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ABSTRACT
We analyse the transport properties of charged particles (ions and electrons) interacting
with randomly formed magnetic scatterers (e.g. large-scale local ‘magnetic fluctuations’ or
‘coherent magnetic irregularities’ usually present in strongly turbulent plasmas), using the
energization processes proposed initially by Fermi in 1949. The scatterers are formed by
large-scale local fluctuations (δB/B ≈ 1) and are randomly distributed inside the unstable
magnetic topology. We construct a 3D grid on which a small fraction of randomly chosen grid
points are acting as scatterers. In particular, we study how a large number of test particles
are accelerated and transported inside a collection of scatterers in a finite volume. Our main
results are: (1) The spatial mean-square displacement <(�r)2 > inside the stochastic Fermi
accelerator is superdiffusive, < (�r)2 >∼ tar , with ar ∼ 1.2–1.6, for the high-energy electrons
with kinetic energy (W) larger than 1 MeV, and it is normal (ar = 1) for the heated low-energy
(W < 10 keV) electrons. (2) The transport properties of the high-energy particles are closely
related with the mean-free path that the particles travel in-between the scatterers (λsc). The
smaller λsc is, the faster the electrons and ions escape from the acceleration volume. (3) The
mean displacement in energy < �W >∼ taW is strongly enhanced inside the acceleration
volume (aW = 1.5–2.5) for the high-energy particles compared to the thermal low-energy
particles (aW = 0.4), i.e. high-energy particles undergo an enhanced systematic gain in energy.
(4) The mean-square displacement in energy <W2 > is superdiffusive for the high-energy
particles and normal for the low-energy, heated particles.

Key words: Sun: corona – turbulence – Sun: Solar flares – acceleration of particles –
Plasmas – Diffusion.

1 IN T RO D U C T I O N

Stochastic Fermi acceleration is a very broad term for particles
interacting with any kind of scattering centres, e.g. large amplitude
magnetohydrodynamic (MHD) disturbances, current sheets, and
waves from electromagnetic (em) resonances. The interaction of
particles with waves was called ‘the modern version’ of stochastic
Fermi acceleration in order to distinguish it from the original version
proposed by Fermi in 1949 (Fermi 1949).

The interaction of particles with em fields inside an unstable
magnetized plasma is an important process for the acceleration
and transport of particles in laboratory and astrophysical plasmas.
In realistic space, astrophysical, or laboratory plasmas, the 3D
evolution of the em fields is usually analysed, up to now, with the
use of the resistive MHD equations. The evolution of the particles
inside the em fields is followed by using either the test particle
approach or with the use of transport equations.
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Depending on the amplitude of the fluctuating em fields, the
interaction of the particles and fields is dramatically different.
For small amplitude plasma waves, the dispersion relation for the
linearized system (ω = ω(k)) is valid and the magnetic fluctuations
can be expressed as

δB(x, t) =
kmax∑
kmin

Bk0 exp[i(k · x − ω(k)t + φk], (1)

where Bk0 is the amplitude of the waves, k is the wave vector and
φk is the random phase of the specific wave mode. The magnetic
field is given through the expression B(x, t) = B0 + δB(x, t) and
the electric field writes E(x, t) = 0 + δE(x, t), where

rot δE = −c−1 ∂δB
∂t

.

B0 is the ambient magnetic field, and the ensemble averages are
< δB >=< δE >= 0. Several analytical and numerical tools are
available for the study of the wave–particle interaction when the
(possibly unstable) em fluctuations are weak (|δB| << |B0|.) We
must stress here that only weak turbulence can be represented by a
discrete number of normal modes of the plasma.

C© 2019 The Author(s)
Published by Oxford University Press on behalf of the Royal Astronomical Society

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/491/3/3860/5637402 by Access provided by H
EAL-Link (Aristotle U

niversity of Thessaloniki) user on 31 M
arch 2020

http://orcid.org/0000-0001-9782-2294
http://orcid.org/0000-0002-8700-4172
mailto:isliker@astro.auth.gr


Superdiffusive stochastic Fermi acceleration 3861

Stochastic (second-order) Fermi acceleration of particles can be
analysed with at least two very well-known techniques: (1) Test
particle simulations inside em fluctuations described by equation (1)
(Perri, Greco & Zimbardo 2009; Greco, Perri & Zimbardo 2010;
Perri, Zimbardo & Greco 2011). (2) The solution of the quasi-
linear (QL) equation (Kennel & Engelmann 1966). The QL equation
is used extensively for the analysis of the interaction of charged
particles with partially random em fields. The QL equation is derived
from the first-order expansion of the fluctuating em fields (δB/B0)2,
assuming that all higher order terms are zero in weak turbulence.
The limits of the QL approximation have been explored by using
test particle simulations (Kuramitsu & Hada 2000; Zacharegkas,
Isliker & Vlahos 2016). The standard QL approach also assumes
incoherent mode coupling of the fluctuating em fields, described by
the superposition of individual plasma wave modes. The em fields
are assumed known and not evolving, so the response of the particle
energy distribution can be calculated (see Davis 1956; Tverskoi
1967; Kulsrud & Ferrari 1971; Achterberg 1981; Schlickeiser 1989
and the reviews by Miller et al. 1997; Melrose 2009; Petrosian
2012).

A more general framework to treat the acceleration and transport
of particles from stochastic em fields is the Fokker–Planck (FP)
transport equation (Gardiner 1994). The FP is valid when several
approximations for the nature of the em fluctuations are valid.

The main assumption is that the statistical properties of the
interaction of the charged particles with the fields are dominated
by Gaussian distributions. This is in correspondence with the
Central Limit Theorem (CLT), which requires that all stochastic
systems evolve asymptotically towards Gaussian statistics provided
that (i) many interactions are involved, (ii) the change in state in
individual interactions is always small, and (iii) subsequent changes
of state are statistically independent of each other. Besides these
necessary conditions for the applicability of the FP equation, also
other simplifying assumption for a better tractability of the FP
equation are being made, such as (1) the magnetic fluctuations
are homogeneous in space, (2) the electromagnetic fields are quasi-
static, (3) the interaction has a finite decorrelation time, etc. (see
more details in the books Schlickeiser 2003; Zank 2014). Unfortu-
nately, in astrophysical and laboratory plasmas, most of the above
assumptions are not valid, yet the FP equation is used extensively,
without a proof of its validity. This is especially true when the
plasma particles are accelerated to high energies impulsively (e.g.
in solar flares, coronal mass ejections, or the Earth’s magnetotail).
The acceleration volume is finite and the expected fluctuating
electromagnetic fields are strong (|δB| ≥ |B0|). In solar active
regions, the complex magnetic topologies host many null magnetic
points which are randomly distributed inside the erupting or flaring
volume (Aulanier et al. 2000; Pontin 2011). In these cases, the
interaction of the particles with the strong em disturbances is
transient and has no time to lead to Gaussian statistics or to become
homogeneous in space (Isliker, Archontis & Vlahos 2019). Before
analysing the interaction of the particles with the em fluctuations, it
is important to understand the evolution of the em waves. With the
use of resistive MHD codes one can show that a spectrum of high
amplitude electromagnetic fluctuations evolves rapidly and leads
to a fragmented current system, where reconnecting current sheets
and large amplitude magnetic fluctuations are present (Arzner &
Vlahos 2004; Dmitruk, Matthaeus & Seenu 2004; Vlahos, Isliker &
Lepreti 2004; Isliker, Vlahos & Constantinescu 2017a), and where
the various statistics clearly are non-Gaussian, following largely the
paradigm of the stable Levy distributions (Isliker et al. 2017a; Isliker
et al. 2019). In strongly turbulent plasmas, the magnetic fluctuations

are non-collective modes and cannot be described with a simple
dispersion relation ω = ω(k). The em environment generated from
the evolution of large amplitude em fluctuations is well documented
in the current literature and models much better many impulsive
astrophysical and laboratory plasmas (see Dmitruk et al. 2004;
Zhdankin et al. 2013; Isliker et al. 2017a and the reviews by Cargill
et al. 2012; Karimabadi et al. 2014; Vlahos & Isliker 2019).

We pose in this article the following question: ‘Can we analyse
acceleration and transport of particles in a finite and strongly
turbulent magnetized plasma with the use of the FP transport
equation?’.

We analyse the transport of particles in space and energy in a
strongly turbulent environment, where particles gain and lose en-
ergy stochastically, following the second-order Fermi acceleration
scenario (Fermi 1949). In Section 2, we introduce the main concepts
of stochastic acceleration and the basic tools available to study non-
Gaussian (anomalous) transport. In Section 3, we present our model
and in Section 4, our results. In the final section, we discuss the
astrophysical implications of our study and summarize the main
points and the limitations of our analysis.

2 STO C H A S T I C AC C E L E R AT I O N A N D
A N O M A L O U S T R A N S P O RT

The simplest way to model the kinetic properties of an ensemble of
particles in the presence of em fields is to assume that the system par-
ticles and fields are very close to equilibrium and that the particles
perform a Brownian motion (random walk) among the scattering
fields, with a well-defined mean displacement between encounters
(mean-free path δr ≈ λsc). Another way to describe mathematically
the random walk inside a system with homogeneously distributed
scatterers (magnetic fluctuations or magnetic clouds) is to define
the probability density of the step size of the random walk q(δr).
Based on the CLT, in all large systems the random steps will
asymptotically attain a Gaussian distribution. In this case, the mean
square displacement, when assuming constant time-steps, will be

< (�r)2 >= D0t, (2)

where the transport coefficient for normal transport is D0 = vλsc,
and where v is the constant velocity of the particles. It is easy to
connect this analysis with the derivation of the FP equation (for
details see the tutorials Vlahos et al. 2008; Bovet 2015).

Many systems are far from equilibrium and violate many of the
assumptions listed above. Transport in systems far from equilib-
rium is termed ‘anomalous’ or ‘non-Gaussian’. A simple way to
characterize the anomalous transport properties is to estimate the
mean square displacement (�r)2. It has been shown that the mean
square displacement usually changes faster or slower with time than
in the case of normal diffusion when fluids or plasmas are strongly
turbulent

< (�r)2 >= Drt
ar , (3)

where ar can be smaller than one, which is called subdiffusion or 1
< ar, and which is called superdiffusion. When ar = 2, the transport
is termed ballistic (for a quick overview see Shlesinger, Zaslavsky &
Klafter 1993; Klafter, Shlesinger & Zumofen 1996 or the review
by Metzler & Klafter 2000, 2004). When particles move with
constant velocity and are temporarily trapped inside the scatterers,
then their transport is subdiffusive (ar < 1). Superdiffusion means
that the particle trajectories involve Levy flights, besides regular
steps, during the motion in space (Zimbardo et al. 2015), superdif-
fusive transport regimes are thus based on Levy-type statistics if
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the velocity is assumed to remain constant, i.e. the probability
distributions of the step sizes are characterized by power-law tails,
rather than following Gaussian statistics. The theoretical description
of anomalous transport involves the use of a variety of tools and
models, like the estimate of Hurst exponents, and the construction
of fractional transport equations (e.g. Eule et al. 2012), not always
though it is clear which model is the most appropriate to describe a
specific physical system.

Anomalous transport has been found in a large variety of physical
systems (Zimbardo et al. 2010; Perrone et al. 2013). In space and
astrophysical plasmas, non-classical transport and the coupling
of particles with strong em fields is common. The wealth of
transport studies during the recent decades has shown the existence
of a variety of regimes that differ from the classical QL regime
(Zimbardo et al. 2010; Perrone et al. 2013).

All the above studies decoupled the spatial transport from the
acceleration of particles. They assume that inside the acceleration
volume the particles diffuse only in velocity space, and when they
escape from the acceleration region they travel in an environment
where only spatial transport is analysed (Perri & Zimbardo 2007).
In the well-known stochastic (second-order) Fermi acceleration,
used extensively in space and astrophysical plasmas, the spatial
transport and the acceleration of particles are coupled. Scatterers
(magnetic clouds or large amplitude magnetic disturbances) are not
just changing the direction of propagation or the steps of the ‘walk’
of the particles, but they also change stochastically their velocity
(Fermi 1949). If W is the kinetic energy of a particle and the particle
moves with relativistic velocity v and the scatterers (‘magnetic
clouds’) move with mean speed V, which is much smaller than
the speed of light, then the energy loss or gain of the particles
interacting with the scatterers is

δW

W
≈ 2

c2
(V 2 − V · v), (4)

where for overtaking collisions V · v > 0 and the particles lose
energy, for head-on collisions V · v < 0 and the particles gain
energy. The rate of energy gain is estimated through the relation

dW

dt
= W

tacc
, (5)

where

tacc =
(

3c

4V 2

)
λsc, (6)

and λsc is the mean-free path the particles travel between the
scatterers and tacc is the acceleration time (see Longair 2011). On
assuming a uniform distribution of the scatterers inside the accel-
eration volume with density nsc, the mean-free path is λsc ≈ 1

3√nsc
.

The assumption that the scatters are distributed uniformly in space
is a strong assumption for turbulent systems, since the latter tend to
be highly anisotropic and thus also the distribution of the scatterers
may not be isotropic or form a fractal structure. We assume that the
particles are not trapped inside the scatterers, i.e. their interaction
is instantaneous. A key parameter for the efficient acceleration of
particles inside a turbulent volume is the escape time (tesc) from
the energy release volume. In second-order Fermi acceleration, the
spectral index of the high-energy particles depends on the ratio
tacc/tesc

f (W ) ≈ W−k (7)

where k = 1 + tacc/tesc (Longair 2011). Therefore, the correct
estimate of the transport properties inside a finite acceleration

volume is very important for the understanding of many transient
astrophysical sources.

The transport of particles inside an acceleration volume has been
analysed using analytical and numerical tools by several authors
(Bouchet, Cecconi & Vulpiani 2004; Stawicki 2005; Tsironis &
Vlahos 2005; Perri et al. 2007; Pisokas et al. 2017). Bouchet et al.
(2004) analysed the stochastic Fermi acceleration using a simplified
model, and they concluded that both the velocity and position mean
square displacements

< (�r(t))2 >≈ tar (8)

< (�v(t))2 >≈ tav (9)

are superdiffusive, and the probability distributions of the positions
and velocities are non-Gaussian.

The role of anomalous transport upstream of a shock during
diffusive shock acceleration has been analysed in detail (Perri &
Zimbardo 2007, 2008; Perri et al. 2009; Zimbardo & Perri 2013).
It was shown that electron transport upstream of the shocks that
are associated with corotating interaction regions, detected by the
Ulysses spacecraft in the solar wind at 4–5 au, is superdiffusive
with ar ≈ 1.1–1.7. The astrophysical implications of superdiffusive
shock acceleration are discussed in several articles and reviews
(Perri & Zimbardo 2012; Zimbardo et al. 2015).

3 O U R M O D E L

We construct a 3D grid (N × N × N) with grid size 	 = L/(N − 1),
and with linear extent L. Each grid point is set to either active or
inactive, i.e. it is a scatterer or not. Only a small fraction R = Nsc/N3

of the grid points are set to active (5–15 per cent). We can define the
density of the scatterers as nsc = R × N3/L3, and the mean-free path
of the particles between scatterers can be determined as λsc = 	/R.
When a particle (an electron or an ion) encounters an active grid
point, it renews its kinetic energy state according to equation (4), as
it holds for stochastic Fermi acceleration. It then moves in a random
direction along the grid

r n+1 = r n + δr n (10)

with its renewed velocity

v n+1 = v n + δv n (11)

during the step n, until it meets another active point or exits the grid.
The minimum distance between two scatterers is the grid size (	).
The time between two consecutive scatterings is δt n = |δr ;n|/|v n|.
At time t = 0 all particles are located at random positions on the
grid. The injected distribution n(W, t = 0) is a Maxwellian with
temperature T. The initial direction of motion of every particle is
selected randomly. The parameters used in this article are related to
the typical plasma parameters in the low solar corona. We choose
the strength of the magnetic field to be B = 100 G, the density of the
plasma n0 = 109 cm−3, and the ambient temperature around 100 eV.
The Alfv´en speed is VA � 7 × 108 cm s−1, so VA is comparable
with the thermal speed of the electrons. The energy increments are
of the order of (δW/W) ≈ (VA/c)2 ∼ 10−4 (see equation 4), and the
length L of the simulation box is 1010 cm. When not stated otherwise,
we consider the grid to be open, i.e. particles can escape from the
acceleration volume in case they reach any of the boundaries of the
grid, at t = tesc, which of course is different for each particle that
escapes. We usually assume that only R = 10 per cent of the N3 =
6013 grid points are active.
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Figure 1. (a) Illustration of a trajectory of a typical particle (magneta line)
inside the grid. Active points are represented by coherent structures, as
commonly seen in large-scale MHD simulations. The particle starts at a
random grid point, moves along a straight path on the grid till it meets an
active point, and then it moves into a new random direction, and so on, until
it eventually exits the simulation box. (b) Energy distribution at t = 0 s and
t = 20 s (stabilized) for the electrons remaining inside the box. Stochastic
Fermi acceleration from the large-scale magnetic disturbances formed inside
a strongly turbulent plasma, as seen in the simulation box above, heats and
accelerates the particles from the thermal pool (Pisokas et al. 2017).

Large-scale magnetic fluctuations are formed inside unstable
complex magnetic topologies (see Fig. 1a). In several MHD nu-
merical simulations, the formation of coherent structures (current
sheets) is also present (see e.g. fig. 1 in Dmitruk et al. 2004 or
fig. 1 in Isliker et al. 2017a). In this article, we exclude, for the
sake of simplicity, the presence of unstable current sheets and their
contribution to stochastic Fermi acceleration (Vlahos et al. 2016;
Pisokas, Vlahos & Isliker 2018). A typical trajectory of a particle
inside the simulation box is displayed in Fig. 1, the particle moves
along the grid on straight lines until it encounters a scatterer, which
affects its energy and direction of motion (see equation 4). The
motion of the particle thus consists of the combined random walk
in position and velocity space, with random gains and losses of
energy, before exiting the simulation box. The mean-free path is
λsc = 	/R � 2 × 108 cm, which coincides with the value estimated
numerically by tracing particles inside the simulation box.

Using the numerical model presented above, Pisokas et al. (2017)
showed that the model reproduces all the known analytical results
of the stochastic Fermi acceleration. They also showed that the
stochastic Fermi energization can reproduce the well-known energy
distribution of astrophysical plasmas, where heating of the bulk of
the plasma (here with energies E < 10 keV) and acceleration of the
energetic particles (here for energies above 1 MeV; see Fig. 1b) takes
place. The density of the scatterers (which is equivalent to the mean-
free path λsc of the interaction of the particles with the scatterers)
controls the evolution of the energetic particles and the heating.
The energy distribution reaches an asymptotic state on a time-scale
comparable to the acceleration time tacc (see fig. 3 in Pisokas et al.
2017). Similar results have been reported on the interaction of ions
with a spectrum of Alfv´en waves or of electrons with a spectrum of
whistler waves (see Miller, Guessoum & Ramaty 1990). When the
energy distribution reaches the asymptotic state, the mean escape
time of the particles tesc ∼ 8 s is close to the acceleration time tacc ∼
9 s. The index of the power law of the particles in the energetic tail
then agrees very well with the simple formula derived by Fermi,
k = 1 + tacc/tesc ∼ 2, see Fig. 1(b).

Parker & Tidman (1958), Ramaty (1979), and Blandford &
Eichler (1987) analysed the interaction of electrons and ions with
large amplitude magnetic perturbations, which they assumed to be
hard spheres in order to be able to obtain analytical results. In the
hard sphere approximation, the mean energy increase is

< W (t) >∼ t2. (12)

The energy distribution is obtained as an analytical solution of the
FP equation. For particles with low energy (W < < mc2) it can
be approximated with a Maxwellian distribution, and for the high-
energy, relativistic particles (W > >mc2), the solution is

f (W ) ∼ W 1/2−(1/2)(9+12[tacc/tesc])1/2
. (13)

Thus also in the hard sphere approximation, the escape time tesc,
which is closely related with the transport of particles inside the
acceleration volume, plays a key role in the estimation of the power-
law index of the high-energy particles. For infinite acceleration
regions and tesc → ∞, the energy distribution function is f(w) ∼
W−1 and for tacc/tesc ∼ 1, it takes the form f(W) ∼ W−2. Therefore,
the results reported by Fermi in his original article would have
to be modified for non-relativistic or relativistic particles, if the
analysis is based on the assumption of hard spheres, and tesc should
be estimated correctly from the dynamics inside the acceleration
volume.

4 R ESULTS

4.1 Spatial diffusion

We start our simulation by putting the particle with index j at a
random position r0j in the 3D simulation box shown in Fig. 1(a).
We follow the spatial evolution of the particle for nj time-steps
until its individual time tn

j = ∑n

i=1 δt i
j (see Section 3) reaches tfinal,

which is chosen shorter than the mean time the particles need to
escape from the acceleration volume (Pisokas et al. 2017). The
particle positions are monitored at several hundred, pre-defined and
equispaced monitoring times tm (m = 1, ...M) in the interval [0, tfinal],
such that all particles are kept track of at equal times. The particle
reaches the position rm

j = rj (tm) at time tm and its displacement
from its initial position is �r m

j = r m
j − r0j . We collect the rm

j for
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Figure 2. (a) The mean square displacement of the particles as a function
of time, for the classical random walk without energization of the particles.
The power-law fit has a slope equal to one. (b) The diffusion coefficient Drr

as a function of time.

Np particles and we estimate the mean square displacement as

< (�rm)2 >= 1

Np

j=Np∑
j=1

(�rm
j )2.

The typical number of test particles used are several hundreds of
thousands for all the simulations reported in this article.

4.1.1 Normal transport

As a consistency test, we assume here that the particles diffuse inside
the simulation box without exchanging energy with the scatterers,
so that their motion is a classical random walk and their transport
properties have been discussed already (see equation 2). We plot in
Fig. 2(a) the mean square displacement as a function of time. The
slope of the power-law fit is indeed one (ar = 1), as is expected for
normal transport (equation 2).

From the same data, we can also estimate the diffusion coefficient
AUTHORS:Please change index n with m

Drr = 1

2

< (�rm)2 >

t
, (14)

Figure 3. (a) Mean square displacement of the accelerated electrons, the
index ar is 1.6 for λsc ∼ 2 × 108 cm. (b) The index ar as a function of
λsc. (c) The index ar as a function of the energy at final time or the energy
with which the electrons escape from the acceleration volume, for λsc ∼
1.7 × 108 cm.

see Fig. 2(b). The value of Drr can also be estimated from the
relation Drr ∼ 3λsc · vthe ∼ 1017cm2 s−1 (see equation 8 in Vlahos
et al. 2008) for a classical random walk, which agrees very well
with the simulation results in Fig. 2(b).

4.1.2 Anomalous transport

We now turn to the transport properties of the electrons energized
inside the simulation volume, with the set-up presented above, and
assuming that the particles are interacting with active scatterers
that realize the stochastic Fermi process. The electrons thus gain or
lose energy stochastically, following equation (4). The mean square
displacement as a function of time for a typical value of λsc is shown
in Fig. 3(a), it obviously follows equation (3), with power-law index
ar ∼ 1.41 for λsc ∼ 2 × 108 cm, diffusion thus is clearly anomalous.
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In Fig. 3(b), we show the index ar as a function of λsc for typical
values of the latter for the solar corona (Kontar et al. 2017). We
conclude from the relation of ar with λsc that electrons diffuse faster
inside the acceleration volume and escape from the acceleration
volume in shorter times when the mean-free path λsc is smaller.
The superdiffusive characteristics of the electrons are related with
the fact that acceleration and spatial transport are coupled (Bouchet
et al. 2004), which is a rather large departure from the picture of
anomalous transport of particles with constant velocity, discussed
earlier in Section 2 (see the also the review Metzler & Klafter
2000). In other words, there are no spatial Levy flights involved in
the superdiffusive spatial transport.

The degree of energization of the test particles depends strongly
on their trapping inside the turbulent volume. To illustrate this, we
consider the relation between the spatial mean square displacement
and its characteristic scaling index ar with the energy at final time
or the energy with which the electrons escape from the acceleration
volume. We divide the particles according to their final or escape
energy into (logarithmically equispaced) bins, and the index ar is
computed separately for the particles belonging to each bin, using
information from their travel history from t = 0 up to tesc ∼ tfinal ∼
10 s. Fig. 3(c) shows the scaling index ar as a function of the final or
escape energy. Electrons with energy E < 104 keV are transported
normally (ar ∼ 1) inside the acceleration volume and can be studied
with the FP equation. The particles in the high-energy tail (E > 1
MeV), on the other hand, move in a superdiffusive way, with ar ∼
1.6 (see Fig. 3c). The electrons that escape with energies between
104 keV and 1 MeV are gradually becoming superdiffusive and ar

increases linearly with the escape energy from 1 to 1.6.
The waiting time probability distribution P(�t) of the time

intervals �t in between collisions of the particles with the scattering
centres is an important parameter of the interaction of the particles
with the large-scale magnetic disturbances. If the scattering centres
are passive and the particles execute a classical random walk with
constant speed before exiting the simulation box, we expect the
waiting time probability distribution to be of exponential shape

P (�t) = ae−a(�t−t0) (15)

as long as the scatterers are uniformly distributed as in our set-up.
Here 1/a ≈ λsc/vth is the mean time between collisions with

the scatterers, with vth the thermal velocity of the initially injected
Maxwellian distribution, and t0 = 	/vth is the smallest possible
waiting time (	 is the grid spacing).

From the parameters used in the numerical simulations, we
can estimate 1/a ≈ λsc/vth = 2 × 108cm/4 × 108cm s−1 ≈ 0.5
s and t0 = 	/vth ≈ 0.04 s. In Fig. 4(a), we show P(�t) as a
function of the waiting time for the case of passive scatterers, and
the distribution agrees very well with equation (15) for the case
where all particles have the same velocity (equal to the thermal
velocity). An exponential fit yields a ∼ 1.7 s−1, a value close to
the estimate based on the model parameters. For the case where
the particles have random (Maxwellian) velocity and still interact
with passive scatterers (Fig. 4a), we find a clear deviation from the
exponential shape, the distribution decays slower than exponential.
Thus, the just velocity-wise in-homogeneous random walk already
shows increased dynamic complexity. Fig. 4(b) shows P(�t) for
the case of active scatterers, the distribution now exhibits a double
power law, with index 1.5 for the intermediate waiting times and
index 0.7 for the large waiting times. We note that if we would
prescribe this kind of waiting time distribution and the particles
would move with constant velocity, then the resulting transport
would be of subdiffusive nature. In this sense, we must consider

Figure 4. (a) The probability distribution P(�t) of the waiting times
between collisions of the particles with passive scatterers, for the case with
random (Maxwellian) velocities and for the case with equal velocity for all
particles (equal to the thermal velocity). (b) Waiting time distribution P(�t)
for the interaction with active scatterers (stochastic Fermi acceleration).

that the power-law shaped waiting time distribution is an indication
of the complexity that is caused by the synergy of spatial and active
energy transport inside the stochastic Fermi accelerator. Our result
also clearly departs from the waiting time distribution P(�t) in the
work of Bouchet et al. (2004), who present an analytical model of
stochastic Fermi acceleration and who also find that transport is
clearly anomalous, even though they actually prescribe a waiting
time distribution with an exponential tail for their results to hold.

Keeping the set-up used above with open boundary conditions,
we now impose periodic boundary conditions, i.e. when an electron
reaches any of the boundaries of the simulation box it re-enters the
box from the opposite boundary. In this case, we can distinguish
two parts in the evolution of the mean square displacement: (i) A
transient phase, lasting 100 s (for plasma parameters related to the
low solar corona, as before), during which ar ∼ 1.8 for λsc ∼ 3 ×
108 cm (see Fig. 5). (ii) A longer and asymptotic phase, where the
mean square displacement shows the scaling of normal diffusion.

It follows that in the periodic case, stochastic Fermi accelera-
tion asymptotically attains Gaussian statistics for the probability
distribution of the position of the particles, and the FP transport
equation can be expected to describe well the spatial evolution of
the particle distribution. The asymptotic power-law index ar = 1 of
the mean square displacement is in agreement with the prediction of
equation (13) when tesc practically is infinity, as it holds for periodic
systems (Parker & Tidman 1958; Ramaty 1979).

Our analysis so far was concentrated on the heating and acceler-
ation of electrons. The transport properties of ions are very similar
with the ones reported here for electrons when λsc is the same.
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Figure 5. The mean square displacement as a function of time, for the case
of periodic boundary conditions, with two power-law fits, one for t < 100
s with ar ≈ 1.8, and one for t > 100 s with ar ≈ 1.0.

Figure 6. (a) The mean square displacement as a function of time for ions,
together with a power-law fit. (b) The index ar as a function of λsc.

In the case of open boundary conditions, there are no significant
differences from the behaviour of the electrons, apart from the fact
that the required time needed for the energy distribution to reach
the asymptotic state is much longer. The spatial diffusion process
is superdiffusive (see Fig. 6a), and the index ar decreases when the
mean-free path of the ions λsc become larger and approaches 1 when
λsc approaches L, the size of the acceleration volume, the ions thus
also diffuse and escape faster as λsc becomes smaller (see Fig. 6b).
The characteristics of ar as a function of the final or escape energy
of the ions are also similar with the ones reported for the electrons.

4.2 Energy transport

The energy transport is closely related with the spatial transport
when the particles are inside a finite size stochastic Fermi accelera-
tor. The interaction of the particle j with an active scatterer renews
its energy

Wn+1
j = Wn

j + δWn
j

where δWn
j is given by equation (4), and n counts the number

of energization events. For the mean square displacement, we use
the same set of pre-defined monitoring times tm as described in
Section 4.1 and keep track of the energies Wm

j at these times, Wm
j =

Wj (tm), so that the mean is evaluated at equal times for all particles.
We then define �Wm

j = (Wm
j − W 0

j ), the energy displacement from
the energy with which the particle was initially injected (W 0

j ) into
the acceleration volume. The mean displacement of the energy is
defined through the relation

< �W > (tm) ≡< �Wm >= 1

Np

j=Np∑
j=1

�Wm
j . (16)

and the mean square displacement is given as

< (�W )2 > (tm) ≡< (�Wm)2 >= 1

Np

j=Np∑
j=1

(
�Wm

j

)2
. (17)

The coefficients of the FP equation in energy space would be

F = < �Wm >

�t
(18)

for the convective term (systematic acceleration) and

D = < (�Wm)2 >

2�t
(19)

for the diffusive term (stochastic acceleration).
Assuming that the mean displacement of the energy in general

can be expressed as < �W > (t) = DW taW , we estimate aW from
the slope of the mean energy displacement as a function of time
in logarithmic representation. In Fig. 7(a), we show <�W > as a
function of time, the mean displacement indeed shows a power-law
scaling, and a power-law fit yields aW ∼ 1.64 for λsc ∼ 2 × 108 cm.
Fig. 7(b) presents aW as a function of λsc, the mean displacement of
the particles in energy becomes larger as λsc becomes smaller, i.e. the
convective (systematic) type of motion gets enhanced. In Fig. 7(c),
we explore aW as a function of the final energy or the energy with
which the particles escape from the acceleration volume. For the
electrons with energy smaller than 10 keV the convective transport
is much reduced, in contrast to the high-energy particles, where the
scaling index reaches an asymptotic value close to aW ∼ 2.5. The
convective transport for energies between 10 keV and 1 MeV is
changing linearly with the energy from aW ∼ 0.4 to aW ∼ 2.5.

We now turn to the mean square displacement in energy, which
can generally be expected to have the functional form < (�W )2 >

(t) = DW 2 ta
W2 . Fig. 8(a) shows <(�W)2 > as a function of time,

and by a power-law fit we find aW 2 ∼ 3.52 for λsc ∼ 2 × 108

cm. Transport in energy inside the stochastic Fermi accelerator
is also superdiffusive. In Fig. 8(b), we show aW 2 as a function
of λsc, diffusion of particles in energy becomes faster as λsc

becomes smaller and the acceleration time also gets shorter (see
equation 6). In Fig. 8(c), we show aW 2 as a function of the final
energy or the energy with which the particles escape from the
acceleration volume. For the electrons with energy smaller than 10
keV the transport is normal, and for the high-energy particles it is
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Figure 7. (a) The mean displacement in energy of the electrons as a function
of time, together with a power-law fit. The slope of the power-law fit is aW

∼ 1.64 for λsc ∼ 2 × 108 cm. (b) The index aW as a function of λsc. (c) The
scaling index aW as a function of the final energy or the energy with which
the electrons escape from the acceleration volume.

superdiffusive, the scaling index reaches an asymptotic value close
to aW 2 ∼ 5. The transport for energies between 10 keV and 1 MeV
changes linearly with the energy from normal to superdiffusive.

In order to compare the importance of convection (F) and
diffusion (D) in an FP equation, one actually has to compare τF
and

√
2τD, with τ a small time-step, of the order of the mean

waiting time. From Figs 7 and 8, it then follows that convection
and diffusion are of rather similar importance for the dynamics in
energy space. Convective effects must be attributed to the fact that
Fermi acceleration is slightly biased towards increasing the energies
rather than decreasing them. Given that the transport property of the
low-energy (heated) particles is normal, and it is anomalous for the
high-energy particles, another important result from this section is
that the FP equation is the proper transport equation for the evolution
of the low-energy particles, while it clearly is an inappropriate tool
for modelling the dynamic evolution of the high-energy particles.

Figure 8. (a) The mean square displacement in energy for electrons as a
function of time. The index of the power-law fit is aW 2 ∼ 3.52 for λsc ∼
2 × 108 cm. (b) The index aW 2 as a function of λsc. (c) The scaling index
aW 2 as a function of the final energy or the energy with which the electrons
escape from the acceleration volume.

5 D I SCUSSI ON AND SUMMARY

For several decades, stochastic Fermi acceleration (or second-order
acceleration or stochastic turbulent acceleration) was analysed,
almost exclusively, with the use of the QL transport equation
in energy (Achterberg 1981; Miller et al. 1990; Melrose 2009;
Petrosian 2012). The time particles remain inside the acceleration
volume, tesc, was never calculated precisely, and it was used as
a free parameter. In many astrophysical and space applications,
stochastic Fermi acceleration was excluded as a potential accelera-
tion mechanism, based on the analysis of the QL transport equation
as ‘weak and second-order process’ compared to shock acceleration,
which was named a ‘first-order process’. We have already outlined
in the introduction, the weaknesses of the QL approach and the
deficiency of the weak turbulence theory to accelerate electrons and
ions efficiently. We believe that the ideas put forward by Fermi
in his article in 1949 have nothing to do with the results derived
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from the QL transport equation, since Fermi was referring to large-
scale magnetic disturbances (‘magnetic clouds’) and not to weak
turbulence and wave–particle interactions (Kulsrud & Ferrari 1971).

In a recent article by Pisokas et al. (2017), we pose the ques-
tion: What happens to stochastic Fermi acceleration in a strongly
turbulent environment, where the magnetic fluctuations, serving as
scatterers, are very large and their interaction with particles follows
the formalism proposed initially by Fermi (Fermi 1949).

In this article, we have shown that the spatial and energy transport
of the high-energy particles inside the stochastic Fermi accelerator
are both superdiffusive, and the time the high-energy particles need
to escape from the acceleration volume is correlated with the mean-
free path of the particles between the scatterers. On the other hand,
the relation between the transport properties of particles in space
and energy plays a very crucial role for the power-law index of the
high-energy tail and generally for the energy distribution inside a
finite and impulsive accelerator.

Our main results in this article are:

(i) The spatial transport of high-energy electrons (higher than 1
MeV) inside a finite size stochastic Fermi accelerator is superdiffu-
sive with ar ∼ 1.6, while the transport of heated low-energy (smaller
than 10 keV) particles is normal.

(ii) The transport of particle depends on the mean-free path λsc.
As λsc increases, the interaction of the particles with the large
amplitude magnetic fluctuations becomes weaker and the transport
properties tend asymptotically to normal diffusion. The escape time
tesc is linearly related with λsc, i.e. the smaller λsc the faster the
particles will escape from the acceleration volume.

(iii) The probability distribution of the waiting times between
subsequent collisions has a double power-law tail, with index 1.5
for the intermediate waiting times and index 0.7 for the large waiting
times.

(iv) In a periodic simulation box, the spatial transport properties
of the particles tend to normal transport as time increases (for the
solar corona the characteristic time is higher than 100 s for λsc ∼ 3
× 108 cm).

(v) The scaling index aW of the mean displacement in energy is
linearly dependent on the mean-free path λsc. The mean displace-
ment in energy becomes larger as λsc decreases, i.e. convective or
systematic increase in energy gets enhanced.

(vi) The ions have very similar transport characteristics with the
electrons, just on a lower time-scale.

(vii) The mean square displacement in energy is superdiffusive
for the high-energy particles and normal for the heated low-energy
particles. The scaling index aW 2 depends linearly on the mean square
displacement λsc, the smaller λsc the faster is transport in energy.
This result also agrees very well with equation (6).

(viii) The use of the FP equation for the study of the spatial and
energy transport of the high-energy particles is inappropriate, but it
is valid for modelling the heating of the low-energy particles or for
long lasting interactions in periodic systems (with infinite escape
time).

The astrophysical implications from our analysis are several.

(i) Stochastic Fermi acceleration has been labelled in most
space and astrophysical studies as a ‘second-order’ and ‘weak’
acceleration process. Returning to the initial ideas proposed by
Fermi for the stochastic acceleration, and given the results reported
in this article on the superdiffusion of high-energy electrons and ions
in energy space, we conclude that stochastic Fermi acceleration can

be highly efficient and the acceleration time is related with the
compactness of the scatterers.

(ii) The role of stochastic Fermi processes in the heating of
plasmas has been ignored.

(iii) The second important criticism on stochastic Fermi acceler-
ators is that the index of the high-energy particles is not constant and
not always close to 2, as most observations suggest, since it depends
on the escape time tesc, and, in the weak turbulence theory, on the
characteristics of the spectrum of the plasma waves accelerating the
particles. This result is also misleading, since the transport of the
high-energy particles analysed in this articles is superdiffusive and
tesc is closely related with λsc. Therefore, the acceleration time and
the escape time are correlated through λsc. Pisokas et al. (2017),
using reasonable values for the low solar corona for λsc, show that
the power-law index of the high-energy particles remains close to
2.

(iv) The FP transport equation for the evolution of the energy
distributions was extensively used in the space and astrophysical
plasma literature for the analysis of the interaction of particles
with plasma waves. We conclude in this article that the transport is
non-Gaussian for the interaction of particles with large amplitude
magnetic disturbances, and both the spatial and energy transport
must be re-examined using a transport framework different from
the FP approach (see e.g. Metzler & Klafter 2004).

In Isliker et al. (2017b), we have analysed systematic (first-order)
Fermi acceleration, in the same frame of a lattice model approach as
used here. We there have explicitly shown that the FP approach fails,
and only a fractional transport equation is adequate and successful
in modelling the transport in energy space (spatial transport was
not analysed in Isliker et al. 2017b). Given the anomalous transport
properties of stochastic Fermi acceleration analysed here (see e.g.
Fig. 8), we would expect that a fractional transport equation similar
to that in Isliker et al. (2017a, b) would be appropriate also for
the case of second-order Fermi acceleration in what the energy
transport is concerned. Still missing is a combined modelling frame-
work for the doubly anomalous transport in position and energy
space.

(v) Perri & Zimbardo (2012) discuss the transport of particles
upstream of a shock assuming that the turbulence upstream does
not affect the energetics of the particles. In this article, we show
that superdiffusive characteristics of transport can be the result of
stochastic Fermi acceleration in strong turbulence upstream (Zank
et al. 2015; Garrel et al. 2018).

In strongly turbulent plasmas, large-scale magnetic disturbances
during explosive or impulsive events are associated with coherent
structures (unstable current sheets or shocks), which accelerate
particles even more efficiently, being first-order processes (see
Isliker et al. 2017a). In this article, we simplified the analysis by
isolating the stochastic Fermi acceleration from the effects of the
coherent structures, avoiding in this way the complexity of the
synergy of two processes (Comisso & Sironi 2018, 2019; Pisokas
et al. 2018). Strongly turbulent plasmas combine all the well-known
accelerators studied separately in the past (second-order Fermi,
unstable current sheets and turbulent shocks; see Karimabadi et al.
2013, 2014). A systematic study of the transport properties of high-
energy particles in these mixed environments has only recently been
started (see Vlahos et al. 2004; Matsumoto et al. 2015; Zank et al.
2015; Vlahos et al. 2016; Comisso & Sironi 2018, 2019; Garrel
et al. 2018; Pisokas et al. 2018).
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