMptotic values. This solution is known as “switching®
unstable since it may have relatively small wave number, i.e Vave Or “kink” soliton, in contrast to the solution with same
asymptotic value which is called “bell” solitof.The sim-

<K, S <AN37F+27-27 . . . . e
k<l2),k(i:{ tuljr?swi\lﬁr:[ha\tl::ﬁfi ZSJ:/vUnrJ” a\nstijflzsuszslequle(rl:g; Ttlhe plest solution of Eq(23) is of the kink type and is given by
modes that are responsible for F(m_)rjllnea) mst_abll_lty of Voy = %{Vly"' Vyy + (Viy = Vay)tanix b(Vyy = V) /2Dy, 1}
the zonal flow may have rather significant contribution to the (24)
value of the integral19). From the above, it follows that
whenk,(Np/ ok,) >0, it is more likely that the zonal flow is  This solution describes the transient region between two dif-
stable. It is worthwhile to point out here that this conclusionferent values of the flow. So, the cooperative effects of the
is qualitatively similar to that of the zonal flow stability in wave motion, steeping, and instability give the possibility to
the drift wave turbulence. the formation of stationary or moving kink solitons. The val-

For perturbations with) <q,Vg,, we can take into ac- ues of the parameters which determine the characteristic
count the nonresonant responﬂg) of the turbulent spectra lengths of these structures are determined by the value of the
over the perturbations of the induced zonal flow. In this casegroup velocity and by the spectral density of the background
the solution of the linearized wave kinetic equati@nyields  fluctuations. The above simple analysis demonstrates the

100 self-organization properties of the flute modes—zonal flow

N = (M) N coupled system.

N =k Voy : pled sy , : .

k) Ky The corresponding evolution equations for the streamer
flows g(ax,q,)=0q(0,q,) become

J
(qu + uX)VOy + bxvgy = DXXB(VOy +C. (23)

Substituting the later expression into Ed6), we obtain the

oscillation frequency of the zonal flo#), ;= -u,q,, whereu, — o -
is defined by (0 = Vnidhy) X Py + vgdyNgy = = &5[ keky (k) )| W |°d%k,
1 Jw “1HNO 25)
== kkz(—k> T (k)oK 20 (
Uy Zf S\ 9k, akxé( 1) (20)
However, as the amplitude of the zonal flow grows, non- (G + Ugedy)Ngy + (Ve = vge) dyPqy = 0. (26)

linear e~ffects become significant. Using the derived expréstpe resonance response of the action invariant spectra over
sion of N(kl), we determin(i iteratively from E(qll), the next streamer flows is given by the right-hand side of Ekﬁ) by
order nonlinear responsmff) for the nonresonant interac- applying a mutual permutation betwegrandy. Assuming
tions, the large-scale variations to be of the form
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[n(r 1), D(r 0], ~exdiqyy-iQgt], we obtain the following

Phys. Plasmas 12, 042311 (2005)

The nonlinear evolution of the large flows can lead to the

relation which describes the stability and the oscillation fre-formation of stationary coherent structures in the transition

quencies of the streamer flow:

s 2
IqMDXY q
Q= 2 +_2¥|:(Uni_UgQ

K2 ,
+ \/ (Uni + vge)z(l - ?) - q;D;, - 2|quyyug} :
Yy
(27)

The coefficientD,, is given by the right-hand sides of Eq.
(19) by applying a mutual permutation betweeandy. The

real part of this relation corresponds to the frequency of thggramme (Association

layer between surfaces of different flow velocities, modify-
ing significantly the transport properties of the turbulent
plasma.
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