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Abstract

We analyze the stochastic acceleration of particles inside a fully developed turbulent plasma. It is well known that
large-amplitude magnetic fluctuations and coherent structures in such an environment obey a fractal scaling, and
our specific aim is to study for the first time the effects of the fractality of these environments on stochastic
acceleration. We have shown that an injected Maxwellian energy distribution is heated and forms a high-energy tail
in a very short time. Using standard parameters for the low solar corona, the injected Maxwellian distribution of
electrons gets heated from the initial 100 eV to 10 KeV, and the power-law index of the high-energy tail is about
−2.3. The high-energy tail starts around 100 keV, and reaches 10MeV. The index of the power-law tail depends
on the system size, and it is in good agreement with observed values for realistic system sizes. The heating and
acceleration process is very fast (∼2 s). The reason why the acceleration time is so short is that the particles are
trapped within small-scale parts of the fractal environment, and their scattering mean free path reduces drastically.
The presence of small-scale activity also easily pulls particles from the thermal pool, so there is no need for a seed
population. The mean square displacement in space and energy is superdiffusive for the high-energy particles.

Unified Astronomy Thesaurus concepts: Solar flares (1496); Particle astrophysics (96); Plasma astrophysics (1261);
Solar energetic particles (1491); Solar magnetic reconnection (1504); Solar magnetic fields (1503)

1. Introduction

Magnetic reconnection, weak turbulence, and shock waves
surrounded by passive scattering centers upstream and down-
stream were for years the prominent acceleration mechanisms
in most astrophysical and laboratory plasmas (Mel-
rose 1994, 2009). Recent magnetohydrodynamic (MHD) and
kinetic simulations, as well as analytical work, have shown that
magnetic reconnection can lead to self-generated turbulence
(Matthaeus & Lamkin 1986; Drake et al. 2006; Onofri et al.
2006; Daughton et al. 2011; Oishi et al. 2015; Isliker et al.
2019); driven strong turbulence can also host reconnecting and
non-reconnecting current sheets (Biskamp & Welter 1989;
Lazarian & Vishniac 1999; Biskamp & Müller 2000; Arzner
et al. 2006; Servidio et al. 2011; Isliker et al. 2017), and in
shock waves turbulent reconnection will be present mainly
downstream (Matsumoto et al. 2015; le Roux et al. 2016;
Garrel et al. 2018). Similarly, coherent structures including
reconnecting current sheets are now established to be key
components of turbulence in magnetized plasmas (Matthaeus &
Velli 2011; Cargill et al. 2012; Karimabadi et al. 2013, 2014;
Karimabadi & Lazarian 2013; Vlahos & Isliker 2019). In most
explosive space, astrophysical, or laboratory plasmas, e.g.,
flares, unstable astrophysical flows (solar wind and astrophy-
sical jets), or large-scale shocks (bow shock, Heliospheric
termination shock, coronal mass ejections, supernova rem-
nants), the heating and acceleration of particles is due to the
synergy of large-amplitude magnetic disturbances (stochastic
energization) and magnetic reconnection and/or shocks
(systematic energization; Comisso & Sironi 2018, 2019; Piso-
kas et al. 2018).

Acceleration of particles inside fully developed MHD
turbulence is a very complex problem and depends on many
important factors. (1) The nature of the interaction of particles
with the “scattering centers” can be stochastic, systematic, or
the synergy of both. The scattering centers inside fully
developed turbulence are either large-amplitude magnetic

disturbances or coherent structures (current sheets or shocks).
(2) The scaling properties of the scattering centers control the
energy and space transport and play a crucial role in the
acceleration time and the escape time inside the finite
acceleration volume.
The processes put forward by Fermi at the beginning of the

1950s to describe particle acceleration inside fully developed
turbulence are very broad in nature and include the well-known
(i) stochastic (second-order Fermi; Fermi 1949) and/or (ii) the
systematic (first-order Fermi; Fermi 1954) process. One can
explore these processes by using the concept of a random walk
inside a network of scattering centers (Manolakou et al. 1999;
Arzner & Vlahos 2004; Vlahos et al. 2004, 2016; Turkmani
et al. 2005; Onofri et al. 2006; Isliker et al. 2017; Pisokas et al.
2017, 2018; Garrel et al. 2018; Sioulas et al. 2020).
Fermi (1949) used several simplified assumptions in his

analysis of the stochastic interaction of cosmic rays with large-
amplitude MHD fluctuations. (1) The interaction of a particle
with the large-amplitude magnet fluctuations (“magnetic
clouds”) is stochastic and the energy gain (δW) is given by
the relation (Longair 2011)

d
~ - V u

W

W c
V

2
, 1

2
2( · ) ( )

where V is the characteristic velocity of the magnetic
disturbance, u is the velocity of the charged particle, and c
the speed of light. If <V u 0· the particles gain energy, and if

>V u 0· the particles lose energy. (2) The scattering centers
are uniformly distributed in space, and the interaction of the
particles with the scattering centers is expected to follow
Gaussian statistics. The particles execute a random walk with a
characteristic mean free path λsc between the scattering centers.
The acceleration time tacc was estimated by the relation

l~t c V3 4 .acc
2

sc[( ) ( )] (3) The Fokker–Plank transport
equation was used as the basic tool for the study of the
statistical evolution of the particles. The transport coefficients
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were grossly simplified. The acceleration time tacc is a measure
of the energy transport of the particles inside the acceleration
volume, and the escape time tesc a measure of the transport
properties in space, tesc∼L2/D, where L is the characteristic
length of the acceleration volume and D∼λscc is the spatial
diffusion coefficient if the particles are following a random
walk between the scattering centers. Here

l~t t c V Lacc esc
2 2 2

sc
2[ ] ; therefore, the power-law index of

the high-energy tail in the distribution function is strongly
dependent on the mean free path λsc. The acceleration time and
the escape time are functions of λsc and are estimated using the
assumptions listed above.

Independently from Fermi’s treatment and assumptions, it
can be shown that the steady-state solution of the energy
continuity equation inside a finite acceleration volume (leaky
box approximation) for stochastic Fermi acceleration
(Equation (1)) is

~ - +f W W 2t t1 acc esc( ) ( )( )

(Longair 2011).
The results and the simplifications listed above for the

stochastic Fermi acceleration have been questioned recently
(Pisokas et al. 2017; Sioulas et al. 2020). Both the transport
properties in space and energy are not normal and the
interactions of the particles with the scatterers follow non-
Gaussian statistics.

It is well known that large-scale magnetic disturbances and
coherent structures in fully developed MHD turbulence follow
monofractal or multifractal scalings, both in space and
laboratory plasma (Tu & Marsch 1995; Marsch & Tu 1997;
Shivamoggi 1997; Biskamp 2003; Dimitropoulou et al. 2013;
Leonardis et al. 2013; Schaffner & Brown 2015; Isliker et al.
2019). Dimitropoulou et al. (2009) examined the relationship
between the fractal properties of the photospheric magnetic
patterns and those of the coronal magnetic field discontinuities
(current sheets) in solar active regions. Isliker et al. (2019)
analyzed the current fragmentation of a large-scale current
sheet formed during magnetic flux emergence on the Sun and
showed that the fragments have a fractal structure, with a
fractal dimension DF=1.7–1.8.

After all, in fully developed turbulence the coherent
structures and the large-amplitude magnetic fluctuations are
located on a fractal set with dimension DF, and the mean free
path of the particles with the scattering centers (λsc) is not a
simple constant (Isliker & Vlahos 2003).

In this Letter, we explore for the first time stochastic Fermi
acceleration when the large-amplitude MHD magnetic fluctua-
tions have a fractal structure in space, and the particles are
executing a random walk in this environment. In Section 2, we
briefly outline the essential characteristics of the random walk
in a fractal environment. In Section 3, we present our Monte
Carlo simulation model, and in Section 4, we analyze our
results. In the final section, we discuss the implication of our
results for turbulent stochastic Fermi acceleration.

2. Random Walk in a Fractal Environment

Isliker & Vlahos (2003) have analyzed the random walk in
the environment of a natural fractal, where the fractal is
embedded in 3D space and the particles move freely in the
empty space not occupied by the fractal until they occasionally
collide with parts of the fractal set, where they undergo some

kind of scattering. The particles thus move across the fractal,
not along it. The fractal is natural in the sense that it is made up
of small elementary and finite volumes (and not of points, line
segments, etc., as in the case of mathematical fractals), and it
also is of finite, though usually large size, such that a clear
fractal scaling holds from the fractal’s size down to the size of
its elementary volumes. The nature of the random walk is
illustrated in Figure 1.
Isliker & Vlahos (2003) derived the probability density

function (pdf) pF(dr) of the distances dr that a particle travels in
between subsequent encounters with the fractal, assuming that
initially, a particle resides on a part of the fractal and then
moves freely into a random direction until it hits another part of
the fractal. For fractals with fractal dimension DF less than 2
(the case of interest here), this pdf turns out to be of power-law
form in good approximation,

= -p r A dr , 3F
D 3F( ) ( )

with A a normalization constant, which is a function of the size
of the natural fractal and the size of the elementary volumes it
is constituted of. With DF<2, it follows that the power-law
index of pF(dr) lies in the range −3<DF−3 <−1, which
means that pF(dr) has the same asymptotic (large dr) functional
form as the stable Levy distributions. Particles thus occasion-
ally perform large spatial jumps or “Levy flights,” and spatial
transport must be expected to be anomalous (Vlahos et al.
2008). A peculiarity of the pdf pF(dr) is that it is defective, i.e.,
it is normalized to a value less than one, which implies a finite
probability for direct escape in one step, without any secondary
encounter with the fractal.

3. Our Model

We construct a 3D box of linear size L=1010 cm. We
initiate the simulation by uniformly placing 106 particles in the
interior of the acceleration volume. At time t=0, the energy

Figure 1. Illustration of the random walk through a fractal environment. Part of
the fractal, with its constituent elementary volumes in blue color, and the orbit
of a particle in red color, moving along straight paths and occasionally
scattering off elementary volumes of the fractal.
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distribution of the particles is a Maxwellian with temperature T.
We then allow each particle to perform a free flight of length
dri

( j), before it meets a scatterer (i.e., it undergoes an
energization event), where it gains or loses energy stochasti-
cally according to Equation (1). The scatterers in our model are
assumed to form a fractal set of dimensions DF=1.8 (see
Sections 1 and 2). From Equation (3), the probability density

~ g-P dr dr( ) , with γ=1.2, yields the length of the spatial
step dr i

j( ) each particle performs. We assume that spatial steps
range from l = 10scmin

2 cm to l = 10scmax
10 cm. The

turbulent volume is a multi-scale environment. The range of
the steps used in this study covers the entire range from the
kinetic to the MHD scale, the lower limit is of the order of
several ion gyroradii, and the upper limit basically equals the
size of the acceleration box. Our results are not sensitive to the
exact values used for the lower and upper step limits, as long as
it holds that l lscmin scmax . As a result, there are “long
flights,” where particles are carried in one step over large
distances, in some cases almost through the entire system,
before they encounter a scatterer.

To completely specify the coordinates of a particle each time
it encounters a scatterer, we also generate a random number for
the azimuthal angle f, 0<f<2π , and one for qcos( ),

q- < <1 cos 1( ) , with θ the polar angle. We then can
determine the coordinates of each particle according to

f q

f q

q

= +

= +

= +
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where = ¼i 1, 2, ,106 is the particle index, and = ¼j N1, 2, , i

is the number of encounters a particle undergoes, with Ni being
the total number of encounters each particle is subjected to
before it reaches the final simulation time or escapes from the
acceleration volume.

During the free motion, the velocity of a particle remains
constant, and since we know the length dri

j( ) and the energy of
the particles after an acceleration event, we can keep track of
the time elapsed during the free flight as =dt dr v .i

j
i

j
i

j∣ ∣( ) ( ) ( )

Therefore, after a total number of j encounters, the time elapsed
for each particle is t = å = dt .i

j
j
j

i
j

1
( ) ( ) We continue to keep track

of the particles’ energy and transport properties until they reach
the final simulation time or cross the boundaries of the box and,
therefore, escape from the acceleration volume at time =t t iesc, ,
which is, of course, different for each particle. In Figure 2,
typical orbits in space are presented for a number of selected
particles. Obviously, a standard orbit of the particles consists of
a combination of long “flights” and efficient “trapping” in
localized spatial regions.

The conditions we simulate in this article are close to those
found in the lower solar corona. We use as strength of the
magnetic field B=100 G, as density of the plasma =n 100

9

cm3, and as ambient temperature T=100 eV. The Alfvén
speed is VA∼7×108 cm s−1, a value close to the thermal
speed of the electrons. With these parameters, the energy

increments are close to (dW

W
)~ ~ -10V

c

2 4A( ) (see Equation (1)).

4. Results

4.1. Spatial Diffusion in the Turbulent Volume

In order to estimate the mean square displacement of the
particles, we monitor their positions at prescribed and equi-
spaced monitoring times t n (n= 1, K, N). At time t n a
particle’s displacement from its initial position is
D = -r r ri

n
i
n

i0 and the mean square displacement for the
ensemble of particles is

åá D ñ = D
=

r
N

r
1

. 4n

p i

N

i
n2

1

2
p

( ) ( ) ( )

We first assume that a particle’s encounter with a scatterer
solely influences its direction of motion, leaving its energy
unchanged. In Figure 3(a), we show the mean square
displacement as a function of time. The diffusion for the
particles interacting with the passive scatterers is ballistic, the
scaling with time has a power-law index close to 2. This result
agrees with the results obtained by Isliker & Vlahos (2003, see
Figure 10 and Figure 11 therein), where the particles also
perform a random walk in an environment where a fractal with
dimension DF<2 resides.
We now turn to the case where the particles gain or lose

energy stochastically through their interaction with active
scatterers (see Equation (1)). The mean square displacement of
the electrons is shown in Figure 3(b), it exhibits a super-
diffusive scaling, < D > ~r t2 2.2( ) , with the power-law index
decreasing to 1.88 after t∼0.2 s.
In Figure 4(a) we show the distribution of the total number

of times the particles encounter a scatterer. The number of
encounters strongly varies, ranging from 2 to 2000, with a
mean of ∼140 energization events per particle. From
Figure 4(b) it is obvious that the particles trapped inside the
acceleration volume are those accelerated most efficiently, yet
only a fraction of the particles are subjected to a number of
energization events that is high enough to be accelerated to
superthermal energies.
The time spent by the electrons inside the acceleration

volume is very important for our study, profoundly affecting
the power-law index of the kinetic energy distribution (see
Section 1). As Figure 4(c) shows, most of the accelerated
electrons escape from the volume quite early, while, for larger

Figure 2. Typical orbit for a number of particles, marked by different colors.
Particles can be trapped inside regions of nearby scatterers or execute large
flights.
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escape times, their distribution forms a power-law with an
index close to 2.9. The mean value of the escape times yields
tesc∼1.9 s. Comparing this result to Pisokas et al. (2017),
where the acceleration process is taking place in an environ-
ment where the scatterers are uniformly distributed inside the
acceleration volume, we observe a significant decrease in the
escape time of the particles.

4.2. Diffusion of Electrons in Energy Space

Equally important for our study are the transport properties
of the kinetic energy of the energized particles. In an encounter
with a scattering center, a particle (with index i) departs from
the scatterer with renewed energy,

d= ++W W W ,i
j

i
j

i
j1

where dWi
j is given by Equation (1), and j counts the number of

energization events for the particle. In Figure 5(a), the
energization process is presented for several typical particles,
revealing its stochastic nature, but also exhibiting a slight
predilection for encounters leading to energy gain.

Using the set of predefined monitoring times t n outlined in
Section 4.1, we keep track of the particles’ energiesWn

i at these
times. If we denote by Wi

0 the particles’ initial energy, we can
define the energy displacement as D = -W W Wi

n
i
n

i
0( ), and

calculate the mean displacement in energy through the relation

åD º D = D
=

W t W
N

W
1

, 5n n

p i

N

i
n

1

P

⟨ ⟩( ) ⟨ ⟩ ( )

while the mean square displacement in energy is given by

åD º D = D
=

W t W
N

W
1

. 6n n

p i

N

i
n2 2

1

2
P

⟨( ) ⟩( ) ⟨( ) ⟩ ( ) ( )

In general, we can assume that the mean energy displace-
ment has a power-law form, áD ñ =W t F tW

aW( ) , and the index

Figure 3. (a)Mean square displacement of the particles as a function of time, in
the absence of energization of the particles (passive scatterers). (b)Mean square
displacement as a function of time, for the case where the scatterers are active
and energize the electrons.

Figure 4. (a) Distribution of the number of energization events (kicks) during
the acceleration process in a fractal environment. (b) Number of energization
events as a function of the electron escape energy for each particle; the red line
represents the binned median. (c) Distribution of the electrons’ escape times.
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aW can be estimated through a power-law fit. Figure 5(b) shows
áD ñW t( ); there is indeed a power-law scaling with a slope
aW∼0.33 for times up to 0.1 s, and aW∼0.43 for larger
times. The insert figure shows the evolution of the kinetic
energy for the electrons remaining inside the acceleration box
as a function of time. From the exponential fit we can estimate
the acceleration time as ~ =t 1 0.38 2.6 sacc (Longair 2011).
Figure 5(c) presents aW as a function of Wesc, from which it
follows that there is no systematic acceleration for electrons
with escape energy smaller than 104 eV. For the high-energy

particles, the scaling index gradually increases with energy,
reaching a value close to aW∼1.5.
Similarly, in the case of the mean square displacement in

energy we expect a power-law form á D ñ =W t D tW
a2 W2 2( ) ( ) . In

Figure 6 the mean square displacement in energy is presented.
For times up to t=0.1 s, the scaling is slightly subdiffusive,
following a power-law with index =a 0.76w2 . For larger times,
the power-law index is =a 1.21w2 , indicating a superdiffusive
behavior. In Figure 6(b) we show aW

2 as a function of the energy
with which the electrons escape from the acceleration volume.
As in the case of convective transport, electrons with energies
smaller than 10 keV have on average a scaling index aw

2 close to
zero. For the superthermal particles, we observe a substantial
increase of the scaling index with increasing escape energy,
moving from subdiffusive to superdiffusive, even attaining
values close to =a 4W

2 for the highest-energy particles.
In Figure 7(a), we show the histogram of the kinetic energies

for the particles that remain in the simulation box, normalized
to unity, for the injected distribution and the one at time
t=2.7 s, along with a Maxwellian fit at low energies that
yields a temperature T=10 keV. In the first few milliseconds
of the simulation, the low-energy particles are actually already
heated, and the high-energy particles are already accelerated
and form a power-law tail with index k∼3.8. Figure 7(b)
presents the evolution of the power-law index of the tail. After
2.7 s (which is equivalent to the acceleration time tacc), the
initially appearing power-law index k∼3.8 has decreased to

Figure 5. (a) Energization as a function of time for some typical electrons. (b)
Mean displacement in the energy of the electrons as a function of time. The
insert figure shows the mean kinetic energy of the electrons remaining inside
the box as a function of time, together with an exponential fit (red). (c) Power-
law index of the mean displacement in energy as a function of the escape
energy.

Figure 6. (a) Mean square displacement in energy as a function of of time. (b)
Power-law index of the mean square displacement in energy as a function of
the escape energy.
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an asymptotic value of about k∼2.3, the case shown in
Figure 7(a).

The power-law index of the tail of the kinetic energy
distribution can also be estimated through Fermi’s expression
= + ~k t t1 2.37acc esc (see Equation (2)), which is close to

the direct result from the power-law fit in Figure 7(a).
When reducing the size of the acceleration box, the particles

do not have time to reach a steady-state distribution before
escaping from the box, and the slope of the distribution at high
energies becomes steeper and the maximum energy reached
smaller. For example, for L=109 cm the energy distribution
remains the same in shape as the one for L=1010 cm in
Figure 7, yet at an earlier time than in Figure 7(a). Thus, the
acceleration time becomes much shorter, the slope of the high-
energy tail gets steeper, k∼3.4 at t=0.2 s (in complete
accordance with Figure 7(b)), and the maximum energy
reached is 1 MeV. Also, the heated Maxwellian distribution
at low energies remains unaffected by a reasonable reduction of
the acceleration volume (considering again earlier times than in
Figure 7(a)). These results agree very well with the current
observations from solar flares and space plasmas (Oka et al.
2018). When increasing the size of the simulation box above
1010 cm, the energy distribution remains unaffected when

comparing at equal times, since the energized particles are able
to reach a steady state.
According to Oka et al. (2018), the observed index of the

slope of the energetic particles is between 3 and 5 for most
solar flares, which, based on our results, suggests that the
acceleration box size is about 108–109 cm.

5. Summary and Conclusions

Stochastic turbulent acceleration and transport in space and
astrophysical plasma has been analyzed so far with the use of
the Fokker–Planck equation and the quasilinear approximation.
Both approaches are appropriate for weak turbulence when the
wave–particle interaction is a correct representation of the
scattering of particles by the normal modes of an unstable
plasma. Obviously, in strong and fully developed turbulence
these approximations break down since the dominant accel-
eration mechanisms are large-amplitude magnetic disturbances
and coherent structures (current sheets and shocks). Following
the initial suggestion by Fermi (1949), we have explored the
idea of particle acceleration and heating in the form of a
random walk inside a network of scatterers. Fermi assumed that
the scatterers (magnetic clouds) are uniformly distributed in
space and the mean free path λsc is constant. The mean free
path plays a key role in the estimates of the acceleration and
escape time and controls the power-law index of the high-
energy tail. As we outlined in the 1, numerous numerical
studies suggest that the spatial scaling of large-amplitude
magnetic disturbances and coherent structures inside fully
developed turbulence are located on a well-defined fractal
topology. We have explored here the role of the fractal scaling
in stochastic Fermi acceleration.
The main results in this study are:

1. The stochastic interaction of particles with fractal large-
amplitude magnetic fluctuations results in the heating and
acceleration of particles.

2. The high-energy particles are accelerated by a combina-
tion of intense trapping within small-scale structures and
delayed escape from the acceleration volume, undergoing
up to thousands of energization events.

3. The combined effects of trapping particles on small scales
and of long “flights” dramatically affect the acceleration
and escape time of stochastic acceleration. In particular,
the acceleration time is strongly reduced when compared
to acceleration in non-fractal, uniform environments.

4. The spatial and energy transport of the high-energy
particles is superdiffusive. The Fokker–Planck equation
for the study of the spatial and energy transport of high-
energy particles is inappropriate, although is valid for
thermal particles.

5. The small-scale interactions enhance the acceleration of
particles from the thermal pool.

6. We simulate in our study explosive phenomena (flares) in
the low solar corona, using a simulation box with
characteristic length L=1010 cm. We have injected a
very large number of electrons with a Maxwellian energy
distribution with a temperature of 100 eV. In about 2 s,
the energy distribution reaches an asymptotic shape, with
a superhot plasma with temperature 10 keV, and a power-
law tail above 100 keV with a power-law index −2.3, and
reaching 10MeV.

Figure 7. (a) Kinetic energy distribution at t=0 and t=2.7 s (steady state)
for the electrons remaining inside the box with size L=1010 cm, together with
a Maxwellian fit at low energies and a power-law fit at high energies. (b)
Temporal evolution of the power-law index of the kinetic energy distribu-
tion’s tail.
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7. When reducing the size of the box, e.g., to 108–109 cm,
the particles do not have time to reach a steady-state
distribution before escaping from the system, and the
power-law slope of the high-energy tail becomes steeper,
in agreement with the current observations from solar
flares and space plasmas (Oka et al. 2018). Increasing the
size of the acceleration box to L>1010 cm does not
affect the energy distribution, since the particles in any
case can reach a steady-state distribution.

We confined our study to the stochastic Fermi acceleration of
particles in a fractal turbulent environment, which turned out to
be a very efficient and important mechanism for many turbulent
astrophysical sources, beyond the case of solar flares studied
here. Our next step is to incorporate coherent structures
(reconnecting current sheets), as they are present in fully
developed plasma turbulence.

We thank Theophilos Pisokas for his help in the initial phase
of this project.
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