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ABSTRACT

Context. We interpret solar flares as events originating in active regions that have reached the self-organized critical state. We describe
them with a dynamic integrated flare model whose initial conditions and driving mechanism are derived from observations.
Aims. We investigate whether well-known scaling laws observed in the distribution functions of characteristic flare parameters are
reproduced after the self-organized critical state has been reached.
Methods. To investigate whether the distribution functions of total energy, peak energy, and event duration follow the expected scaling
laws, we first applied the previously reported static cellular automaton model to a time series of seven solar vector magnetograms of
the NOAA active region 8210 recorded by the Imaging Vector Magnetograph on May 1 1998 between 18:59 UT and 23:16 UT until
the self-organized critical state was reached. We then evolved the magnetic field between these processed snapshots through spline
interpolation, mimicking a natural driver in our dynamic model. We identified magnetic discontinuities that exceeded a threshold in the
Laplacian of the magnetic field after each interpolation step. These discontinuities were relaxed in local diffusion events, implemented
in the form of cellular automaton evolution rules. Subsequent interpolation and relaxation steps covered all transitions until the end
of the processed magnetograms’ sequence. We additionally advanced each magnetic configuration that has reached the self-organized
critical state (SOC configuration) by the static model until 50 more flares were triggered, applied the dynamic model again to the
new sequence, and repeated the same process sufficiently often to generate adequate statistics. Physical requirements, such as the
divergence-free condition for the magnetic field, were approximately imposed.
Results. We obtain robust power laws in the distribution functions of the modeled flaring events with scaling indices that agree well
with observations. Peak and total flare energy obey single power laws with indices −1.65 ± 0.11 and −1.47 ± 0.13, while the flare
duration is best fitted with a double power law (−2.15 ± 0.15 and −3.60 ± 0.09 for the flatter and steeper parts, respectively).
Conclusions. We conclude that well-known statistical properties of flares are reproduced after active regions reach the state of self-
organized criticality. A significant enhancement of our refined cellular automaton model is that it initiates and further drives the
simulation from observed evolving vector magnetograms, thus facilitating energy calculation in physical units, while a separation
between MHD and kinetic timescales is possible by assigning distinct MHD timestamps to each interpolation step.
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1. Introduction

Solar flares are interpreted as transient energy release events in
solar active regions (ARs) and are known to exhibit robust sta-
tistical properties that obey well-defined power laws. Numerous
flare observations over a series of solar cycles (Datlowe et al.
1974; Lin et al. 1984; Sturrock et al. 1984; Dennis 1985; Vilmer
1987; Crosby et al. 1993; Biesecker 1994; Bromund et al. 1995;
Aschwanden et al. 2000; Polygiannakis et al. 2002) have re-
ported that the distribution functions of flare peak flux, total en-
ergy, and event duration follow power laws with exponents in
the ranges of (−1.59,−1.80), (−1.39,−1.50), and (−2.25,−2.80),
respectively.

The consistency of the flaring activity in terms of scaling
laws and indices triggered a phenomenological approach in re-
producing and modeling its statistical behavior. Lu & Hamilton
(1991) and Lu et al. (1993) constructed the first model of solar
flare occurrence in this direction, assuming that the solar corona
is in a statistically stationary self-organized critical (SOC) state.
ARs are thus considered nonlinear dissipative dynamical sys-
tems, externally driven by magnetic flux emergence and the

photospheric velocity field, while instabilities are locally trig-
gered, giving rise to flaring and sub-flaring activity. These in-
stabilities are considered to be the source of the fragmented en-
ergy release in the solar corona. Cellular automata (CA) are a
convenient way of modeling the magnetic energy release in this
context, leading to avalanche-like simulated flare events.

Various enhanced SOC models were developed since then.
Vlahos et al. (1995) and Georgoulis et al. (1995) suggested that
an initial instability might trigger secondary ones, thus affecting
sites beyond the closest vicinity of the original event. Isotropic
and anisotropic relaxation mechanisms and instability criteria
were introduced by Georgoulis & Vlahos (1996), producing a
double power-law scaling behavior: the flatter power law re-
sembled intermediate and large flares, while the steeper one de-
scribed low-energy events. Furthermore, the external driver of
the system followed a power law itself, thus mimicking the ef-
fect of the emerging magnetic flux from the convection zone
in addition to the photospheric shuffling. Georgoulis & Vlahos
(1998) attempted to model the stresses that are randomly built
up within ARs through a highly variable, inhomogenous ex-
ternal driver. This provided a systematic study of the power
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law indices’ variability as a function of the driver’s proper-
ties. In parallel, Macpherson & MacKinnon (1999) attempted
to identify the features that control the power-law indices ob-
tained from self-organizing models of flare occurrence by con-
tinuously enhancing previous SOC models (MacKinnon et al.
1996; MacKinnon & Macpherson 1997).

Despite their compatibility with numerous flare observa-
tions, SOC models still need to interpret the underlying physical
nature of the instability criterion, the selected threshold value,
and the redistribution rules. Lu (1995) showed that a 1D nonlin-
ear diffusion equation can be driven to lead to the SOC state, thus
yielding power law distributions in dissipated energies. Isliker
et al. (1998, 2000, 2001) tried to connect the magnetohydro-
dynamic (MHD) and CA approaches by physically interpreting
numerous CA elements, such as the grid variable, the time step,
the finite spatial resolution, the energy release process, and by
determining the role of diffusivity. This work revealed specific
physical inconsistencies in the CA modeling, such as the uncon-
trolled value of the magnetic field divergence (∇ · B) and the in-
ability to derive important secondary variables (e.g., the current
density and the electric field). An extended CA model (X-CA)
introduced by Isliker et al. (2002) aimed at overcoming these
weaknesses. Liu et al. (2002) used a 1D sandpile model to ob-
tain a nonlinear hyperdiffusion equation and conducted a renor-
malization analysis on the extracted critical exponents. Bélanger
et al. (2007) expanded Liu’s work by using a 2D hyperdiffu-
sion equation, which led to SOC similarly to the corresponding
discrete 2D model. Morales & Charbonneau (2008) used paral-
lel magnetic field lines of uniform strength as basic dynamical
elements and drove the system through discrete, localized defor-
mations. The appearing tangential discontinuities led to flares,
when a specific angle threshold was exceeded. By design, such
a model guarantees a zero magnetic field divergence and can be
conceivably linked with actual coronal loop characteristics.

Dimitropoulou et al. (2011) constructed a static integrated
flare model (S-IFM hereafter), using for the first time observed
vector magnetograms as initial conditions, which allowed cal-
culations in physical units and direct comparison with obser-
vations. This was not possible in a number of previous mod-
els, as explained by Georgoulis et al. (2001). In the context of
the S-IFM, the magnetic field from the photospheric boundary
of observed vector magnetograms was extrapolated and was re-
sampled on a 32 × 32 × 32 grid through a nonlinear force-free
optimization algorithm (Wiegelmann 2008) with preprocessing
at the photospheric level (see Appendix A.1, module EXTRA).
The unstable locations were identified where the approximated
magnetic field Laplacian Gav(r) at site r exceeded a specific
threshold Gcr (see Appendix A.2, module DISCO). This im-
posed instability criterion in terms of the Laplacian of the mag-
netic field implied an almost zero resistivity in the solar corona,
except in regions where the magnetic field discontinuities (and
the local currents) reached the critical value. These locations dis-
sipate magnetic energy. Adopting the Lu & Hamilton (1991) ap-
proach, the magnetic field was redistributed in the case that mag-
netic discontinuities had been identified, causing the instabilities
to completely relax (see Appendix A.3, module RELAX). The
complete relaxation of the primary and all subsequent secondary
instabilities triggered during this process defined an avalanche
event, interpreted as a “flare”. To further load the system, we
added a random magnetic field increment δB(r) at a random
site r within the grid, perpendicular to the existing magnetic
field B(r), and only after a previously triggered avalanche had
completely decayed (see Appendix A.4, module LOAD). This
condition is compatible with the localized excitation of Alfvén

waves, or even the plasma upflow from the active-region pho-
tosphere. The magnetic field increment was forced to be signif-
icantly smaller than the magnetic field magnitude to allow the
system to reach the SOC state, without this state being influ-
enced by the loading process itself (Bak et al. 1987). Finally, the
condition ∇ · (B(r) + δB(r)) = 0 was imposed during the load-
ing process to keep the magnetic field divergence at a minimum.

Time in the S-IFM remained the only quantity expressed in
arbitrary model units because the photospheric vector magne-
togram did not change during the simulation. The S-IFM demon-
strated that all examined ARs reached the SOC state under the
imposed driving and redistribution rules, as indicated by the
asymptotic stabilization of the volume average Ḡav of the crit-
ical quantity Gav. The retrieved distribution functions for event
duration were best described by either double power laws or
power laws with exponential rollover, while the peak energy
and total energy clearly followed single power laws. All power-
law indices agreed well with observations and fell into the ob-
served ranges. Although it mimicked photospheric convection
as proposed by Parker (1988, 1989, 1993), or even coronal tur-
bulence and current sheet interaction through either localized
Alfvén waves or larger-scale turbulent flows (Einaudi et al. 1996;
Rappazzo et al. 2008), the S-IFM was, in fact, a static model.
Therefore, it could not realistically simulate either photospheric
convection or systematic photospheric flows (e.g., shear), which
are are known to be the drivers of most coronal instabilities
(Regnier & Priest 2007).

This work aims to address this significant drawback as
well as to relate our model’s evolution to physical temporal
units. To do so, the random loading mechanism applied in the
S-IFM is now replaced by a naturally evolving system. In par-
ticular, the dynamic integrated flare model (D-IFM) presented
here describes the evolution of an observed solar active region
(NOAA AR 8210) on the MHD timescale, using an ensemble of
seven 3D magnetic field configurations that were extrapolated
from seven subsequent vector magnetograms of this AR. The
extrapolated magnetic field configurations have already reached
the SOC state through the S-IFM and are used as initial condi-
tion and driving mechanism in the context of the D-IFM.

According to the above summary, the D-IFM comprises a
deterministic model (each D-IFM run generates reproducible re-
sults as long as the subsequent input magnetic configurations re-
main the same). Still, the D-IFM does not aim to reproduce the
exact flaring activity of NOAA AR 8210 but, rather, to provide
statistical data for the flare distribution functions (duration, peak
energy, total energy). To acquire the amount of data adequate for
such a statistical study, we further developed the seven subse-
quent magnetic configurations through the S-IFM until 50 addi-
tional flares were generated by each one of them. This number
of additional flares was chosen such that the resulting new se-
quence of seven configurations was uncorrelated with the pre-
vious one. We then again applied the D-IFM model to the new
sequence. The same process was repeated until sufficient statis-
tics are achieved.

The structure of this work is as follows: Sect. 2 describes
NOAA AR 8210 with its observed flaring activity and charac-
teristics. Section 3 explains the D-IFM concept in detail and
introduces the dynamic driving mechanism (Sect. 3.1, module
INTER). Section 4 presents our results and discusses our find-
ings. Finally, Sect. 5 summarizes our key conclusions, while
Sect. 6 discusses the strengths and weaknesses of the dynamic
model, its relation with previous results and also suggests pos-
sible future enhancements. The Appendix provides a technical
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Table 1. NOAA AR 8210 magnetogram sequence, UT time of IVM
acquisition, and respective D-IFM time in seconds of each snapshot.

Magnetogram no (i) UT time D-IFM time t (s)

1 18:58 0
2 19:43 2700
3 20:14 4560
4 21:20 8520
5 22:08 11 400
6 28:38 13 200
7 23:16 15 480

summary of the reused modules from the static model, as intro-
duced by Dimitropoulou et al. (2011).

2. NOAA AR 8210

We have used a timeseries of seven vector magnetograms from
NOAA AR 8210 recorded on 01/05/1998 from the University of
Hawaii Imaging Vector Magnetograph (IVM). The IVM obtains
Stokes images in photospheric lines with 7 pm spectral resolu-
tion, 1.1 arcsec spatial resolution (∼0.55 arcsec per pixel) over a
field of 4.7 arcmin2 and polarimetric precision of 0.1% (Mickey
et al. 1996). Table 1 shows the magnetogram sequence with the
corresponding acquisition UT times, starting from 18:58 and
ending at 23:16. Assuming that the D-IFM simulation starts at
time t = 0 s, we provide the corresponding model times t in
seconds in the third column of the Table.

To remove the intrinsic azimuthal ambiguity of 180◦,
we used the non-potential magnetic field calculation (NPFC)
method of Georgoulis (2005). For computational convenience
we furthermore rebinned the disambiguated magnetograms into
a 32× 32 regular grid. The original IVM magnetograms had lin-
ear dimensions of 512 × 512 pixels2 with 0.55 arcsec per pixel.
Rebinning the original magnetograms to a 32 × 32 grid yields
a pixel size of 0.55 × 16 = 8.8 arcsec. Furthermore, we spa-
tially coaligned the sequence of our magnetograms using the
first magnetogram as a reference. This allows the evolution of
the field vector from one snapshot to the next in a consistent way.
The upper row of Fig. 1 depicts the subsequent magnetograms
of NOAA AR 8210 after the azimuthal ambiguity removal and
the rebinning process.

The flare productivity of NOAA AR 8210 is documented in
the solar X-ray flare catalog from the GOES satellite1 (item 3).
On 01/05/1998 and for the examined UT time interval (18:58-
23:16), GOES recorded three significant flares: two of class C
and one of class M. The starting, peak, and ending flare times
are shown in Table 2.

3. Model

It is prerequisite for applying the D-IFM to the IVM vector mag-
netogram sequence that all snapshots are extrapolated in 3D into
the corona and that they are already in the SOC state. For this
reason, we first applied the S-IFM model (see Dimitropoulou
et al. 2011 and the appendix for a detailed description) to the
seven vector magnetogram snapshots. The algorithm ran for
4 × 105 iterations, which is sufficient for all NOAA AR 8210
snapshots to independently reach the SOC state. We thus ob-
tained seven 3D 32×32×32 configurations denoted by SOC:i, 0,

1 http://www.ngdc.noaa.gov/stp/SOLAR/ftpsolarflares.
html

(i = 1, 2, ..., 7). We refer to this first S-IFM run as static (IFM)
original run (SOR) hereafter. As demonstrated in Fig. 1 by com-
paring the upper (IVM data) with the lower (SOC:i, 0, (i =
1, 2, ..., 7)) row, the photospheric layer is not significantly im-
pacted by the SOR process.

Each snapshot of the SOC:i, 0, (i = 1, 2, ..., 7) sequence was
then developed through the S-IFM (excluding the extrapolation
step, since this only needs to take place during the SOR). The
static algorithm was forced to pause every time 50 additional
flares were triggered and completely relaxed for every snapshot.
The output of these static (IFM) intermediate runs (SIRs here-
after) is a series of additional magnetic configuration groups
SOC:i, j, (i = 1, 2, ..., 7), where j is the index of the SIR per-
formed. In total we allowed for jmax = 16 235 SIRs, thus collect-
ing an equal number of SOC:i, j, (i = 1, 2, ..., 7, j = 1, 2, ..., jmax)
sequence groups – all in an SOC state. As highlighted in the in-
troduction, the need for having subsequent SIRs derives from the
fact that the D-IFM aims to achieve sufficient statistics for the
flare distribution functions (duration, peak energy, total energy).
To acquire this amount of data requires numerous D-IFM runs
( jmax = 16 235 in this work), each on a distinct seven-element
magnetic configuration sequence.

We then applied the D-IFM algorithm to each of the 3D
magnetic configuration sequences SOC:i, j, (i = 1, 2, ..., 7, j =
0, 2, ..., jmax) as a separate simulation, i.e., there are jmax D-IFM
runs, each one for a fixed j and using the sequence SOC:i, j,
(i = 1, 2, ..., 7) as input and driver. The D-IFM follows in prin-
ciple the same concept as the S-IFM, namely it generates mag-
netic instabilities in the system through a loading mechanism,
which are then relaxed through magnetic field redistribution. The
complete relaxation of the primary (from the loading) and all
subsequent secondary instabilities (through the imposed mag-
netic field redistribution, following Lu & Hamilton 1991) com-
prises an avalanche or “flare” event. The total number of 16 236
D-IFM simulations provides an adequate sample of 90 971 flar-
ing events. In the statistical analysis, the total duration, total en-
ergy, and peak energy of each event are calculated and their dis-
tribution functions are constructed.

The basic difference between the S-IFM and the D-IFM is
the loading process. In the D-IFM, it is implemented by means
of a cubic spline interpolation (module INTER) of the magnetic
field for all transitions SOC:i, j → SOC:i + 1, j, (i = 1, 2, ..., 6)
with j fixed for each D-IFM run. The time interval between two
subsequent interpolation steps, the number of the interpolation
steps per transition from one configuration to the subsequent
one, and the reasoning for selecting cubic spline interpolation
are explained in detail in the technical description of the module
INTER (Sect. 3.1).

The new driving mechanism introduced in the D-IFM is
more physical than the S-IFM driver because it reflects the ob-
served photospheric evolution. As we will see below, this dy-
namical evolution allows for both physical time units, at least
for the start times of simulated flares, and multiple perturbation
sites. The latter is important, because we show that SOC persists
even in this driver case, which is clearly different from conven-
tional, single-site perturbed SOC models. Regarding the former,
following each interpolation step the entire grid is scanned for
possible instabilities. If one or more are detected, a collective
avalanche starts, involving all identified unstable locations. The
onset of each avalanche is labeled by a unique MHD time stamp
(starting time). Point taken, the avalanche is relaxed “instantly”
(i.e., by means of “infinitesimal”, arbitrary model units, or time
steps), as the sequence of magnetic reconnection events needed
to adjust the field takes place on kinetic timescales that are much
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Table 2. Characteristics of three major flares produced by NOAA AR 8210 on 01/05/1998 (from 18:58 until 23:16 UT) as recorded by GOES.

Index Flare start time (UT) Flare peak time (UT) Flare end time (UT) Flare class

1 20:08 20:30 20:35 C2.8
2 21:40 21:51 21:59 C2.6
3 22:36 22:54 23:08 M1.2

Fig. 1. Upper row: the vertical magnetic field components of the sequence of NOAA AR 8210 magnetograms in 32 × 32 grid resolution. Lower
row: the same sequence after the S-IFM has been applied for 4 × 105 iterations. The i-values correspond to the indices of Table 1.

Fig. 2. Graphic overview of the D-IFM. A total number of 16 236
SOC:i, j (i = 1, 2, ..., 7, j = 0, 1, 2, ..., jmax, jmax = 16 235) sequence
groups are created by advancing the previous group through the S-IFM
for 50 additional avalanches (vertical direction). Each group is then pro-
vided as input to the D-IFM (horizontal direction). Event duration, flare
peak, and total energies are accumulated in the database from all D-IFM
runs.

shorter than the MHD ones. Therefore, as in the S-IFM, D-IFM
flare durations are measured in time steps with arbitrary units.
The peak and total released energies of flares are measured in
physical units as in the S-IFM. Figure 2 provides a graphical
representation of the D-IFM concept.

3.1. INTER: a magnetic field interpolator acting as driver

INTER is a magnetic field interpolator that calculates the mag-
netic field components at intermediate times between two sub-
sequent configurations SOC:i, j and SOC:i + 1, j for given j.
Cubic-spline interpolation was selected for this purpose. The

main reason for selecting cubic spline interpolation instead of,
e.g., linear interpolation is that in the linear interpolation dif-
ferentiability is not ensured at the endpoints of the subintervals,
which means that the interpolating function is not smooth. From
the physical demands of our model, it is clear that the interpo-
lating function must be continuously differentiable, because the
physical quantity interpolated is the magnetic field, which needs
to follow a smooth transition throughout the entire D-IFM sim-
ulation. Cubic spline interpolation is continuously differentiable
up to order 2. Moreovr, Isliker et al. (2000) present a detailed
analysis in favor of the cubic spline interpolation.

The interval τ between two interpolation steps acquires phys-
ical units within the D-IFM. As shown in Sect. 2, rebinning the
original magnetograms to a 32 × 32 grid yields a pixel size of
8.8 arcsec. At this scale, at just one grid-site above the lower
boundary we reach a height of about 6.4 Mm in the solar atmo-
sphere that is clearly in the lower corona. Although Regnier et al.
(2008) have demonstrated that there is no typical coronal Alfvén
speed above ARs, but rather a dynamic Alfvén speed range vary-
ing mainly with height and depending on the overall AR mag-
netic configuration, we selected an indicative Alfvén speed of
103 km s−1 throughout our grid. This is considered a reasonable
approximation, since especially for NOAA AR 8210, Regnier
et al. (2008) showed that the highest Alfvén speed at the base
of the corona is ∼70 000 km s−1, decreasing rapidly with height,
and reaching the value of 600 km s−1 at a height of about 70 Mm
(z ∼ 11 in our grid, where z is the grid height, taking values in
the range 0 ≤ z ≤ 31). At a given height, though, there are very
limited variations in the Alfvén-speed values. This is attributed
to the complex topology of NOAA AR 8210, which does not
significantly influence the Alfvén speed distribution.

With the above-mentioned assumptions (8.8 arcsec per pixel
as spatial resolution and 103 km s−1 as a first approximation of
the Alfvén speed), we obtained a time step τ ∼ 6.4 s for our
interpolation. This time step corresponds to the Alfvén crossing
time of a distance equal to the linear scale of our grid-size.
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Table 3. Interpolation map of the D-IFM.

k SOC:i, j→ SOC:i + 1, j t(SOC:i+1, j) − t(SOC:i, j) (s) sk

1 1→ 2 2700 421
2 2→ 3 1860 290
3 3→ 4 3960 618
4 4→ 5 2880 450
5 5→ 6 1800 281
6 6→ 7 2280 356

Notes. The first column shows the index k of transitions between two
subsequent snapshots, as defined in the second column. The third col-
umn shows the model time stamp difference t(SOC:i+1, j) − t(SOC:i, j) in sec-
onds, while the last column presents the number of interpolation steps
sk per transition.

These assumptions allow us to assign physical time stamps to
each of the interpolation steps during the transition from SOC:i,
j to SOC:i + 1, j on the MHD time scale. For imax = 7 snap-
shots, the number of transitions k from one magnetic config-
uration to the subsequent one takes the maximum value of
kmax = 6. Assuming that the model time stamps for two sub-
sequent snapshots are t(SOC:i, j) and t(SOC:i+1, j) (see third column
of Table 1), the number of interpolation steps sk is defined as
sk =

t(SOC:i+1, j)−t(SOC:i, j)

τ for each transition k. These data are summa-
rized in Table 3.

We also assumed that when an avalanche is triggered by the
magnetic field loading, it is relaxed in zero MHD time (t does
not increase), because magnetic reconnection − the cause of the
redistribution − takes place on kinetic timescales. This leaves us
with arbitrary model time step units for the duration of each flare
(as in the S-IFM), but the time of event occurrence acquires an
MHD timescale stamp for the first time in the D-IFM.

Initially, INTER calculates the magnetic field B(r) per site r
for the number of time steps sk per transition k. After each inter-
polation step magnetic instabilities may occur at any site within
the grid (DISCO), and the magnetic field will be redistributed to
relax them in ΔtMHD = 0 (RELAX). After each flare, INTER re-
calculates the remaining number of interpolation steps and uses
the redistributed magnetic field B(r) per site r after the relax-
ation as the starting point for the new interpolation toward the
subsequent SOC:i, j.

To construct a database of 90 971 events, we performed a to-
tal of 16 236 D-IFM simulations, one for each of the j sequence
groups SOC: i, j, (i = 1, 2, ..., 7, j = 0, 2, ..., jmax) already in the
SOC state.

An important consideration in this new loading process
through INTER is whether we sustain the magnetic field di-
vergence close to zero. For the LOAD module of the S-IFM
(Appendix A.4), we had imposed the condition

∇ · (B(r) + δB(r)) = 0, (1)

As discussed in Dimitropoulou et al. (2011), however, condi-
tion (1) implies deviations from a divergence-free magnetic field
in the selected site’s vicinity. This is a known problem, which
can be tackled by working with the vector potential A, with
∇ × A = B, instead of the magnetic field B directly (see e.g.
Lu et al. 1993; Galsgaard 1996; Isliker et al. 2000, 2001). But
because our study uses observed vector magnetograms as ini-
tial conditions and driver, we naturally work with the magnetic
fields rather than their generated vector potential. Thus, Eq. (1)
only provides a low-order approximation of a divergence-free
magnetic field. To monitor how effective condition (1) is for the

S-IFM, Dimitropoulou et al. (2011) introduced a weighted nabla
dot B (WNDB) monitoring parameter as the average value of the
following expression over all grid points:

WNDB =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
|∇ · B|

√
3

√(
∂Bx
∂x

)2
+
(
∂By
∂y

)2
+
(
∂Bz

∂z

)2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
where Bx, By, Bz are the components of B(r). By definition,
WNDB is a dimensionless quantity, lying in the range 0 ≤
WNDB ≤ 1. Monitoring WNDB during our S-IFM simulations
provides evidence on whether LOAD keeps the magnetic field
within the volume approximately divergence-free. We used the
same variable to monitor the departure of the magnetic field di-
vergence from zero both for the S-IFM (SOR and SIRs) runs
preparing the SOC:i, j, (i = 1, 2, ..., 7) groups, and for each
of the D-IFM runs. Appendix A.3 discusses how the magnetic
field redistribution rules during the avalanche relaxation guaran-
tee that ∇ · B is not increased beyond the WNDB value after the
loading phase (LOAD for S-IFM, INTER for D-IFM) has been
completed. The respective results provided in Sect. 4 show that
our model does not depart more than 25% from the divergence-
free condition for the magnetic field vector.

3.2. Model parameters

We combined the above-described modules in one consistent
model (D-IFM) that monitors the flare duration, the peak en-
ergy, and the total energy for each snapshot group. The distri-
bution functions were determined for the cumulative data from
all groups. If an instability was identified (DISCO) after a mag-
netic field interpolation step (INTER), the possible chain of in-
stabilities that follows was left to completely relax (RELAX)
throughout the grid before the next interpolation starts (INTER).
This rule takes into account that the lifetime of a flare is much
shorter than the evolution (MHD) timescale of an AR. Note
that if multiple sites become unstable after the interpolation, we
regarded all triggered relaxation processes as one single flare
event. Successive grid scans may be required for an instability
to be completely relaxed. Each scanning corresponds to one time
step, therefore the relaxation of an event may be accomplished
in more than one time steps. Each loading/interpolation step trig-
gers a new iteration. The interval between two subsequent inter-
polation steps is defined as τ = 6.4 s (Sect. 3.1). Switching from
the magnetic configuration i to i+1 comprises a transition in our
model (with j fixed).

We considered the number of time steps needed for the en-
tire subsequent burst activity to have ended as the total avalanche
(flare) duration. The same concept applies to the recorded flare
peak energy, which is defined as the maximum energy recorded
during the relaxation time-steps within the grid. Finally, regard-
ing the flare total energy, we summed up the released energy
from all bursting sites during the avalanche.

The simulation results presented in the next section were per-
formed using a 32 × 32 × 32 cubic grid with open boundaries in
the relaxation events (see Isliker et al. 2001 for a detailed discus-
sion on open-boundary conditions).

4. Results

After applying the S-IFM to all seven initially extrapolated
IVM magnetograms for 4 × 105 iterations, we found that all of
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them (SOC:i, 0, (i = 1, 2, ..., 7)) have reached the SOC state.
Dimitropoulou et al. (2011) have shown that whether the SOC
state is reached is indicated by the asymptotic stabilization of
the volume average Ḡav of the critical quantity Gav. The system
was verified to remain in the SOC-state after the first application
of the D-IFM (SOC:i, 0, (i = 1, 2, ..., 7)) and for all subsequent
runs (for all j = 1, 2, ..., 16 235 groups).

The SOC state is known to exhibit robust power-law behav-
ior for the frequency distribution of the modeled avalanche pa-
rameters. In the framework of the D-IFM it is interesting to in-
vestigate whether this feature still persists with the new driving
process that allows multiple-site driving, leading to a collective
nature of avalanches. To define the best-fitting functions we ap-
plied least-squares fits and calculated the chi-square goodness-
of-fits.

Figure 3 depicts the distribution functions of duration
(Fig. 3a), peak energy (Fig. 3b), and total energy (Fig. 3c) for the
90 971 events within our database in linearly equispaced bins.
The duration distribution follows a double power law with index
−2.15 ± 0.15 for the flatter part and −3.60 ± 0.09 for the steeper
part. Both the peak and total energy distribution functions follow
single power laws with indices −1.65 ± 0.11 and −1.47 ± 0.13,
respectively. The inset graphs per frame depict the same distribu-
tions in equally spaced logarithmic bins. All results were derived
with a 95% significance level.

Although our findings agree well with both previous models
and observations, it is crucial to verify that we have a physi-
cally sound magnetic field. Indeed, neither loading in the S-IFM
(Eq. (1)) nor spline interpolation, acting as the loading mecha-
nism in D-IFM simulations, guarantee a zero-divergence field.

WNDB is therefore calculated to monitor the magnetic field
divergence throughout the loading and the redistribution pro-
cess for both static and dynamic simulations. Figure 4 shows
the WNDB evolution for the 4× 105 S-IFM iterations applied to
the initial i = 6 snapshot for the preparation of SOC:6, 0. We
note that the magnetic field exhibits an average departure from
zero divergence that barely exceeds 20%. Figure 5 shows that
WNDB during the ( jmax)th D-IFM simulation retains more or
less the same value (<22% in all simulations), meaning that nei-
ther the interpolation process nor the S-IFM simulations used for
the generation of more snapshot groups cause an uncontrollable
increase of |∇ · B|. This is one of the reasons why the spline in-
terpolation was selected, namely to achieve a smooth magnetic-
field loading process in all interpolation steps and transitions.

Motivated by Georgoulis & Vlahos (1998), who investigated
the variability of the scaling indices as a result of the driver’s
variability, we investigated whether the magnetic field incre-
ments δB(r) as determined by the spline interpolation mecha-
nism follow any specific scaling law. Figure 6 depicts the δB(r)
distribution function for one of the simulation series ( j = 5).
The magnetic field increments resulting from the interpolation
process follow a distribution function that can be either fitted by
a double power law with index −2.33± 0.19 for the flat part and
−3.18±0.21 for the steep part of the distribution (frame a), or al-
ternatively by a power law with exponential rollover (with index
−1.37±0.19) (frame b) for the small- and medium-magnitude in-
crements. The same analysis was conducted for several j-groups,
always yielding single/double power laws or power laws with
exponential rollover distributions for δB(r). The derived power-
law indices do not differ significantly from the results presented
in Fig. 6. This finding is indicative of the scale-independent na-
ture of the physical driving process, as given by the spline inter-
polation of the magnetic field.

Fig. 3. Distributions of the event duration a), the peak energy Epeak b),
and the total energy Etotal c) determined from the accumulated event
data of the 16 236 D-IFM simulations. The main graph is plotted with
linearly equispaced bins, while the inset graphs are plotted in equally
spaced logarithmic bins.

Figure 7 shows a 3D representation of the emerging mag-
netic discontinuities during a large avalanche recorded during
the D-IFM run j = 1800. This flare occurred at MHD time
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Fig. 4. Evolution of WNDB during the 4 × 105 iterations of the S-IFM
application to the i = 6 IVM magnetogram for the preparation of the
SOC:6,0 snapshot.

Fig. 5. Evolution of WNDB during the jmax = 16 250 D-IFM
simulation.

stamp t = 2547 s of our D-IFM simulation, namely during tran-
sition k = 1. A total of 3250 generated instabilities were re-
laxed in 112 model time steps without the MHD time progress-
ing until the flare completely decayed. The photospheric layer
is shown isolated from the corona at the bottom part of the fig-
ure, so that the photospheric magnetic field evolution is clearly
visible. The subsequent frames in this figure depict avalanche
snapshots indicative for the onset, peak, and decay phases of the
simulated flare. The avalanche sets off with 12 discontinuities
(Fig. 7a), evolves further with 74 discontinuities (Fig. 7b), peaks
with 104 discontinuities (Fig. 7c) , and decays with 86, 41, and
11 discontinuities (Figs. 7d–f), respectively.

Finally, we note that the average flare occurrence rate, as ob-
tained by dividing the total number of simulated events (90 971)
by the number of dynamic runs (16 250), yields the value 5.6
during the observation period (4.3 h), which is comparable to
the number of the observed flares (3) for the timeframe under
examination (see Table 2). This is an indication that the system
has not been under-/overdriven during the simulation.

5. Conclusions

This study provides a statistical simulation of the flaring activ-
ity for NOAA AR 8210 based on observational data in terms
of a dynamic CA model. In our modeling process we applied
the static integrated flare model (S-IFM) of Dimitropoulou et al.
(2011) to a sequence of seven IVM magnetograms captured on
01/05/1998 between 18:58 and 23:16. The S-IFM simulation

Fig. 6. Magnetic increment δB(r) distribution function during the
D-IFM simulation for j = 5. The graph is plotted with linearly equi-
spaced bins. a) depicts the double power law fitting to the distribution.
b) depicts fitting by a power law with an exponential rollover.

runs for 4×105 iterations in order to allow all snapshots to reach
the SOC state.

The generated SOC:i, 0, i = (1, 2, ..., 7)) group is provided
as input to the dynamic integrated flare model (D-IFM) intro-
duced in this work. We dynamically evolved our system through
spline interpolation of the magnetic field taking the SOC-driven
snapshots SOC:i, 0 (i = (1, 2, ..., 7)) as anchor points. The inter-
polated magnetic field effectively acts as the driver of our sys-
tem by gradually adding magnetic field increments δB(r) in ev-
ery interpolation step and throughout the grid (module INTER,
Sect. 3.1).

After each interpolation step we identified the unstable loca-
tions that will dissipate magnetic energy in the grid where the
approximated magnetic field Laplacian Gav(r) at site r exceeds
a specific threshold Gcr (module DISCO, see Appendix A.2 for
details).

If magnetic discontinuities were identified, the magnetic
field was redistributed such that the instabilities were completely
relaxed (module RELAX see Appendix A.3 for details).

When no discontinuities were found after interpolation and
all identified instabilities throughout the grid were relaxed, the
algorithm continues to interpolate until all transitions are cov-
ered. For statistical data collection we advanced the SOC:i, 0 (i =
(1, 2, ..., 7)) group by repeating the first step for 50 additional
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Fig. 7. 3D representation of the emerging magnetic discontinuities dur-
ing an avalanche generated in the course of the D-IFM simulation for
j = 1800. The total duration of this event is 112 steps. During the
early stages, the avalanche generates 12 discontinuities a), evolves with
74 discontinuities b), peaks with 104 discontinuities c), and decays with
86 discontinuities d), 41 discontinuities e), and 11 discontinuities f).

avalanches to construct SOC:i, 1 (i = (1, 2, ..., 7)), and we again
applied the dynamical interpolation, instability identification,
and relaxation as described above. The same process was re-
peated 16 235 times, yielding 90 971 avalanches for statistical
analysis.

Our results show that under the imposed driving and redis-
tribution rules in the D-IFM, the peak energy and total energy
clearly follow single power laws, whereas the event duration fol-
lows a double power law distribution. The duration distribution
follows a double power law with index−2.15±0.15 for the flatter
part and −3.60±0.09 for the steeper part. The indices of the sin-
gle power laws fitting to the peak and total energy distribution
are −1.65 ± 0.11 and −1.47 ± 0.13, respectively. These power
laws lie in the well-known ranges documented consistently in
numerous past studies, including Georgoulis et al. (2001) at least
for the peak and total energy. In this study, Georgoulis et al.
compared their SOC model with data from the Danish Wide
Angle Telescope for Cosmic Hard X-rays (WATCH) collected
during the maximum of solar cycle 21. Figure 1 in the cited work
shows that the peak and total energy of the observed flares follow
single power-law distribution functions with indices −1.59 and
−1.39, respectively, whereas the flare duration distribution func-
tion was considered to either follow a double power law (with
index −1.15 for the flat and −2.25 for the steep part) or a power
law with exponential rollover (with power law index −1.09).

6. Discussion

The D-IFM was developed to enhance previous SOC models of
solar flares. First and foremost, the initial and boundary condi-
tions are not arbitrary, but stem from real solar magnetograms.
While this is also a feature of the S-IFM, the newly introduced
D-IFM furthermore features a dynamical evolution in real time,
commensurate to the observed photospheric evolution of ob-
served magnetogram timeseries. An NLFF field extrapolation
was used to reconstruct the initial 3D magnetic configuration for

each magnetogram. Although NLFF field extrapolation models
include significant uncertainties (DeRosa et al. 2009), they pro-
vide physical, divergence-free field solutions, and equilibrium
configurations via the minimization of the Lorentz force.

The D-IFM generally follows the principles of Lu &
Hamilton (1991). Given the use of a magnetic field vector, the
rules obeyed during both the magnetic field redistribution and
the driving of the system are designed to maintain the magnetic
field divergence within acceptable limits. This was not the case
in the early CA models (Vlahos 1995; Georgoulis & Vlahos
1996, 1998) and has only been touched in advanced CA ap-
proaches through the use of the vector potential A instead of
the magnetic field B in combination with an improved way of
calculating the derivatives (Isliker et al. 2000, 2001).

Given that the simulation commences from observed mag-
netograms, it is possible for our CA model to remove the restric-
tion of arbitrary energy units (see e.g. the remarks in Georgoulis
et al. 2001). Going one step further, our model evolution is an-
chored to a sequence of magnetic snapshots stemming from IVM
magnetograms. This methodology allows us to assign physical
time stamps to each of the interpolation steps during the transi-
tion from one anchor point to the next on the MHD timescale. It
should be noted that the triggered avalanches are still unresolved
in real time, thought to be evolving on reconnection (i.e., kinetic)
timescales.

The interpolation-based driving mechanism effectively mim-
ics a variety of physical processes that affect the flaring activ-
ity. In addition to photospheric convection (Parker 1988, 1989,
1993), localized Alfvén waves, coronal turbulence, and current
sheet interaction (Einaudi et al. 1996; Rappazzo et al. 2008),
which were also simulated by the S-IFM, the dynamic driving
through magnetic field interpolation based on subsequent pho-
tospheric observations now allows for a realistic simulation of
systematic photospheric flows (e.g. shear). This enhancement is
important because (1) it has been argued that the distribution
and energy content of magnetic discontinuities in a given photo-
spheric boundary can explain the statistical properties of flares
(Vlahos & Georgoulis 2004) and (2) investigating possible cor-
relations between the photospheric driver and the corresponding
coronal active region reveals the strong nonlinearity in the mag-
netic fields of active regions that hinders correlations between
the fractal dimensions and thus the complexity of photospheric
and coronal structures (Dimitropoulou et al. 2009). The latter
patterns, however, have a crucial impact on the expected dynam-
ical activity of the system, specifically the magnetic energy re-
lease and the subsequent particle acceleration processes (Vlahos
et al. 2004). D-IFM now provides the means for future investi-
gation of these aspects.

One of our key findings is that the D-IFM’s spline-
interpolation driving mechanism naturally gives rise to a power-
law distribution of magnetic field increments, qualitatively sim-
ilar to the variable driver described in Georgoulis & Vlahos
(1998). In that study, the peak and total energy distribution func-
tions followed double power laws with a “knee point” that dis-
tinguishes between the steeper and flatter parts of the distribu-
tion. The steeper part corresponds to a “soft” flare population
(dubbed nanoflares), while the flatter part is attributed to mi-
croflares and flares. The soft, nanoflare population was attributed
by Georgoulis & Vlahos (1998) to the application of anisotropic,
small-scale relaxation rules. In the absence of anisotropic re-
laxation, one expects a global scale-invariance of the distribu-
tion functions reflected by robust scaling laws. As a result, the
steepening feature in the peak and total energy distribution func-
tions does not appear in the D-IFM model, which is a purely
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isotropic model in its relaxation process. In the D-IFM the vari-
able driver follows a power-law distribution for the magnetic
field increments, which results in scale-invariance in the distri-
bution functions for the total and peak energies, which follow
single power laws.

Although this work overcomes major drawbacks of many
previous CA models, there are still some points that can lead to
discrepancies, such as the arbitrary determination of the thresh-
old value Gcr that can slightly influence the exponents of the
inferred power laws and the extent of the duration and en-
ergy ranges. Gcr cannot incur any qualitative changes to the
distribution functions, a feature well-known in SOC models.
Nonetheless, the histogram method of Dimitropoulou et al.
(2011) (Appendix A.2) manages to reduce the arbitrariness of
the Gcr-selection.

Variations in the indices of the flare distribution functions
can also be expected by the application of a dynamic range
of Alfvén speeds, which would be more realistic than a single
Alfvén speed value throughout the active-region corona. Such a
distribution – at least depending on height – would accordingly
alter the interpolation step duration while driving the system, and
could thus cause modifications in the inferred distribution func-
tions. A dynamic Alfvén speed range is an improvement of the
D-IFM that is considered for future implementation.

In conclusion, the validity of the CA models regarding the
simulation of physical processes in complex systems remains a
long-standing question. Isliker et al. (1998) demonstrated that
the essence of CA modeling is to describe complex systems,
which comprise a large number of interacting subsystems, as-
suming that the global dynamics described statistically are not
sensitive to the fine structure of the elementary processes. MHD
approaches are based on a precise description of elementary pro-
cesses through detailed differential equations. The CA approach
does not provide insight into the local processes or over short-
time intervals, but it reproduces the global statistics. MHD re-
veals details about the local processes, but coupling them to a
global description is a formidable task. It is therefore evident
that both approaches can be considered to be complementary
rather than competing. There have been various attempts to ei-
ther combine them (e.g. Longope & Noonan 2000), or interpret
CA models as discretized MHD equations (Isliker et al. 1998;
Vassiliadis et al. 1998). More refined CA models, such as the
X-CA model described by Isliker et al. (2001), have achieved
consistency with MHD to a greater extent. Our CA model will
opt to incorporate and use meaningful modeling developments
into a continuously improving dynamic integrated flare model.
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Appendix A: S-IFM model

A.1. EXTRA: a nonlinear force-free extrapolation module

The first step is to extrapolate the photospheric magnetic fields.
As explained in Dimitropoulou et al. (2009), a physically mean-
ingful treatment is the nonlinear force-free (NLFF) field ex-
trapolation. Our method of choice is based on the optimization

technique introduced by Wheatland et al. (2000) and further
developed by T. Wiegelmann and collaborators (Wiegelmann
2004, 2008; Wiegelmann et al. 2006). This technique recon-
structs force-free magnetic fields from their boundary values by
minimizing the Lorentz force and the divergence of the magnetic
field vector in the extrapolation volume:

L =
∫

V
w(x, y, z)

[
|B|−2|(∇ × B) × B|2 + |∇ · B|2

]
d3x. (A.1)

In this functional, w(x, y, z) is a weighting function and V de-
notes the extrapolation volume. A force-free state is reached
when L → 0 for w > 0. For w(x, y, z) = 1, the magnetic field
must be available on all six boundaries of our cubic box for the
optimization algorithm to work. However, photospheric vector
magnetograms pertain only to the bottom boundary, whereas the
magnetic field vector on the top and lateral boundaries is un-
known. The weighting function is therefore used to minimize the
dependence of the interior solution from the unknown bound-
aries. In this study we introduced a buffer zone of ten grid points
expanding to the lateral and top boundaries of the computational
box. We then chose w(x, y, z) = 1 in the inner domain and let w
drop to zero with a cosine-profile in the buffer zone toward the
lateral and top boundaries of the computational box. This tech-
nique was first described by Wiegelmann (2004).

An additional useful attribute of Wiegelmann’s NLFF field
extrapolation code is the preprocessing option it offers. As the
photospheric magnetic field is in principle inconsistent with the
force-free approximation, a preprocessing procedure was devel-
oped by Wiegelmann et al. (2006) to drive photospheric fields
closer to an NLFF field equilibrium. Preprocessing minimizes
the forces and torques in the system, thus satisfying the force-
free requirements more closely.

Although NLFF extrapolation methods have been greatly
improved in recent years, such models still include numerous
uncertainties (DeRosa et al. 2009). Additional constraints stem
from the measurements (signal-to-noise ratio, inadequate reso-
lution of the 180◦ ambiguity) or from physical origins (the non-
force-free nature of the photospheric vector magnetograms),
which are not adequately handled in the course of the extrap-
olation. These uncertainties are unavoidably conveyed to our
simulations.

A.2. DISC: a module for identifying magnetic-field instabilities

The DISCO module used in the D-IFM is identical to the one
introduced in the S-IFM (refer to Dimitropoulou et al. 2011,
Sect. 3.2). For reasons of completeness, we herein present only
its basic principles. We assume that instabilities occur if the mag-
netic field stress exceeds a critical threshold. For every site r
within our grid, we calculate the magnetic field stress Gav(r) as

Gav(r) = |Gav(r)|,
where

Gav(r) = B(r) − 1
nn

∑
nn

Bnn(r).

In the above definitions nn is the number of nearest neighbors for
each site r and Bnn(r) is the magnetic field vector of these neigh-
bors. Depending on the location of each site within the volume,
the number of nearest neighbors nn can be nn = 3, 4, 5, 6. The
physical reason for selecting this criterion is that strong mag-
netic stresses favor magnetic reconnection in three dimensions,
even in the absence of null points (Priest et al. 2003).
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Following Isliker et al. (1998), Dimitropoulou et al. (2011)
showed mathematically that the selection of Gav as the critical
quantity relates to the diffusive term of the induction equation:

∂B
∂t
= ∇ × (V × B) + η∇2B, (A.2)

where V is the plasma velocity and η the resistivity.
In the physical picture, we assume an almost zero resistivity

value everywhere within the corona, except in the regions where
the discontinuities (and the local currents) reach a critical value.
In these regions current-driven instabilities will enhance the re-
sistivity by many orders of magnitude, and the second term in
equation (A.2) will become dominant.

Although there are several ways to determine the threshold
value for the critical quantity (Dimitropoulou et al. 2011), we
choose Gcr = 10 G by applying the histogram method: we con-
struct the histogram of the Gav values in our grid. We then fit a
Gaussian to this histogram and define the threshold Gcr as the
field stress value, above which the histogram deviates from the
Gaussian.

Every site r = (i, j, k) for which the inequality Gavi, j, k ≥
Gcr is satisfied is considered unstable and undergoes magnetic
field restructuring under the rules implemented in the RELAX
module.

A.3. RELAX: a redistribution module for magnetic energy

The redistribution module in the D-IFM remains the same as in
Dimitropoulou et al. (2011). If the instability criterion Gavi, j, k ≥
Gcr is met at a specific site i, j, k, the vicinity of the unstable
location undergoes a field restructuring, which follows the rules
of Lu & Hamilton (1991):

B+(r)→ B(r) − 6
7

Gav(r) (A.3)

B+nn(r)→ Bnn(r) +
1
7

Gav(r), (A.4)

where the superscript + denotes the field components after the
redistribution. Isliker et al. (1998) showed that the redistribution
rules (A.3) and (A.4) implement local diffusion and after redis-
tribution, G+av(r) = 0, so the instability at location r has been
relaxed.

It is worth mentioning at this point that the above redistri-
bution rules maintain the zero-divergence requirement for the
magnetic field, as discussed also in Dimitropoulou et al. (2011).

A.4. LOAD: the driver of the static model

The module LOAD is only used in the S-IFM. In the D-IFM it
is replaced by the module INTER (Sect. 3.1). With the module
LOAD, after the system is completely relaxed, we introduce a
driving mechanism in the static model that adds a magnetic field
increment δB(r) at one randomly selected site r within the grid.
The driving process complies with the following conditions:

1. B(r) · δB(r) = 0. (A.5)

This condition implies that the magnetic field increment is
always perpendicular to the existing magnetic field B(r)
at the randomly selected site r. Figure A.1 provides a
sketch of the suggested situation, depicting the directions
of the plasma velocity V, the magnetic field B, and the
perpendicular magnetic field increment δB. We note that
the condition described by Eq. (A.5) is compatible with two

Fig. A.1. Typical configuration of a magnetic loop anchored in the pho-
tosphere. The magnetic field vector B is perpendicular to an assumed
plasma outflow velocity V. The model driver requires that the magnetic
field increments δB are always perpendicular to the existing magnetic
field B.

physical scenarios: (a) that Alfven waves may have been
excited locally, or (b) that, according to the convective term
∇× (V × B) of the induction Eq. (A.2), a magnetized plasma
upflow occurs in the AR, out from the photosphere.

2.
|δB(r)|
|B(r)| = ε, ε < 1. (A.6)

This is a typical condition known to allow the system to
reach the SOC state, without this state being influenced by
the loading process (Bak et al. 1987). As also shown by Lu
& Hamilton (1991), decreasing the driving rate by making
the magnetic field increments even smaller increases the
average time between subsequent events. For the results
presented here we have used a fixed ε = 0.3.

3. ∇ · (B(r) + δB(r)) = 0 (A.7)

This condition should guarantee that the divergence of the
magnetic field is approximately kept to zero during the
loading process, as is also the case in the redistribution
of the magnetic field (RELAX module). To implement
the condition, a first-order, left finite-difference scheme is
used. Condition (A.7) does not provide a guarantee for a
divergence-free magnetic field in the selected site’s vicinity,
but rather a low-order approximation toward a divergence-
free magnetic field. As discussed in Sect. 3.1, the WNDB
variable is introduced to monitor the departure from zero
magnetic field divergence both in the static and dynamic
models.
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