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ABSTRACT

Context. We interpret solar flares as events originating in active regions that have reached the self organized critical state, by using a
refined cellular automaton model with initial conditions derived from observations.
Aims. We investigate whether the system, with its imposed physical elements, reaches a self organized critical state and whether
well-known statistical properties of flares, such as scaling laws observed in the distribution functions of characteristic parameters, are
reproduced after this state has been reached.
Methods. To investigate whether the distribution functions of total energy, peak energy and event duration follow the expected scal-
ing laws, we first applied a nonlinear force-free extrapolation that reconstructs the three-dimensional magnetic fields from two-
dimensional vector magnetograms. We then locate magnetic discontinuities exceeding a threshold in the Laplacian of the magnetic
field. These discontinuities are relaxed in local diffusion events, implemented in the form of cellular automaton evolution rules.
Subsequent loading and relaxation steps lead the system to self organized criticality, after which the statistical properties of the
simulated events are examined. Physical requirements, such as the divergence-free condition for the magnetic field vector, are approx-
imately imposed on all elements of the model.
Results. Our results show that self organized criticality is indeed reached when applying specific loading and relaxation rules. Power-
law indices obtained from the distribution functions of the modeled flaring events are in good agreement with observations. Single
power laws (peak and total flare energy) are obtained, as are power laws with exponential cutoff and double power laws (flare dura-
tion). The results are also compared with observational X-ray data from the GOES satellite for our active-region sample.
Conclusions. We conclude that well-known statistical properties of flares are reproduced after the system has reached self organized
criticality. A significant enhancement of our refined cellular automaton model is that it commences the simulation from observed
vector magnetograms, thus facilitating energy calculation in physical units. The model described in this study remains consistent with
fundamental physical requirements, and imposes physically meaningful driving and redistribution rules.
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1. Introduction

Solar flares are transient energy release events above solar ac-
tive regions (ARs). Populations of flares are known to exhibit
robust statistical properties, which have been repeatedly identi-
fied in numerous observations. In particular, specific flare param-
eters have been consistently found to follow robust power laws
with indices lying in well-defined ranges. More specifically, a se-
ries of flare observations (Datlowe et al. 1974; Lin et al. 1984;
Sturrock et al. 1984; Dennis 1985; Vilmer 1987; Crosby et al.
1993; Biesecker 1994; Bromund et al. 1995; Polygiannakis et al.
2002) report that the distribution functions of peak flux, total en-
ergy, and event duration exhibit well-formed scaling laws with
exponents in the ranges of (−1.59,−1.80), (−1.39,−1.50), and
(−2.25,−2.80), respectively.

This consistency of the power-law indices identified in nu-
merous independent studies stimulated a new phenomenological
approach in reproducing and modeling the statistical behavior of
flaring activity. Lu & Hamilton (1991) and Lu et al. (1993) were
the first to construct a simple model of solar flare occurrence,
based on the assumption that the solar corona is in a statistically
stable self organized critical (SOC) state. In this context, ARs are

perceived as nonlinear dissipative dynamical systems, externally
driven by the photospheric velocity field. Localized instabilities
are generated by random shuffling of the coronal loops’ foot-
points in the photosphere and these instabilities are responsi-
ble for the fragmented energy release in the solar corona. The
magnetic energy release simulated via cellular automaton (CA)
modeling led to avalanche-like events. This model allows in-
stabilities, simulating current sheet disruption and Ohmic dis-
sipation, when a certain current density threshold is exceeded.
An enhancement of the original SOC concept with respect to the
instability criteria and the corresponding relaxation has been in-
troduced by Vlahos et al. (1995) and Georgoulis et al. (1995).
Both suggest that the initial instability may trigger secondary
ones, thus affecting sites beyond the closest vicinity of the orig-
inal event. Non-local treatment between flaring elements was
also attempted by MacKinnon & Macpherson (1997). In addi-
tion, Georgoulis & Vlahos (1996) constructed a refined statisti-
cal flare model, including both isotropic and anisotropic relax-
ation mechanisms, as well as extended instability criteria.

This kind of modeling produced a double power-law scaling
behavior: the flatter power law resembled intermediate and large
flares, whereas the steeper one described low-energy events.
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An additional enhancement of this model lay in the external
driver simulation. In the mentioned study, the driver of the sys-
tem followed a power law itself, thus mimicking the instabilities
triggered by the emerging magnetic flux from the convection
zone in addition to photospheric shuffling. Further extensions
were introduced by Georgoulis & Vlahos (1998), who presented
a systematic study of the power law indices’ variability as a func-
tion of the driver’s properties. In this refined statistic flare model,
Georgoulis & Vlahos attempted to model the stresses that are
built up randomly within ARs through a highly variable, inho-
mogenous external driver. Although clearly deviating from the
initial SOC models, the robust scaling laws in the flares’ distri-
bution functions survived. Isliker et al. (2000, 2001) tried for the
first time to associate the classical CA models’ components with
physical variables. Magnetohydrodynamic (MHD) and CA ap-
proaches were connected through the physical interpretation of
numerous CA elements, such as the grid variable, the time step,
the spatial discreteness, the energy release process, and the role
of diffusivity. This study revealed several inconsistencies in the
CA modeling, such as the uncontrolled value of the magnetic
field divergence (∇ · B) and the nonavailability of secondary
variables, such as the current density and the electric field. Such
weaknesses were treated by the extended CA model (X-CA) in-
troduced by Isliker et al. (2002).

In this study we present a model that adopts the Lu &
Hamilton (1991) approach as the starting point and to which sev-
eral enhancements are made towards a more physical CA model
that integrates various aspects of observed ARs and flares: first
and foremost, the initial boundary and initial conditions stem
from observed vector magnetograms. This allows us to perform
calculations in physical units, in direct comparison with obser-
vations (see for example the respective restrictions presented
in Georgoulis et al. 2001). Time remains the only quantity ex-
pressed in arbitrary model units, as the photospheric vector mag-
netogram does not change during the simulation. An additional
feature is that during the whole process (initial loading, relax-
ation of magnetic discontinuities and further driving) the re-
quirement ∇ · B � 0 is explicitly imposed. For this purpose we
have used a nonlinear force-free extrapolation method to gen-
erate the initial conditions from observed magnetograms and
impose instability criteria related to actual physical processes.
The magnetic field relaxation in the CA model follows the Lu
& Hamilton (1991) principles. The driving process is also de-
signed to obey specific rules that do not violate known physical
processes in the corona.

The structure of this work is as follows. Section 2 de-
scribes the data used in this study along with the necessary
corrections imposed on them. Section 3 explains in detail all
the modules comprising our model: first the extrapolation tech-
nique (EXTRA), along with the discontinuities’ identification
(DISCO) modules. Furthermore, the magnetic field relaxation
module (RELAX) and finally the driving module (LOAD) are
presented, which may trigger further instabilities in the simu-
lated AR, following rules that mimic specific physical processes.
Section 4 presents our results and discusses our findings. Finally,
Sect. 5 summarizes our conclusions.

2. Dataset

Nonlinear force-free extrapolation techniques require vector
magnetograms that are not as widely available as conventional
line-of-sight magnetograms. Here we have created a database
of 11 different AR vector magnetograms from the University
of Hawaii Imaging Vector Magnetograph (IVM). IVM obtains

Stokes images in photospheric lines with 7pm spectral reso-
lution, 1.1 arcsec spatial resolution (∼0.55 arcsec per pixel)
over a field of 4.7 arcmin2 and polarimetric precision of 0.1%
(Mickey et al. 1996). We used both fully-inverted and quick-
look IVM data. Quick-look data were obtained from the IVM
Survey Data archive (available online at http://www.cora.
nwra.com/ivm/IVM-SurveyData). The quick-look data re-
duction differs from the complete inversion in that it uses a sim-
plified flat-fielding approach, takes no account of scattered or
parasitic light, and no correction is attempted for seeing varia-
tions that occur during the data acquisition.

In this study we used one fully inverted and ten quick-look
IVM vector magnetograms. To remove the intrinsic azimuthal
ambiguity of 180◦, we used the Non-Potential magnetic Field
Calculation (NPFC) method of Georgoulis (2005). For computa-
tional convenience we further rebinned the disambiguated mag-
netograms into a 32 × 32 regular grid.

3. The model

Our model consists of four separate modules. First we apply the
Wiegelmann (2008) optimization algorithm to our vector mag-
netograms in order to nonlinearly extrapolate the magnetic field
from the photospheric boundary (module “EXTRA”). We thus
construct a three-dimensional (3d) 32 × 32 × 32 cube, within
which the magnetic field is determined. Second, we identify the
sites within our cubic grid that exceed a threshold in the mag-
netic field Laplacian (module “DISCO”). If unstable sites are
found, we force the vicinity of the unstable location to undergo a
magnetic-field restructuring. This redistribution is governed by
specific rules, which do not violate basic physical laws. Under
suitable conditions, the onset and relaxation of an initial instabil-
ity may trigger a cascade of similar events in an avalanche-type
manner. It is clear, therefore, that the wider vicinity, up to the en-
tire system, may participate in this process. Module “RELAX”
handles the field redistribution triggered by both the primary
and subsequently triggered instabilities. The whole avalanche,
comprised of a seed and the subsequently triggered instabili-
ties, is considered as one single flare. After complete relaxation,
we further drive the system via the “LOAD” module. There,
a randomly selected grid site receives a random magnetic field
increment.

3.1. “EXTRA”: a nonlinear force-free extrapolation module

The first step is to extrapolate the photospheric magnetic fields.
As explained in Dimitropoulou et al. (2009), a physically mean-
ingful treatment is the nonlinear force-free (NLFF) field ex-
trapolation. Our method of choice is based on the optimization
technique introduced by Wheatland et al. (2000) and further
developed by Wiegelmann and collaborators (Wiegelmann
2004; Wiegelmann et al. 2006; Wiegelmann 2008). This tech-
nique reconstructs force-free magnetic fields from their bound-
ary values by minimizing the Lorentz force and the divergence
of the magnetic field vector in the extrapolation volume:

L =
∫

V
w(x, y, z)[|B|−2|(∇ × B) × B|2 + |∇ · B|2]d3x. (1)

In this functional, w(x, y, z) is a weighting function and V de-
notes the extrapolation volume. A force-free state is reached
when L → 0 for w > 0. For w(x, y, z) = 1, the magnetic field
must be available on all six boundaries of our cubic box for the
optimization algorithm to work. However, photospheric vector
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magnetograms pertain only to the bottom boundary, whereas the
magnetic field vector on the top and lateral boundaries is un-
known. The weighting function is thus used to minimize the de-
pendence of the interior solution from the unknown boundaries.
In this study we introduce a buffer zone of ten grid points ex-
panding to the lateral and top boundaries of the computational
box. We then choose w(x, y, z) = 1 in the inner domain and let w
drop to zero with a cosine-profile in the buffer zone towards the
lateral and top boundaries of the computational box. This tech-
nique was first described by Wiegelmann (2004).

An additional useful attribute of Wiegelmann’s NLFF field
extrapolation code is the preprocessing option it offers. As the
photospheric magnetic field is in principle inconsistent with the
force-free approximation, a preprocessing procedure was devel-
oped by Wiegelmann et al. (2006) in order to drive photospheric
fields closer to an NLFF field equilibrium. Preprocessing min-
imizes the forces and torques in the system, thus satisfying the
force-free requirements more closely.

Although NLFF extrapolation methods have been greatly
improved in recent years, such models still include numerous
uncertainties (DeRosa et al. 2009). Additional constraints stem
from the measurements (signal-to-noise ratio, inadequate resolu-
tion of the 180◦ ambiguity) or from physical origins (variation in
the line formation height, the non-force-free nature of the pho-
tospheric vector magnetograms), which are not adequately han-
dled in the course of the extrapolation. Such uncertainties are
unavoidably conveyed to our simulations.

3.2. “DISCO”: a module to identify magnetic-field instabilities

We assume that instabilities occur if the magnetic field stress
exceeds a critical threshold. For every site r within our grid, we
calculate the magnetic field stress Gav(r) as

Gav(r) = |Gav(r)|

where

Gav(r) = B(r) − 1
nn

∑
nn

Bnn(r).

In the above definitions nn is the number of nearest neighbors for
each site r and Bnn(r) is the magnetic field vector of these neigh-
bors. Depending on the location of each site within the volume,
the number of nearest neighbors nn can be nn = 3−6. The phys-
ical reason for selecting this criterion lies in the fact that large
magnetic stresses favor magnetic reconnection in three dimen-
sions, even in the absence of null points (Priest et al. 2003).

Mathematically, it can be shown that the selection of Gav as
the critical quantity in our model relates to the diffusive term
of the induction equation (see Isliker et al. 1998, for a detailed
discussion). Let us write the induction equation in the form:

∂B
∂t
= ∇ × (V × B) + η∇2B (2)

where V is the plasma velocity and η the resistivity. The
Laplacian of the magnetic field ∇2B(r) can be written as

∇2B(r) = (∇2Bx)î + (∇2By) ĵ + (∇2Bz) k̂,

where r = (i, j, k). Letting m ≡ x, y, z we obtain

∂2Bm(r)
∂x2

� 1
Δx2

(Bmi+1, j,k + Bmi−1, j,k − 2Bmi, j,k)

∂2Bm(r)
∂y2

� 1
Δy2

(Bmi, j+1,k + Bmi, j−1,k − 2Bmi, j,k)

∂2Bm(r)
∂z2

� 1
Δz2

(Bmi, j,k+1 + Bmi, j,k−1 − 2Bmi, j,k)

adopting a central finite-difference scheme and using the gen-
eral case of a grid point having six nearest neighbors (nn = 6).
Further assuming Δx = Δy = Δz = 1 (the grid-size) we have

∇2Bm(r) =
∂2Bm(r)
∂x2

+
∂2Bm(r)
∂y2

+
∂2Bm(r)
∂z2

�
∑
nn

Bmnn − nnBmi, j,k ,

which yields ∇2B(r) as follows:

∇2B(r) �
∑
nn

Bnn(r) − nnB(r).

From the definition of the critical quantity Gav(r) it follows that

∇2B(r) � −nnGav(r), (3)

therefore the critical quantity Gav(r) relates directly to the
Laplacian ∇2 B. The resistivity in the solar corona is almost zero
everywhere except in regions where the discontinuities (and the
local currents) reach a critical value. In these regions current-
driven instabilities will enhance the resistivity by many orders
of magnitude, and the second term in Eq. (2) will become dom-
inant. The convective term ∇ × (V × B) of Eq. (2) will be fur-
ther discussed in Sect. 3.4, where the driving module “LOAD”
is described.

There are several ways to determine the threshold value for
the critical quantity, above which a site is considered unstable:

1. We apply a histogram method, by constructing the histogram
of the Gav values in our grid. We then fit a Gaussian to
this histogram and define the threshold Gcr as the field
stress value, above which the histogram deviates from the
Gaussian.

2. We define the threshold value (Gcr) for the whole grid, as the
maximum Gavmax value throughout our volume, decreased
slightly:
Gcr = Gavmax (1 − s)
where s 	 1.

3. We define the threshold value (Gcr(z)) per height z, as thev
maximum Gavmax value for each specific height, slightly
decreased:
Gcr(z) = Gavmax (z)(1 − s)
where s 	 1.

4. We define the threshold value as a function of height z, e.g.:
Gcr(z) = Gavmax (1 − s) exp (−z)
where s 	 1.

Here we present the results produced by the first (histogram)
method, which yielded Gcr = 10 G for our sample, and shortly
refer to the other threshold alternatives in Sect. 4. Every site
r = (i, j, k) for which the inequality Gavi, j,k ≥ Gcr is satisfied is
considered unstable and undergoes magnetic field restructuring
under the rules implemented in the “RELAX” module. Given the
definition of the critical threshold, instabilities sometimes occur
even from the first iteration, after constructing the NLFF fields.
This, however, does not incur any qualitative impact on the evo-
lution of the system toward SOC or on the statistical results of
the simulation.
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3.3. “RELAX”: a redistribution module for magnetic energy

In case the instability criterion Gavi, j,k ≥ Gcr is met for a specific
site i, j, k, then the vicinity of the unstable location undergoes
a field restructuring, which follows the rules of Lu & Hamilton
(1991):

B+(r)→ B(r) − 6
7

Gav(r) (4)

B+nn(r)→ Bnn(r) +
1
7

Gav(r), (5)

where the superscript + denotes the field components after the
redistribution.

At this point it is important to investigate whether the
redistribution rules as defined here violate basic physical laws,
such as the zero-divergence requirement for the magnetic field.
The initial magnetic configuration approximately satisfies the
condition ∇ · B = 0, as the field has been reconstructed using an
NLFF field extrapolation. The question is whether the magnetic
field after the redistribution imposed by rules (4), (5) still
satisfies the same demand (∇ · B+ = 0). Taking the divergence
of B+(r) and its neighbors B+nn(r), we respectively find from
relations (4) and (5)

∇ · B+(r) � ∇ · B(r) − 6
7
∇ · Gav(r)

∇ · B+nn(r) � ∇ · Bnn(r) +
1
7
∇ · Gav(r).

From the definition of Gav(r) we now have

∇ · Gav(r) = ∇ · B(r) − 1
nn
∇ · Bnn(r).

Substituting this into the above we find

∇ · B+(r) � 1
7
∇ · B(r) − 1

7nn
∇ · Bnn(r) (6)

∇ · B+nn(r) � 1
7
∇ · B(r) +

1
7nn
∇ · Bnn(r). (7)

Because∇·B(r) � ∇ · Bnn(r) � 0 from our first iteration (extrap-
olated fields), we find ∇ · B+(r) � ∇ · B+nn(r) � 0. Thus, the re-
distribution of the magnetic field maintains the divergence-free
condition.

Isliker et al. (1998) show that the redistribution rules (4)
and (5) implement local diffusion and after redistribution,
G+av(r) � 0, so the instability at location r has been relaxed.

3.4. “LOAD”: the driver

After the system is completely relaxed, we introduce a driving
mechanism that adds a magnetic field increment δB(r) at one
randomly selected site r within our grid. The driving process
complies with the following conditions:

1.

B(r) · δB(r) = 0. (8)

This condition implies that the magnetic field increment is
always perpendicular to the existing magnetic field B(r)
at the randomly selected site r. Figure 1 provides a sketch
of the suggested situation, depicting the directions of the
plasma velocity V, the magnetic field B and the perpen-
dicular magnetic field increment δB. We note that the

Fig. 1. Typical configuration of a magnetic loop anchored in the pho-
tosphere. The magnetic field vector B is perpendicular to an assumed
plasma outflow velocity V. The model driver requires that the magnetic
field increments δB are always perpendicular to the existing magnetic
field B.

condition described by Eq. (8) is compatible with two
physical scenarios: (a) that Alfven waves may have been
excited locally; or (b) that, according to the convective term
∇ × (V × B) of the induction Eq. (2), a magnetized plasma
upflow occurs in the AR, out from the photosphere.

2.

|δB(r)|
|B(r)| = ε, ε < 1. (9)

This is a typical condition known to allow the system to
reach the SOC state, without this state being influenced by
the loading process (Bak et al. 1987). As also shown by Lu
& Hamilton (1991), decreasing the driving rate by making
the magnetic field increments even smaller, increases the
average time between subsequent events. For the results
presented here we have used a fixed ε = 0.3.

3.

∇ · (B(r) + δB(r)) = 0. (10)

This condition should guarantee that the divergence of the
magnetic field is approximately kept to zero during the load-
ing process, as was done during the redistribution of the
magnetic field (RELAX module). To implement the condi-
tion, a first-order, left finite-difference scheme is used. In this
way, however, condition (10) does not provide an adequate
guarantee for a divergence-free magnetic field in the selected
site’s vicinity. This is a known problem, which can be tackled
by working with the vector potential A, with ∇ × A = B, in-
stead of the magnetic field B directly (see e.g. Lu et al. 1993;
Galsgaard 1996; Isliker et al. 2000, 2001). Because our study
uses observed vector magnetograms as initial conditions, we
naturally work with the known magnetic fields, rather than
the unknown vector potential. Thus, Eq. (10) only provides
a low-order approximation towards a divergence-free mag-
netic field. To monitor how effective condition (10) is, we
introduce a “Weighted Nabla Dot B” (WNDB) monitoring
parameter, as follows:

WNDB =
|∇ · B|

√
3

√(
∂Bx
∂x

)2
+
(
∂By
∂y

)2
+
(
∂Bz

∂z

)2 ·

By definition, WNDB is a dimensionless quantity, lying in
the range 0 ≤ WNDB ≤ 1. Monitoring WNDB during our
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simulation will provide evidence on whether condition (10)
can be considered adequate for keeping the magnetic field
within our volume approximately divergence-free. In the fol-
lowing, we tolerate a departure from zero of up to 20%
(WNDB ≤ 0.2) for a still a roughly divergence-free mag-
netic field.

3.5. Model parameters

Linking the above-mentioned modules in one consistent simu-
lation, we construct a relatively simple algorithm and monitor
the flare duration, the peak energy, and the total energy, the dis-
tribution functions of which we intend to compare to those of
observational data. If an instability is identified (DISCO) – ei-
ther in the original magnetic configuration generated by the
initial extrapolated magnetogram (EXTRA) or from an incre-
ment δB randomly added at a grid point (LOAD) – the possi-
ble chain of instabilities that follows is left to completely relax
(RELAX) before an additional magnetic field increment is ran-
domly placed (LOAD), possibly causing a new instability. This
rule takes the observational fact into account that the lifetime of
a flare is much shorter than the evolution timescale of an AR.
Successive grid scans may be required for an instability to be
completely relaxed. Each scanning corresponds to one timestep,
therefore the relaxation of an event may be accomplished in
more than one timesteps. Each loading event according to the
equation set (8)−(10) triggers a new iteration. The duration of
an event is defined as the total number of timesteps the event
lasted, from its onset until its complete relaxation. The accumu-
lated released energy during the event provides the total energy
of an event, whereas the peak during an event yields the peak
energy/luminosity of an event.

The simulation results presented in the next section have
been performed using a 32 × 32 × 32 cubic grid with “open”
boundaries in the relaxation events (see Isliker et al. 2001, for
a detailed discussion on open boundary conditions). Each sim-
ulation is driven for 3 × 105 iterations, which equals the times
that LOAD module is being called during the simulation. This
mechanism allows the production of multiple subsequent flares
in each AR. In all cases the critical threshold Gcr was kept fixed
and equal to 10 G.

4. Results

Applying our flare simulation model to our 11-event-database,
we find that in all cases the simulated ARs reached the
SOC state. An indication of whether and when the SOC state
is reached is obtained by monitoring the quantity Ḡav, namely,
the volume average of the critical quantity Gav. During the
continuous driving of the system and the subsequently gen-
erated avalanches, Ḡav increases gradually. When the system
reaches the SOC state, Ḡav stabilizes around a value that de-
pends on the system’s characteristics. For the loading method
used in our model (new magnetic field increments are only added
when a previously triggered avalanche has decayed), the value
around which Ḡav stabilizes is slightly lower than the threshold
value Gcr. A second indication that the system has reached the
SOC state is that the total energy of the system tends toward an
asymptotic value. This is because SOC is a statistically station-
ary state. Figure 2 shows the Ḡav value over 3 × 105 timesteps for
AR10570. Ḡav is constantly increasing up to timestep 1.4 × 105,
thereafter stabilizing at ∼9.80 G <∼ Gcr = 10 G. Similarly, Fig. 3
shows the logarithm of the total magnetic energy throughout the

Fig. 2. Average Laplacian Ḡav over the grid for 3 × 105 timesteps
for AR10570. Ḡav increases gradually until timestep 1.4 × 105, after
which the SOC state is reached.

Fig. 3. Diagram of log10(Etotaft) after each redistribution for AR10570.
Like Ḡav, Etotaft increases gradually until a stable state is reached.

volume Etotaft after each scan of the grid for possible redistri-
butions. Following Ḡav, Etotaft increases until a stable state is
reached. The stabilization of both Ḡav and Etotaft is a solid indica-
tion that SOC has been reached for AR10570. The same behavior
is seen for all ARs included in our sample.

SOC is generally characterized by intermittent transport
events (avalanches), whose sizes range from very small (a sin-
gle neighborhood) up to comparable to the system size. Power-
law frequency distributions describe the parameters of these
avalanches. It is thus reasonable to expect that since all 11 ARs
in our sample have reached the SOC state under the imposed
driving rules, they should all produce distribution functions for
the flare duration, peak energy, and total energy, which either
follow pure power laws or functions including a power-law part
(e.g. power laws with exponential rollover). The functions tested
against the model results for all flare parameters (flare dura-
tion, peak energy, total energy) were single power laws, double
power laws, power laws with exponential rollover, and exponen-
tial functions. In order to define the best-fitting function per case,
we made least square fits and performed chi-square goodness-of-
fit tests.

Figures 4 and 5 are typical examples of our general results.
Figure 4 depicts the distribution functions of duration (Fig. 4a),
peak energy (Fig. 4b), and total energy (Fig. 4c)) for AR10050.
The duration distribution follows a double power law with in-
dex −1.80 ± 0.18 for the flatter part and −4.03 ± 0.29 for the
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Fig. 4. Distribution functions for the event duration (Fig. 4a), the peak
energy Epeak (Fig. 4b), and the total energy Etotal (Fig. 4c) for AR10050.
The energies in b) and c) are calculated in physical units (ergs).

steeper part. Both the peak and total energy distribution func-
tions follow single power laws with indices −1.63 ± 0.15 and
−1.45 ± 0.13, respectively. Figure 5 depicts the distribution
functions of duration (Fig. 5a), peak energy (Fig. 5b), and to-
tal energy (Fig. 5c) for AR9415. Here the duration distribution
follows a power law with an exponential rollover. The power-
law index is −1.42 ± 0.18. The peak and total energy distri-
bution functions follow again single power laws with indices
−1.84 ± 0.18 and −1.50 ± 0.13, respectively.

Fig. 5. Same as Fig. 4 for AR9415.

From the above, flare-duration distributions appear to be
best-fitted either by power laws or by power laws with expo-
nential rollovers. By comparing the chi-square values and re-
spective probabilities for single power laws, double power laws,
and power laws with exponential rollover, it is concluded that
three of our ARs follow double power laws (AR9635, AR10050,
AR10488), while the rest are best fitted by power laws with ex-
ponential rollovers. These indices are summarized in Table 1,
along with the respective probabilities. The values shown in
Table 1 refer to the fitting achieved against the entire distribu-
tion function in all cases (all bins included). Single power laws
fail to describe the model duration distribution functions in all
cases, whereas exponential functions only fit the tail of the gen-
erated model curves. In cases where a double power law is the
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Table 1. Power-law indices and respective chi-square probabilities derived by the best-fit functions for the flare duration for the 11 ARs comprising
our sample.

FLARE DURATION (model)
double power law fit power law with

flat PL steep PL exponential rollover
AR PL index probability PL index probability PL index probability

9415 ... ... ... ... −1.42 ± 0.18 0.95
9635 −2.29 ± 0.19 0.96 −5.28 ± 0.42 0.95 ... ...
9661 ... ... ... ... −0.26 ± 0.05 0.94
9684 ... ... ... ... −0.91 ± 0.09 0.95
9845 ... ... ... ... −1.12 ± 0.06 0.95

10050 −1.80 ± 0.18 0.98 −4.03 ± 0.29 0.95 ... ...
10247 ... ... ... ... −1.27 ± 0.07 0.95
10306 ... ... ... ... −1.27 ± 0.09 0.94
10323 ... ... ... ... −0.98 ± 0.05 0.95
10488 −1.60 ± 0.16 0.94 −3.64 ± 0.19 0.94 ... ...
10570 ... ... ... ... −0.83 ± 0.07 0.95
MEAN −1.90 −4.32 −1.01
σ2 0.35 0.86 0.36

Table 2. Power-law indices and respective chi-square probabilities de-
rived by fitting a single power law to the peak flare energy for the
11 ARs comprising our sample.

FLARE PEAK ENERGY (model)
single power law fit

AR PL index probability
9415 −1.84 ± 0.18 0.95
9635 −2.62 ± 0.17 0.97
9661 −1.42 ± 0.15 0.98
9684 −1.70 ± 0.17 0.97
9845 −1.85 ± 0.12 0.95

10050 −1.63 ± 0.15 0.95
10247 −2.15 ± 0.12 0.98
10306 −1.61 ± 0.16 0.97
10323 −1.72 ± 0.17 0.97
10488 −1.59 ± 0.14 0.95
10570 −1.63 ± 0.15 0.98
MEAN −1.80
σ2 0.33

best fit (AR9635, AR10050, AR10488), the mean index for the
flat power law is −1.90, whereas the mean index for the steep
power law is −4.32. When power laws with exponential rollover
are best fitting (remaining ARs), then the mean value for the
power law index is −1.01. Standard deviations (σ2) to these
mean values are given in the last row of this table.

Although single power laws are not the optimum functions
to fit the modeled flare duration, they are undoubtedly the best-
fitting theoretical functions for the peak energy and the total flare
energy. As shown in Table 2 for the peak flare energy and in
Table 3 for the total flare energy, the average value for Epeak
is −1.80, whereas the average index value for Etotal is −1.57.
The standard deviation (σ2) of these mean values is given in the
last row of these tables.

Figure 6 illustrates the magnetic energy released Erel for a
specific period of 10 000 timesteps after SOC has been reached
for AR10570. As the added driver increments δB assume low
and random values, the waiting time from one flaring event to
another varies. Figures 7 and 8 show a 3d representation of the
emerging magnetic discontinuities during a large and a smaller
avalanche, respectively, simulated for AR10247 after SOC has
been reached. In the former case, the avalanche during its early

Table 3. Power-law indices and respective chi-square probabilities de-
rived by fitting a single power law to the total flare energy for the 11 ARs
comprising our sample.

FLARE TOTAL ENERGY (model)
single power law fit

AR PL index probability
9415 −1.50 ± 0.13 0.95
9635 −2.22 ± 0.19 0.98
9661 −1.27 ± 0.05 0.99
9684 −1.43 ± 0.07 0.99
9845 −1.69 ± 0.17 0.95

10050 −1.45 ± 0.13 0.95
10247 −1.89 ± 0.17 0.98
10306 −1.23 ± 0.08 0.99
10323 −1.45 ± 0.16 0.98
10488 −1.54 ± 0.13 0.95
10570 −1.45 ± 0.08 0.99
MEAN –1.56
σ2 0.28

stages generates 140 discontinuities (Fig. 7a), evolves further
(Fig. 7b) with 281 discontinuities, peaks (Fig. 7c) with 425 dis-
continuities, and decays (Figs. 7d−f) with 184, 51, and 18 dis-
continuities, respectively. The total event duration is 341 steps.
The total duration of the smaller event (Fig. 8) is 90 steps.
The event during its early stages generates six discontinuities
(Fig. 8a), peaks (Fig. 8b) with 15 discontinuities, and decays
(Figs. 8c,d) with ten and six discontinuities, respectively.

Finally, it is interesting to investigate whether our model
consistently reproduces the distribution functions of the flar-
ing events actually observed in the ARs in our sample. For our
comparison we used the solar X-ray flare catalog from the
GOES satellite (http://www.ngdc.noaa.gov/stp/SOLAR/
ftpsolarflares.html, item 3). The flaring events recorded
in this database lie in the class range B − X and are summa-
rized in Table 4 for each AR. However, to construct the distri-
bution functions of flare parameters we need enough statistics,
reflected in large flare numbers. Regardless of its flare produc-
tivity, a single AR is unlikely to provide these numbers. For
this reason and for the sake of comparison, we have merged
all observed flares in all studied ARs into a single flare se-
quence with a total of 154 events (sum of all flares in Table 4).
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Fig. 6. Time series of the total magnetic energy released Erel

(in 1.033 × 1025 ergs) from the simulated AR10570 after the SOC state
has been reached. The time series shown consists of 10 000 timesteps
for better detail.

Table 5 shows the statistical results of our analysis for flare du-
rations. As flare duration, we define the observed onset-to-end
elapsed time. The best-fitting function is not easily discernible
in this case, as all candidate functions (single power law, double
power law, and power law with exponential rollover) fit the ob-
servational data fairly well. Figure 9 depicts the fit between the
observed flare durations against a double power law (Fig. 9a)
and a power law with exponential rollover (Fig. 9b). In the for-
mer case (Fig. 9a) the calculated index is −1.67 ± 0.09 for the
smooth part and −3.37 ± 0.25 for the steep part, whereas in the
latter case (Fig. 9b) the power-law index yields −1.28 ± 0.11.
It is apparent that the dynamical range of the power law in Fig. 9a
is very limited, but it is shown here for comparison purposes.
To achieve this comparison, we merge the model results of the
separate runs per AR into one common database. Figure 10 de-
picts the fit between the merged model flare durations for all
ARs in our sample against a double power law (Fig. 10a) and
a power law with exponential rollover (Fig. 10b). In the former
case the calculated index is −1.78 ± 0.27 for the smooth part
and −3.91 ± 0.42 for the steep part, whereas in the latter case
the power-law index yields −1.13 ± 0.12. By comparing the re-
sults depicted in Fig. 9 (observational data) and Fig. 10 (merged
model data), we conclude that the power law indices for the ob-
servational data are close to our model’s values for the double
power law and power law with exponential rollover fits. This is
not the case for the single power-law fitting, which yields an in-
dex of−1.70 for the GOES data. The best agreement between the
observed and the simulated flares is, therefore, achieved when
the attempted fit is not a single power law, but either a double
power law or a power law with an exponential rollover. Table 6
is similar to Table 5, summarizing the indices resulting from the
merged model data.

Although our findings show good alignment with both pre-
vious models and observations, it is crucial to crosscheck the
physical soundness of our algorithm. As mentioned in Sect. 3.4,
loading rule (10) does not by itself guarantee that the mag-
netic field remains divergence-free during the entire simulation.
WNDB is therefore determined in order to monitor the mag-
netic field divergence throughout the loading and redistribution
process. Figure 11 presents the evolution of WNDB during the
3 × 105 timesteps of our simulation for AR10247. In the begin-
ning, WNDB is close to zero, as our initial condition is the ex-
trapolated NLFF (and therefore approximately divergence-free)

Table 4. GOES X-ray data for the number and class of observed flares
in the ARs used in our simulations.

AR B-class C-class M-class X-class Total
9415 03 16 06 05 30
9635 00 02 00 00 02
9661 00 16 01 02 19
9684 00 08 01 01 10
9845 01 04 00 00 05
10050 00 16 00 00 16
10247 00 01 00 00 01
10306 06 02 00 00 08
10323 00 05 00 00 05
10488 00 17 07 02 26
10570 17 14 01 00 32

magnetic field. As time elapses,∇ · B starts deviating from zero,
but WNDB remains under 0.20 during the entire simulation.
This holds for all ARs in our sample. Therefore, our model re-
tains the magnetic field approximately divergence-free through-
out the simulation.

Furthermore, it is worth investigating whether the use of
alternative threshold definitions incurs any qualitative changes
in the presented results. As an example, we apply the sec-
ond threshold definition of Sect. 3.2 to AR10247. In this case,
Gcr = Gavmax (1 − s) � 30 G. Figure 12 shows that even with
this threshold definition, Ḡav increases gradually until timestep
1.3 × 105, after which the SOC state is reached, and Ḡav stabi-
lizes around approximately 29.95, which is lower than the crit-
ical threshold Gcr = 30. The statistical properties of the gener-
ated distribution functions remain unchanged. This is also valid
when switching from a 32 × 32 × 32 grid towards larger volumes
(e.g. a 64 × 64 × 64 grid).

5. Discussion and conclusions

This study simulates the flaring activity of 11 solar ARs in terms
of a refined CA model. The modules comprising this integrated
flare model are summarized below

1. We extrapolated the magnetic field from the photospheric
boundary of 11 IVM magnetograms resampled on a 32 ×
32 grid, through a nonlinear force-free optimization algo-
rithm with preprocessing at the photospheric level (module
“EXTRA”, refer to Sect. 3.1 for details).

2. We identified the unstable locations that will dissipate mag-
netic energy in our grid when the approximated magnetic
field Laplacian Gav(r) at site r exceeds a specific thresh-
old Gcr (module “DISCO”, refer to Sect. 3.2 for details).

3. In case magnetic discontinuities are identified (either di-
rectly after the initialization or after each loading), the mag-
netic energy was redistributed such that the instabilities are
completely relaxed (module “RELAX” refer to Sect. 3.3 for
details).

4. Further loading within our system was allowed, when a pre-
viously triggered avalanche has completely decayed. In this
case, LOAD added a random magnetic field increment δB(r)
at a random site r within our grid according to the rules de-
scribed in Sect. 3.4.

The algorithm was allowed to run for 3 × 105 timesteps, which
is sufficient for all simulated ARs to both reach the SOC state
and provide sufficient event statistics after the SOC state had
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Fig. 7. 3d representation of the emerging magnetic discontinuities during an avalanche in AR10247. The total duration of this event is 341 steps.
During the early stages, the avalanche generates numerous discontinuities (140 in a)), evolves with 281 discontinuities b), peaks with 425 discon-
tinuities c), and decays with 184 discontinuities d), 51 discontinuities e), and 18 discontinuities f).

been reached. The enhancements of our flare simulation model
in comparison to previous SOC models of solar flares follow

– The initial boundary conditions are not arbitrary, but stem
from real solar magnetograms. An NLFF field extrapola-
tion is used to reconstruct the initial magnetic configuration

generated from the observed 11 ARs, retaining physical re-
quirements to the best possible extent, such as the minimiza-
tion of the Lorentz force and the magnetic field divergence.

– Given that the simulation commences from observed mag-
netograms, it is now possible for our CA model to remove
the restriction of arbitrary energy units (see e.g. the remarks
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Fig. 8. 3d representation of the emerging magnetic discontinuities during an avalanche in AR10247. The total duration of this event is 90 steps.
During the early stages, the event generates a small number or discontinuities (6 in a)), peaks with 15 discontinuities b), and decays with 10 dis-
continuities c) and 6 discontinuities d).

Fig. 9. Observed distributions of GOES flare durations for all ARs in our sample. Fit is attempted using a double power law a) and a power law
with an exponential rollover b). The double power law fit yields an index equal to −1.67 ± 0.09 for the flat part and −3.37 ± 0.25 for the steep
part, whereas the fit with the power law and the exponential rollover yields a scaling index −1.28 ± 0.11.

within Georgoulis et al. 2001). This gives us the opportunity
to directly compare the model with the observed energy con-
tent per flare, thus leaving time as the only arbitrary quantity
in our simulation.

– Our model follows the principles of Lu & Hamilton (1991)
to a significant degree. The rules obeyed during both the
magnetic energy redistribution and the further driving of
the system are designed in such a way that the magnetic
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Fig. 10. Distributions of simulated flare durations for all ARs in our sample. Fit is attempted using a double power law a) and a power law with
an exponential rollover b). The double power law fit yields an index equal to −1.78 ± 0.27 for the flat part and −3.91 ± 0.42 for the steep part,
whereas the fit with the power law and the exponential rollover yields a scaling index −1.13 ± 0.12.

Table 5. Power-law indices and respective chi-square probabilities derived by fitting several functions to the flare durations derived from the
merged GOES observational data for the 11 ARs comprising our sample.

FLARE DURATION (data)
single power law double power law power law w exponential rollover

flat power law steep power law
PL index probability PL index probability PL index probability PL index probability
−1.70 ± 0.12 0.98 −1.67 ± 0.09 0.98 −3.37 ± 0.25 0.95 −1.28 ± 0.11 0.96

Table 6. Power-law indices and respective chi-square probabilities derived by fitting several functions to the flare durations derived from the
merged model data for the 11 ARs comprising our sample.

FLARE DURATION (merged model data)
single power law double power law power law w exponential rollover

flat power law steep power law
PL index probability PL index probability PL index probability PL index probability
−2.79 ± 0.22 0.97 −1.78 ± 0.27 0.98 −3.91 ± 0.42 0.94 −1.13 ± 0.12 0.96

Fig. 11. Evolution of WNDB during the 300 000 timesteps of our simu-
lation for AR10247.

field divergence is within tolerated limits. This has not been
the case in the early CA models (Vlahos 1995; Georgoulis
& Vlahos 1996, 1998) and has only been touched in ad-
vanced CA approaches through the use of the vector poten-
tial A instead of the magnetic field B in combination with

Fig. 12. Diagram of the average Ḡav value over the grid for 3 ×
105 timesteps for AR10247 when the threshold definition is Gcr =
Gavmax (1 − s) � 30 G.

an improved way of calculating the derivatives (Isliker et al.
2000, 2001).

– The driving mechanism attempts to mimic not only pho-
tospheric convection as proposed by Parker (1988, 1989,
1993), but also coronal evolution, such as turbulence and
current sheet interaction. In this sense, locations through-
out the simulation box are randomly chosen to be perturbed.
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Via either localized Alfven waves or larger-scale turbulent
flows (Einaudi et al. 1996; Rappazzo et al. 2008), turbu-
lence leads to current-sheet interaction that may trigger an
avalanche observed as a flare, depending on the local mag-
netic conditions. Naturally, though, due to the larger accu-
mulation of magnetic free energy close to the photosphere
(Regnier & Priest 2007) photospheric convection and sys-
tematic photospheric motions (e.g. shear) should be the
drivers of most coronal instabilities. Our driving mechanism
should be further revised to account for systematic photo-
spheric flows. This future step is important because (1) it
has been argued that the distribution and energy content
of magnetic discontinuities in a given photospheric bound-
ary can explain the statistical properties of flares (Vlahos &
Georgoulis 2004) and (2) investigating possible correlations
between the photospheric driver and the corresponding coro-
nal active region reveals the strong nonlinearity of active-
region magnetic configurations that hinders correlations be-
tween photospheric and coronal structures (Dimitropoulou
et al. 2009). The latter patterns, however, have a crucial
impact on the expected dynamical activity of the system,
namely, the magnetic energy release and the subsequent par-
ticle acceleration processes (Vlahos et al. 2004).

– The derived results can be directly compared with flare ob-
servations, because the simulation uses extrapolated fields
from observed vector magnetograms as initial conditions.
At this point, we once again stress that the X-ray flares
recorded by GOES for each AR do not comprise a statis-
tically reliable sample. Therefore, in order to make such a
comparison possible, we merged the GOES flare data of
all 11 ARs in our sample into one database, comprising
154 flares.

Our results show that under the imposed driving and redistribu-
tion rules, all examined ARs reach the SOC state. The retrieved
distribution functions for event duration are best described by ei-
ther double power laws or power laws with exponential rollover,
although single power laws are also applicable for the merged
data. The peak energy and total energy clearly follow single
power laws. The power-law indices for durations and ener-
gies as presented in Tables 1−3 lie in the well-known ranges
documented consistently in numerous past studies, including
Georgoulis et al. (2001). In this study, Georgoulis et al. com-
pare their SOC model with data from the Danish Wide Angle
Telescope for Cosmic Hard X-rays (WATCH) collected during
the maximum of the solar cycle 21. Figure 1 in the cited work
shows that the peak and total energy of the observed flares fol-
low single power-law distribution functions with indices −1.59
and −1.39 respectively, whereas the flare duration distribution
function is considered to either follow a double power law
(with index −1.15 for the flat and −2.25 for the steep part)
or a power law with exponential rollover (with power law in-
dex −1.09). These results agree with our findings. Although
our model generates flare duration distribution functions with
indices in alignment with the ones presented in Georgoulis &
Vlahos (1998), we did not attempt here to reproduce two key
findings of Georgoulis & Vlahos (1998), namely the variability
of the scaling indices as a result of the driver’s variability and the
two distinct event populations. In the cited study, the peak and
total energy distribution functions follow double power laws.
The steeper part of them corresponds to the signature of a “soft”
flare population (nanoflares), whereas the flatter part is attributed
to microflares and flares.

Although this work overcomes major drawbacks of many
previous CA models, such as retaining the value of the mag-
netic field divergence close to zero throughout the simulation,
there are still some points that can lead to discrepancies. First
and foremost, the determination of the threshold value Gcr can
slightly influence the exponents of the retrieved power laws, al-
though it cannot cause any qualitative change to their appear-
ance; that is the known flare statistical properties will always fol-
low power-law distributions, independent of the threshold value
imposed. The histogram method presented in Sect. 3.2 elimi-
nates the arbitrary selection of Gcr to an extent. We also inves-
tigated whether the rebinning of our grid to the size of 32 ×
32 × 32 influences our results in comparison with larger grids
(e.g. 64 × 64 × 64), and we found that the differences in the
power-law indices lie within the inferred uncertainties. Finally,
for the comparison with the observational data, we have already
stressed that this is a preliminary attempt given that the num-
ber of GOES X-ray flares across all investigated ARs does not
produce enough statistics.

The discussion regarding the validity of the CA models
when it comes to the simulation of physical processes in com-
plex systems a long-running. As discussed by Isliker et al.
(1998), the essence of CA modeling is to describe complex sys-
tems, which comprise a large number of interacting subsystems,
assuming that the global dynamics described statistically are
not sensitive to the fine structure of the elementary processes.
Stricter approaches such as MHD, on the other hand, are based
on a precise description of the elementary processes through de-
tailed differential equations. Both approaches have been shown
to exhibit drawbacks and advantages. The CA approach does
not provide any insight into the local processes or over short
time intervals, but it reproduces the global statistics. MHD re-
veals details about the local processes, but coupling them to a
global description is a formidable task. In this sense, the two
approaches are complementary, and there have been indeed var-
ious attempts to either combine them (e.g. Longope & Noonan
2000), or interpret CA models as discretized MHD equations
(Isliker et al. 1998; Vassiliadis et al. 1998). Even more extended
CA models, like the X-CA model described by Isliker et al.
(2001), have achieved consistency with MHD to a greater ex-
tent. Our CA model will opt to incorporate and utilize meaning-
ful modeling developments into a more concrete, “integrated”
flare model.
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