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The properties of zonal and streamer flows in the flute mode turbulence are investigated. The
stability criteria and the frequency of these flows are determined in terms of the spectra of turbulent
fluctuations. Furthermore, it is shown that zonal flows can undergo a further nonlinear evolution
leading to the formation of long-lived coherent structures which consist of self-bound wave packets
supporting stationary shear layers, and thus can be characterized as regions with a reduced level of
anomalous transport. ©2005 American Institute of Physics. fDOI: 10.1063/1.1883183g

I. INTRODUCTION

Low-frequency electrostatic turbulence, driven by spatial
gradients, is believed to be the dominant source of anoma-
lous transport in magnetically confined fusion plasma. Spe-
cial emphasis has been given lately on the properties of
large-scale anisotropic flows generated by the drift-type tur-
bulence, due to the critical role they play in the regulation of
low-frequency drift instabilities and consequently of the lev-
els of turbulent transport.1,2 The spontaneous generation of
large-scale flows driven by electrostatic wave turbulence has
been experimentally observed in plasma discharges in vari-
ous machines, e.g., in Texas Experimental Tokamak, in the
reversed field pinch experiment, and in the doublet III-D
tokamaksDIII-D d.3,4 Zonal sor poloidald flows correspond to
structures which spatially depend on the radial coordinatex
sthe coordinate along the axis of plasma inhomogeneityd,
while radial flows or streamers are radially elongated struc-
tures which spatially depend on the poloidal coordinatey.5

In tokamak plasmas, zonal flows have the ability to limit
the radial size of turbulent eddies through the shear decorre-
lation mechanism,6 and hence to regulate turbulent transport.
As a consequence, the high plasma confinement modes are
attributed to the presence of the zonal flows. Streamers, on
the other hand, are ineffective at inhibiting radial transport
and, due to their long radial correlation length, may lead to
enhanced or bursty levels of transport.7 The flow formation
is commonly attributed to several mechanisms such as Rey-
nolds stress8 or modulation9 instabilities. The radially depen-
dent zonal flows, as well as the poloidally dependent stream-
ers, have relatively larger structure, and thus may dominate
the turbulent transport in magnetized plasmas. Therefore, the
study of the interplay between different spatiotemporal
scales of turbulence is rather important. As it was shown for
the case of drift wave–zonal flow turbulence, zonal flows can
be spontaneously generated as a result of a resonant interac-
tion between the flow and the modulation of the small-scale
turbulence.10,11 Later on,12 it was shown that a coherent hy-

drodynamic generalization of this resonant type flow insta-
bility also exists leading to the generation of large-scale
flows. The nonlinear evolution of these instabilities can lead
to the formation of long-lived coherent structures in the drift-
wave zonal flow system10 which constitute paradigms for
intermittency in drift wave turbulence and manifests itself by
regions with a reduced level of anomalous transport.

In this work, we investigate the interactions and the as-
sociated instabilities between the large-scale flows and the
background magnetic-curvature-driven flute turbulence. The
magnetic-curvature-driven flute instability belongs to the
class of reactive instabilities, so that no dissipation is needed
for its development and growth. In the flute limitski=0d,
plasma particles do not follow the Boltzmann relation and
cannot cancel the charge separation induced by the differ-
ence between the perturbed electron and ion curvature drift
velocities. This leads to the development of an electric field
component perpendicular to the magnetic field direction that
amplifies the initial perturbation, which becomes unstable.
The flute instability is also termed interchange instability, as
it tends to interchange “flux tubes” of different pressure
causing convective transport. Thus, it is considered to be one
of the most dangerous instabilities in thermonuclear fusion
devices.

The generation of large-scale flows in flute turbulence
has been studied analytically in Ref. 13 and numerically in
Ref. 14, where it was shown that streamers can be generated
through both linear and nonlinear mechanisms, while zonal
flows can be excited only nonlinearly. In contrary to the
usual drift wave turbulence, the diamagnetic component of
the polarization drift nonlinearity, attributed to the finite ion
Larmor radius, becomes important and leads to a direct cas-
cading of the fluctuation energy towards short scales.15 Un-
der some conditions, this may result in the suppression of the
large-scale flows.

The interaction between disparate scales of flute turbu-
lence can be described by employing the evolution equations
for the mean flow and the wave kinetic equation for an ac-
tionlike invariant of the wave turbulence, with slowing vary-adElectronic mail: sandberg@central.ntua.gr
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ing parameters due to the mean sheared flows. The solution
of these equations results in the determination of a stability
criterion in terms of the spectra of the flutelike electrostatic
oscillations. Furthermore the formation of coherent struc-
tures, which corresponds to propagating shear layer “domain
walls” between regions of different flow velocities, is de-
picted.

The rest of the paper is organized as follows; in the
following section, we briefly present the model of equations
that describe the flute modes. The evolution of large-scale
flows driven by the flute instability is considered in Sec. III,
and in Sec. IV we present the properties of the zonal and
streamer flows. Finally, the summary and conclusions follow
in Sec. V.

II. BASIC EQUATIONS

Flute sor interchanged modes are low-frequencysv
!vcid electrostatic oscillations of a nonuniform magneto-
plasma which are elongated along the magnetic field and
may become unstable due to the combined effects of the
density inhomogeneity and the curvature of the magnetic
field lines, which always exist in the magnetic confinement
devices. To describe flute modes we use the two-fluid
equations,16 for a weakly inhomogeneous magnetized plasma
with characteristic inhomogeneity scale lengthLn along the
radial axisx. For the slab geometryr ;sx,yd, we model the
curved magnetic field byBsxd=B0s1−x/Rd and b= ẑ
−sz/Rdx̂, whereBsxd is the magnitude,b is the unit vector,
and Rs.Lnd is the curvature radius of the curved magnetic
field lines.

Assuming flute-type ski=0d, quasineutral, low-
frequency, electrostatic oscillations, it is found that the
magnetic-curvature-driven flute modes are described by the
following set of dimensionless coupled equations for the per-
turbed electrostatic potentialF and densityn:17

s]t − vni]yd¹'
2 F + vg]yn = tidivh='F,nj + h¹'

2 F,Fj,

s1d

s]t + vge]ydn + svne− vged]yF = hn,Fj, s2d

where hf ,gj= ẑ3 = f ·=g denotes the Poisson bracket. The
first equation originates from the quasineutrality condition
=' ·fnsvW i −vWedg=0 and the second one results from the elec-
tron continuity equation. Here, we have neglected the effect
of temperature gradient and the collisional viscosity of the
stress tensor. The system of equationss1d ands2d generalizes
previous descriptions of the magnetic-curvature-driven flute
instability13 as it includes rigorously the diamagnetic drift,
vnj=Ti / seB0Lnd, the magnetic curvature drift, vgj

=2Tj / seRB0d, of both electron and ion fluidss j = i ,ed, and
similar to Refs. 18 and 19, the finite ion Larmor radius effect
which is described here by the term proportional toti

s=Ti /Ted in the right-hand sidesrhsd of Eq. s1d. For details on
the derivation of these equations, we refer to Refs. 13 and
17. In Eqs.s1d and s2d the electrostatic potential has been
normalized byTe/e, the time by the ion cyclotron frequency
vci, the length scales by the ion Larmor radiusr=cs/vci

defined at the electron temperaturesherecs
2=Te/mid, and the

density by the unperturbed densityn0. Furthermore,vg=vge

+vgi. Linearizing Eqs.s1d and s2d, one obtains the linear
dispersion relation of the magnetic-curvature-driven flute
modes given by

vk = −
kysvni − vged

2
S1 ± eÎ1 −

kcr
2

k'
2 D . s3d

Here, e;svni+vged / svni−vged.0 and kcr
2 ;4vgsvne

−vged / svni+vged2 determines the critical for the development
of the linear instability perpendicular wave number as the
modes of finite poloidal wave number withk'økcr are lin-
early unstable.

III. COUPLED DYNAMICS OF FLUTE MODE
TURBULENCE AND LARGE-SCALE FLOWS

For the description of the dynamics of large-scale
plasma flows that vary on a longer time scale compared to
the small-scale fluctuations, a multiple scale expansion is
usually employed assuming that there is a sufficient spectral
gap separating the large- and the small-scale motions. In

what follows,fF̃sr ,td ,ñsr ,tdg denote the small-scale fluctua-

tions andfn̄sr ,td ,F̄sr ,tdg the large-scale ones. By averaging
Eqs.s1d and s2d, we get

s]t − vni]yd¹'
2 F̄ + vg]yn̄ = − RF − Rn, s4d

s]i + vge]ydn̄ + svne− vged]yF̄ = hñ,F̃j, s5d

whereRF=hF̃ ,¹2F̃j is the standard Reynolds force due to

the polarization drift nonlinearity andRn=tihn̄,¹'
2 F̃j

+tih¹'n̄,¹'F̃j is the diamagnetic Reynolds force due to the
fluctuating ion pressure and it is a finite ion Larmor radius
effect. The equations above describe the formation of large-
scale structures by the flute turbulence. This is ensured by
the inverse cascade properties of the polarization drift
nonlinearity.20 However, the diamagnetic component of the
polarization drift nonlinearity leads to direct energy cascade
towards short scales.15 Hence, the description of the forma-
tion of large-scale flows during the temporal evolution of
flute turbulence is more complicated compared to the elec-
trostatic drift wave turbulence.

Equationss1d and s2d conserve the following energy in-
tegral:

I1 =E Hn̄2 + ñ2 −
vne− vge

vg
fs=F̄d2 + s=F̃d2gJdx dy

= const, s6d

which shows that the modulations of flows and turbulence
are coupled and cannot be addressed in isolation. The propa-
gation of the flute modes in weakly inhomogeneous media
can be described by employing the wave kinetic equation for
the wave-action densityNksr ,td in the r -k space. The source
of the slow spatial and temporal variations are the large-scale
flows induced by the velocity and the density perturbations.
The wave kinetic equation for the generalized wave action
allows us to determine the modulations ofNksr ,td due to the
mean flow. In the flute mode turbulence, we deal with two-
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field sF andnd perturbations and thus, we have to determine
a proper combination of these fields in order to form the
action invariant. The method of constructing the adiabatic
invariant has been previously discussed in Ref. 21. By intro-
ducing the variableCk=nk+akFk and following the standard
method, the parameterak is determined to beak=k'

2 fsvni

+vged /2vggs1−iÎkcr
2 /k'

2 −1d for the case under consideration.
As a consequence, the generalized action density is found to
be

Nk ; uCku2 = k'
4 Svni + vge

vg
D2U kcr

2

k'
2 − 1UuFku2. s7d

The WKB-type wave kinetic equation which describes the
evolution of the generalized action invariantNksr ,td in the
flute mode turbulence due to the interaction between the
mean flow and the small fluctuations is given by13

]Nk

]t
+

]Nk

]r

]vk
NL

]k
−

]vk
NL

]r

]Nk

]k
= gkNk − DvkNk

2. s8d

The nonlinear frequency is defined throughvk
NL=vk+k ·V0,

where the nonlinear shift is due to the presence of the large-
scale flows and it is given byV0=VF+Vn, where

VF = −
1

2
s=F̄ 3 zd, Vn = −

ti

4
s=n̄ 3 zd. s9d

The nonlinear frequency shiftDvk in the rhs of Eq.s8d rep-
resents the part of the nonlinear interactions among the flute
modes which balance the linear growth rate.

Considering small deviations of the spectrum function
from the equilibrium, we may write the adiabatic action in-

variant as a sum ofNk=Nk
0+Ñk, whereNk

0=kNkl describes the

equilibrium part of the turbulent spectrum andÑk is the per-
turbed part. For the equilibrium part, we may consider a
balance between the terms in the right-hand side of Eq.s8d,
which corresponds to the case of stationary turbulence and
gives N0

k.2gk/Dvk. Using the standard quasilinear theory,
the quasilinear equation forNk

0 has the following form:

]Nk
0

]t
−K ]

]r
sk ·V0d

]Ñk

]k
L = 0. s10d

The perturbed density of the “quasiparticles”Ñk can be cal-
culated by the linearized wave kinetic equation, for a uni-
form equilibrium]Nk

0/]r =0, and becomes

]Ñk

]t
+

]

]k
svk + k ·V0d

]N̄k

]r
−

]

]r
svk + k ·V0d

]Nk
0

]k
= − gkÑk.

s11d

In the local approximation, i.e.,]vk/]r =0, Eq. s11d can be
solved by assuming that the large-scale variation of the ac-
tion density is of the formNk,expfiqr − iVtg. This yields
the resonant part of the distribution

Ñk
res=

]

]r
sk ·V0d

]Nk
0

]k
RsV,q,dvkd. s12d

Here R is the response function defined byRsV ,q ,dvkd
= i / sV−q ·Vg+ idvkd, dvk is the total decorrelation fre-

quency which includes the linear growth rate and a nonlinear
shift andVg is the group velocity defined byVg=]vk/]k. In
a weakly nonlinear regime it isRsV ,q,dvkd→pdsV
−q ·Vgd, while for a wide fluctuating spectrum
RsV ,q ,dvkd→1/dvk. The broad spectrum of large-scale
structures regulates the flute turbulence by the process of
random shearing which is now understood to be a key
mechanism that governs the self-regulative and saturation
mechanism of the flute mode turbulence.17

The process of the random shearing of the flute turbu-
lence can be expressed in terms of the diffusion of the sta-
tionary spectra in thek space. Indeed, substituting Eq.s12d
into Eq. s10d, the following diffusionlike equation forNk

0 is
obtained:

]Nk
0

]t
−

]

]k
Dk

]Nk
0

]k
= 0. s13d

For the case of shearing by a zonal flowsqx@qyd, the diffu-
sivity in the radial wave number is Dkx
=sqx

4ky
2/4duF8u2RsV ,qx,dvkd. Similarly, for the case of shear-

ing by a streamer flowsqy@qxd the diffusivity in the poloidal
wave number isDky

=sqy
4kx

2/4duF8u2RsV ,qy,dvkd as in Ref.

13. Here,F8;F̄+tin̄/2. In what follows, we focus on the
dynamics and the properties of the large-scale flows in the
presence of flute mode turbulence.

IV. LONG TERM DYNAMICS OF LARGE-SCALE
FLOWS

Calculating the averaged Reynold stress forces in Eqs.
s4d ands5d, we obtain the equations describing the evolution
of the mean flows. First, we consider zonal flows with
qsqx,qyd=qsqx,0d. The resulting equations become decou-
pled and can be written, similar to Ref. 13, as

]F̄qx

]t
=E kxkyS1 −

vni

2vg
k'

2 DuF̃ku2 d2k, s14d

]n̄qx

]t
= 0. s15d

The second term in the right-hand side of Eq.s14d is attrib-
uted to the ion diamagnetic drift and to the finite ion Larmor
radius. As one may see, the ion diamagnetic effects may lead
to the suppression of the zonal flow generation. Adding the
equations above and using Eqs.s7d ands9d, we get a relation
which connects the zonal flow velocity with the spectra of
the short-scale fluctuations,

]V0y

]t
=

1

2

]

]x
E kxkyzsk'duCku2d2k. s16d

Herezsk'd is defined by

zsk'd =
1

2k'
2

vgvni

svni + vged2S 2

k'
2

vg

vni
− 1DU kcr

2

k'
2 − 1U−1

. s17d

Closure conditions for theNk modulations in terms of the
mean flow are provided by Eq.s8d.
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In the presence of a turbulent induced zonal flows] /]y
=0 andV0x=0d, the resonant response of the spectrum modu-
lation is given by

N̄k
res=

]

]x
skyV0yd

]Nk

]kx
RsV,qx,dvkd. s18d

Inserting Eq.s18d into Eq. s16d and assuming the large-scale
variations to be of the formV0y,expfiqxxg, we obtain

]V0y

]t
= qx

2DxxV0y.

This equation determines the stability of the zonal flow since
gzf=qx

2Dxx. The coefficientDxx is given by

Dxx = −
1

2
E kxky

2]Nk

]kx
zsk'dRsV,qx,dvkdd2k. s19d

As it turns out the zonal flow gets unstable whenDxx.0.
This instability can be interpreted as a result of the resonant
interaction between zonal flow and the small-scale modula-
tions of the turbulence. In the fluid dynamics the analogous
mechanism of spontaneous excitation of large-scale struc-
tures from the small-scale turbulence is known as a negative
eddy viscosity. The sign ofDxx depends strongly on the sign
of the productkxs]Nk

0/]kxds2vg/vni−k'
2 d along the distribu-

tion in thek space.
In the flute turbulence, where it is usuallykxs]Nk

0/]kxd
,0, the zonal flow may become unstable due to the contri-
bution of the modes withk'

2 ,2vg/vni, according to the in-
tegral s19d. A part of these modes is expected to be linearly
unstable since it may have relatively small wave number, i.e.,
k',kcr. However, when vgj /vnj,Î3ti

2+2ti −2ti sfor ti

,2d, it turns out thatkcr
2 .2vg/vni and subsequently the

modes that are responsible for thesnonlineard instability of
the zonal flow may have rather significant contribution to the
value of the integrals19d. From the above, it follows that
whenkxs]Nk

0/]kxd.0, it is more likely that the zonal flow is
stable. It is worthwhile to point out here that this conclusion
is qualitatively similar to that of the zonal flow stability in
the drift wave turbulence.

For perturbations withV!qxVgx, we can take into ac-

count the nonresonant responseN̄k
s1d of the turbulent spectra

over the perturbations of the induced zonal flow. In this case
the solution of the linearized wave kinetic equations8d yields

Ñk
s1d = kyV0yS ]vk

]kx
D−1]Nk

0

]kx
.

Substituting the later expression into Eq.s16d, we obtain the
oscillation frequency of the zonal flow,Vzf.−uxqx, whereux

is defined by

ux =
1

2
E kxky

2S ]vk

]kx
D−1]Nk

0

]kx
zsk'dd2k. s20d

However, as the amplitude of the zonal flow grows, non-
linear effects become significant. Using the derived expres-

sion of Ñk
s1d, we determine iteratively from Eq.s11d, the next

order nonlinear responseÑk
s2d for the nonresonant interac-

tions,

Ñk
s2d =

1

2
skyV0yd2S ]vk

]kx
D−1 ]

]kx
FS ]vk

]kx
D−1]Nk

0

]kx
G .

Including the total response,Ñk=Ñk
res+Ñk

s1d+Ñk
s2d into

Eq. s16d, we obtain, similar to the case of the drift wave-
zonal flow turbulence,10 a nonlinear equation which de-
scribes the evolution of the zonal flow:

ux
]2

]x2V0y + bx
]2

]x2V0y
2 − Dxx

]3

]x3V0y =
]

]t

]

]x
V0y. s21d

The coefficientbx in the nonlinear term is given by

bx =
1

4
E kxky

3zsk'dS ]vk

]kx
D−1 ]

]kx
FS ]vk

]kx
D−1]Nk

0

]kx
Gd2k.

s22d

It is interesting to see here that Eq.s21d admits localized
solutions. Indeed, for the family of stationary solutions of the
type V0ysx−u0xtd, Eq. s21d can be solved by integrating
twice,

su0x + uxdV0y + bxV0y
2 = Dxx

]

]x
V0y + C. s23d

Considering now the boundary conditionsV0y→V1y, V0y8 =0
for x→−` and V0y→V2y, V0y8 =0 for x→`, we determine
the integration constantC=su0x+uxdV1y+bxV1y

2 while V2y

=−V1y−su0x+uxd /bx. Note that these boundary conditions
correspond to the solitary wave solution with different
asymptotic values. This solution is known as “switching”
wave or “kink” soliton, in contrast to the solution with same
asymptotic value which is called “bell” soliton.10 The sim-
plest solution of Eq.s23d is of the kink type and is given by

V0y = 1
2hV1y + V2y + sV1y − V2ydtanhfx bsV1y − V2yd/2Dxxgj.

s24d

This solution describes the transient region between two dif-
ferent values of the flow. So, the cooperative effects of the
wave motion, steeping, and instability give the possibility to
the formation of stationary or moving kink solitons. The val-
ues of the parameters which determine the characteristic
lengths of these structures are determined by the value of the
group velocity and by the spectral density of the background
fluctuations. The above simple analysis demonstrates the
self-organization properties of the flute modes–zonal flow
coupled system.

The corresponding evolution equations for the streamer
flows qsqx,qyd=qs0,qyd become

s]t − vni]yd]y
2F̄qy + vg]yn̄qy = − ]y

2E kxkyzsk'duCku2d2k,

s25d

s]t + vge]ydn̄qy + svne− vged]yF̄qy = 0. s26d

The resonance response of the action invariant spectra over
streamer flows is given by the right-hand side of Eq.s18d by
applying a mutual permutation betweenx and y. Assuming
the large-scale variations to be of the form
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fn̄sr ,td ,F̄sr ,tdg , ,expfiqyy− iVsttg, we obtain the following
relation which describes the stability and the oscillation fre-
quencies of the streamer flow:

Vst =
iqy

2Dyy

2
+

qy

2
Fsvni − vged

±Îsvni + vged2S1 −
kcr

2

qy
2 D − qy

2Dyy
2 − 2iqyDyyvgG .

s27d

The coefficientDyy is given by the right-hand sides of Eq.
s19d by applying a mutual permutation betweenx andy. The
real part of this relation corresponds to the frequency of the
streamer flowqy and is in accordance to the dispersion rela-
tion of the linear flute modes. However, there are three ad-
ditional terms attributed to the resonant interaction which
can modify the stability of the streamer. We notice that, in
absence of the drifts, the terms proportional toDyy in Eq.
s27d give a similar result to that concerning the zonal flow
stability.

The third term which appears due to the combined effect
of the resonant interaction and the magnetic curvature drift
can modify significantly the stability of the streamer espe-
cially whenÎvg/qyDyy@1. For simplicity, if we restrict our-
selves here in the case of linear marginal stability for the
flute streamer, we obtain a growth rate of the streamer given
by

gstr =
qy

3/2

2
ÎvgDyy,

which is attributed to the resonant interaction.

V. SUMMARY AND DISCUSSION

The properties of the large-scale flows, developed and
interacting in an electrostatic turbulent environment of the
flute type, were investigated and determined by using a ki-
netic wave equation coupled with averaged fluid equations
which describe the flute turbulence. The resonant interaction
between the variations of the mean flow and the turbulent
spectra may lead to the stabilization of the large-scale flows.

The nonlinear evolution of the large flows can lead to the
formation of stationary coherent structures in the transition
layer between surfaces of different flow velocities, modify-
ing significantly the transport properties of the turbulent
plasma.
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