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The excitation and suppression of large-scale anisotropic modes during the temporal evolution of a
magnetic-curvature-driven electrostatic flute instability are numerically investigated. The formation
of streamerlike structures is attributed to the linear development of the instability while the
subsequent excitation of the zonal modes is the result of the nonlinear coupling between linearly
grown flute modes. When the amplitudes of the zonal modes become of the same order as that of
the streamer modes, the flute instabilities get suppressed and poloidalszonald flows dominate. In the
saturated state that follows, the dominant large-scale modes of the potential and the density are
self-organized in different ways, depending on the value of the ion temperature. ©2005 American
Institute of Physics. fDOI: 10.1063/1.1854688g

I. INTRODUCTION

Electrostatic turbulence, driven by spatial gradients, is
believed to be the dominant source of anomalous transport in
magnetically confined fusion plasmas. Special emphasis has
been given lately on the properties of large-scale anisotropic
flows generated by the drift-type turbulence, due to the criti-
cal role they play in the regulation of the low-frequency drift
instabilities and consequently of the levels of turbulent
transport.1,2 The spontaneous generation of large-scale flows
driven by electrostatic wave turbulence has been experimen-
tally observed in plasma discharges in various machines,
e.g., in Texas experimental tokamak, in the reversed field
pinch experiment, and in the doublet III-D tokamak
sDIII-D d.3,4 Zonal flowssZFsd correspond to potential struc-
tures which spatially depend on the radial coordinatex sthe
coordinate along the axis of plasma inhomogeneityd, while
radial flows or streamerssSTsd are radially elongated poten-
tial structures which spatially depend on the poloidal coordi-
natey.5 In tokamak plasmas, ZFs have the ability to limit the
radial size of turbulent eddies through the shear decorrelation
mechanism,6 and hence to regulate turbulent transport. Thus,
the high plasma confinement modes are attributed to the
presence of large-scale poloidal flowsszonal flowsd. Stream-
ers, on the other hand, are ineffective at inhibiting radial
transport and, due to their long radial correlation length, may
lead to enhanced or bursty levels of transport.7 Moreover,

zonal structures are observed also in rotating planetary atmo-
spheres as on the Earth8 or on Jupiter.9 The detailed investi-
gation of the origin and dynamics of these flows is currently
of great importance and presents a major challenge in the
theory of plasma turbulence.

In recent years, spontaneous generation of large-scale
secondary flows in plasmas by turbulent fluctuations has
been extensively studied with special emphasis on electro-
static drift wave turbulence and its modifications, i.e., ion
temperature gradientsITGd, electron temperature gradient
mode turbulence, etc.10–20 Several mechanisms for flow for-
mation have been suggested. The first one is commonly at-
tributed to the Reynolds stress forces generated by the small-
scale fluctuations. It was shown in Ref. 10 that the flow
formation occurs when the underlying small-scale turbulence
supports waves propagating in the direction of the plasma
inhomogeneity and when gradients in the turbulent Reynolds
stress exist. The second mechanism is based on the triad
interactions and is attributed to the development of a modu-
lation, or parametric instability induced by the small-scale
turbulence. The instability is accompanied by the excitation
of long wavelength modes of the density and velocity, i.e.,
zonal flows and streamers.11–13

The aim of the present work is the numerical investiga-
tion of the generation and saturation of large-scale aniso-
tropic flows by an evolving magnetic-curvature-driven flute
instability. Flute modes are low-frequencysv!vcid electro-
static oscillations of a nonuniform magnetoplasma which are
elongated along the magnetic fieldki=0 sflute limitd and be-adElectronic mail: sandberg@central.ntua.gr
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come unstable due to the combined effects of the density
inhomogeneity and the curvature of the magnetic field lines.
In the flute limit, plasma particles do not follow the Boltz-
mann relation and cannot cancel the charge separation in-
duced by the difference between the perturbed electron and
ion curvature drift velocities. This leads to the development
of an electric field component perpendicular to the magnetic
field direction that amplifies the initial perturbation, which
becomes unstable. We note that the flute instability is also
termed interchange instability, as it tends to interchange “flux
tubes” of different pressure causing convective transport.
Thus, it is considered to be one of the most dangerous insta-
bilities in thermonuclear fusion devices.

There are several important differences compared to the
electron drift, or to the ITG mode turbulence. In contrast to
the zonal flow generation in ITG mode turbulence, where
electrons are thermalized along the magnetic field lines and
the Boltzmann relation holds,20 in flute mode turbulence the
parallel electron dynamics is absent sinceki=0. This leads to
a completely different behavior of the density response in the
flute mode compared to the ITG mode. The model equation
describing the ion dynamics in ITG mode is essentially a
Hasegawa–Mima-type equationsmodified by the ion tem-
perature perturbationd while that in the flute mode is an Euler
type equation. Consequently, the definition and the time evo-
lution of the ion vorticity, which is a key element in the
turbulent flow, are different for ITG and flute mode. In the
flute mode dynamics, the finite Larmor radius effectssFLRd
modify significantly the evolution of the flute modes since
they may lead to the linear stabilization of the flute instabil-
ity. However, this is not the case in the ITG instability de-
spite that both modes belong to the so-called reactive drift
type modes. Furthermore, the polarization drift nonlinearity,
which is a common characteristic in various drift type modes
se.g., ITGd and cascades energy towards large scalessinverse
cascaded, is modified in the flute mode turbulence due to the
presence of an additional component. Accordingly, the dia-
magnetic component of the polarization drift nonlinearity,
which is a FLR effect modifies significantly the cascade
properties since it provides a direct spectrum cascade.21 As a
result, the spectrum in flute mode turbulence is established
due to the competition of these two processes.

In the cold ion limit, the generation and saturation of
zonal flows due to the development of the flute instability
have been numerically investigated by Daset al.22 The au-
thors showed, among others, that for large values of the dy-
namical viscosity and diffusion coefficients the nonlinear ef-
fects attributed to the short scale fluctuations become rather
weak and the generation of the zonal flows is inhibited. For
finite ion temperature, the generation of large-scale flows in
flute turbulence has been studied analytically in Ref. 23 on
the basis of a scale separation between the short scale turbu-
lent fluctuating fields and the large-scale flows. As it was
shown, streamers can be generated through both linear and
nonlinear mechanisms, while zonal flows can be excited only
nonlinearly. Furthermore, the role of the ion temperature can
be of great importance due to the ion diamagnetic drift non-
linearity which appears in the Reynolds stress tensor for fi-
nite ion Larmor radius.

In order to extend the theory of the formation of large-
scale flows in flute turbulence, we here numerically investi-
gate the nonlinear dynamics of the flute instability using the
more general model of the flute equations as presented in
Ref. 24, for the case of electron-proton plasmas. This model
is a generalization of Refs. 22 and 23, as it includes both
electron and ion curvature drifts and it incorporates both lin-
ear and nonlinear effects associated to finite ion pressure
fluctuations.

Finite ion temperature has manifold influence on the de-
velopment and evolution of the flute instability; the ion cur-
vature drift leads to an increase of the growth rates, while the
ion diamagnetic drift stabilizes the short scale flute instabili-
ties, leading to a narrowing of the spectrum of the linearly
excited modes. Furthermore, the diamagnetic component of
the polarization drift nonlinearity, attributed to the finite ion
Larmor radius, is expected to lead to a direct cascading of the
fluctuation energy towards short scales, according to Ref. 21,
suppressing in this way the generation of the large-scale
flows. Thus, the conditions for the nonlinear generation of
large-scale structures in the frame of our model are more
complex. In order to elucidate these conditions, we perform
numerical studies of the nonlinear evolution of the flute in-
stability.

We will focus on the description of the excitation, inter-
action, and suppression of the largest-scale anisotropic
modes, i.e., the zonal and the streamer modes. Zonal modes
are defined here as the modes withky=0 and with a small but
finite radial scale lengthskx

−1. Streamer modes are defined as
the modes withkx=0 and small but finite poloidal wave
numbersky. In the following section, we briefly present the
model of equations that describes the evolution of the flute
instability, and in Sec. III we present the numerical results.
Finally, in Sec. IV follow the summary and the conclusions.

II. BASIC EQUATIONS

A weakly inhomogeneous magnetized plasma with char-
acteristic inhomogeneity scale lengthLn along the radial axis
x is considered. The magnitudeBsxd and the unit vectorb of
the curved magnetic field are modeled byBsxd=B0s1−x/Rd
andb= ẑ−sz/Rdx̂, respectively, whereR s.Lnd is the curva-
ture radius of the magnetic field lines. Starting from the two-
fluid plasma equations,25 and assuming flute-typeski=0d,
quasineutral, electrostatic oscillations, it is found that the
magnetic-curvature-driven flute modes are described by the
following set of dimensionless coupled equations for the per-
turbed electrostatic potentialf and densityn:24

s]t − tvn]yd¹'
2 f + vgs1 + td]yn

= t divh='f,nj + h¹'
2 f,fj + m¹4sf + tnd, s1d

s]t + vg]ydn + svn − vgd]yf = hn,fj + D¹2n, s2d

wherehf ,gj= ẑ3 = f ·=g denotes the Poisson bracket.
The system of Eqs.s1d and s2d describes the nonlinear

interaction of the flute modes and admits the excitation of
large-scale flows. It generalizes other models,22,23 including
rigorously the magnetic curvature drifts of both electrons and
ions, and the finite ion Larmor radius effects. The first equa-
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tion originates from the quasineutrality condition=' ·fnsvi
W

−ve
W dg=0, and the second one results from the electron con-

tinuity equation. For the derivation of these equations, the
perpendicular perturbed velocities of the electron and the ion
fluids were analytically expressed in terms of a sum of their
associated perturbed drift velocities induced by low-
frequency electrostatic perturbations. For the ion fluid veloc-
ity, a standard successive approximation was used based on
the drift velocity ordering, according to which the ion polar-
ization and the ion stress tensor drift velocities are much
smaller compared to the electric and the diamagnetic drifts
ssee, for example, Ref. 24d. In Eqs.s1d and s2d, the electro-
static potential has been normalized byTe/e, the time by the
ion cyclotron frequencyvci, the lengths by the ion Larmor
radius r=cs/vci defined at the electron temperatureshere
cs

2=Te/mid, the density by the unperturbed plasma densityn0,
and the temperatures by the electron temperatureTe. The ion
temperature is now denoted byt s=Ti /Ted. In dimensional
units, the electron curvature and diamagnetic drift velocities
are given byvg=2cs

2/ sRvcid and vn=cs
2/ sLnvcid, while the

viscous and diffusion coefficientsm and D are given bym
=s3/10dsTini /vcimid andD=meTene/ seBd2, wheren j denotes

the collision frequency of the plasma particless j = i ,ed.
We should point out here that the overall magnetic struc-

ture would play a significant role in the dynamics of the flute
mode. On using a more realistic toroidal geometry, additional
terms would modify the linear evolution of the flute modes.
However, the full toroidal effects do not affect the structure
of the nonlinear terms, which are the main cause for the
large-scale flow generation. In the considered model, the
temperature is assumed to be constant and unperturbed.
Hence, the gradients and the fluctuations of the pressure are
attributed, without loss of generality, to the density varia-
tions. When taking into account ion temperature perturba-
tions one would have to consider also the ion energy equa-
tion.

The inclusion of finite ion temperature effects leads to
the appearance of two additional linear terms on the left-
hand side of Eq.s1d. The first term is due to the ion diamag-
netic drift, while the second one is due to the ion curvature
drift. Assuming small amplitude perturbations and applying
the usual Fourier expansion for the perturbed amplitudes, we
linearize Eqs.s1d and s2d and determine the frequencyvk

= 1/2fkysvg−tvndg, and the growth rate

gk =
1

2
FÎ4ky

2

k'
2 vgsvn − vgds1 + td − ky

2stvn + vgd2 + k'
4 sD − md2 − k'

2 sD + mdG s3d

of the unstable flute modes.
The presence of finite ion temperature leads to a de-

crease of the frequency and subsequently of the characteristic
wave velocities of the flute modes. Fort,vg/vn the flute
modes propagate in the same direction with the electron cur-
vature drift velocity, while fort.vg/vn it propagates in the
opposite directionsi.e., in that of the ion diamagnetic drift
velocityd. Furthermore, for finite ion temperaturet, the
growth rate of the most unstable flute modes increases due to
the ion curvature drift, while the spectrum of the unstable
flute modes gets narrower due to the stabilization of the short
wavelength modes by the ion diamagnetic drift.

In the temporal evolution of the flute instability, the in-
verse energy cascade may lead to the generation of large-
scale flows.26 However, since the most unstable flute modes
are those of zero radial wave numberskx=0d and small but
finite poloidal wave numberskyÞ0d, i.e., the streamer
modes, it is expected that streamer-pattern large-scale flows
can be formed through the linear development of the flute
instability. On the contrary, it is evident from Eq.s3d that
linear excitation of zonal modes is not possible sincegk,0
for ky=0. As one may see from Eqs.s1d and s2d, there exist
several nonlinear terms which determine the cascading prop-
erties of the flute turbulence. The polarization drift nonlin-
earity h¹'

2 f ,fj is responsible for the energy cascading to-
wards large-scale flows,26 while the convective nonlinearity

hn,fj is known to cascade energy towards short scales.22

Moreover, the diamagnetic component of the polarization
drift nonlinearity t divh¹'f ,nj, which is attributed to the
finite ion Larmor radius, is expected to lead to direct cascad-
ing of the fluctuation energy towards short scales.21 Hence,
the description of the formation of large-scale flows during
the temporal evolution of flute turbulence is more compli-
cated with respect to the electrostatic drift wave turbulence.

III. NUMERICAL RESULTS

We have studied numerically the temporal evolution of
the system described by Eqs.s1d ands2d and the subsequent
excitation of large-scale flows by using a dealized pseu-
dospectral code in a numerical grid of 1283128 points. The
marching in time is performed with a fourth-order Runge–
Kutta technique with adaptive step size. We have imposed
periodic boundary conditions and considered a physical do-
main in the xy plane of area Dx3Dy=fs−30p ,30pd
3 s−30p ,30pdg. The minimum finite wave number which
can be resolved with our scheme isk0=kx0=ky0=0.033. In
the numerical simulations, we have chosen the normalized
sover the sound velocityd values of the electron diamagnetic
and the curvature drift velocities to bevn=0.03 andvg

=0.01, respectively, while the viscosity and the diffusion co-
efficients are fixed atD=m=0.1. The selection of these val-
ues allows the linear growth of a sufficient range of short
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scale fluctuations,22 enabling the subsequent excitation of
zonal modes through the inverse energy cascade mechanism.
The initial conditions for the potential and the density per-
turbations consist of anisotropic spectrum ofsmall ampli-
tude and randomly phased Fourier modes of the form

fsx,yd = o
kx

o
ky

f̂ expsikW · rW + iakx,ky
d,

nsx,yd = o
kx

o
ky

n̂ expsikW · rW + ibkx,ky
d,

where f̂=0.001, n̂=0.0005, andakx,ky
, bkx,ky

are randomly
generated initial phases.

A. Nonlinear dynamics of flute turbulence

The temporal evolution and suppression of the flute in-
stabilities lead to the development of saturatedanisotropic
spectrawith clear indication of the formation of large-scale
flows. As one may see in Fig. 1, the structures of these flows
depends crucially on the value of the ion temperature. In the
presentation of the numerical results which follows, we focus
on the description of the three major distinct phases associ-
ated with the evolution of the dominant large-scale flute
modes.

a. Excitation of streamer modes. The first phase of the
evolution of the flute instabilities is characterized by the

growth of the linearly unstable flute modes. During this
phase, patterns of radial streamers of the fluctuating potential
and density are formed in the real space, since for given
finite poloidal wave numberky the flute modes of maximum
growth rate are those ofkx=0, i.e., the streamer modes. In
Fig. 2sad, the evolution of the three largest streamer modes
for the potential are depicted. The linear profiles during the
initial evolution sfor 0, t&400d correspond to the linear
growth of the streamer modes while the numerical values of
the growth rates are in good agreement with that predicted
by the linear theoryfcf. Eq. s3dg. The growth of the streamer
modes continues until a suppression mechanism sets on. As
we can see from Fig. 2sad, the duration of the growth is
different for each streamer mode as the onset of the suppres-
sion depends on the mode’s wave number. In general, the
smaller the streamer mode is, the faster, and consequently at
smaller amplitudes, it gets suppressed.

We should note here that during the very initial phase of
the temporal evolution, a short time interval appears with
properties much different than the linear ones which follow.
This is attributed to the numerical response of the system to
the arbitrary initial conditions we imposed. Hence, the initial
abrupt growth of the streamer modesfsee Fig. 2sad, for 0
, tø20g indicates an inverse energy cascade from the initial
short scale fluctuations towards larger scales. Also, the de-
crease in the power of the total potential fluctuations

FIG. 1. Isocontour lines of the potential in the saturation state forsad t=0,
sbd t=1, andscd t=3. In sad andsbd the zonal modes largely dominate over
the streamer modes. Hence, patterns of zonal flows are formed. Fort=3, the
amplitude of the dominant streamer mode is of the same order as the one of
the zonal mode, resulting in the pattern ofscd.

FIG. 2. Evolution and saturation of the largest streameruFs0,mk0du2 supper
paneld and zonal modesuFsmk0,0du2 slower paneld of the potential. Here,
m=1 ssolid lined, m=2 sdashed lined, andm=3 sdotted lined for t=1, where
k0 is the minimum wave number of the system. The shorter zonal and
streamer mode instabilities saturate earlier and at lower amplitudes com-
pared to the largest ones. In the saturated state, the amplitudes of the zonal
modes and the largest streamer mode remain constant, while the smaller
streamer modes get damped.
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ok'
k'

2 uFku2 ssee Fig. 7, for 0, tø180d can be attributed to
the linear damping of the shorter scale modes according to
Eq. s3d.

b. Excitation of zonal modes. When the amplitude of the
flute perturbations reaches a critical value, zonal modes are
excited. This is a purely nonlinear effect and arises due to the
nonlinear coupling of the linearly grown flute modes. In Fig.
2sbd, the excitation and the evolution of the three largest
zonal modes is depicted. These modes are generated almost
simultaneouslysaroundt=180d and grow exponentially with
similar growth rates. The growth rate of the most unstable
zonal mode fthe one with kW =sk0,0dg has approximately
double the value of that of the dominant linear instability
fthat with kW =s0,k0dg. This is due to the quadratic nature of
the nonlinear terms in Eqs.s1d ands2d and indicates that the
zonal modes grow under the action of at least a couple of
linearly amplified flute modes of small but finite poloidal
wave number.

c. Suppression of anisotropic modes and saturation.
When the potential amplitude of the dominant nonlinearly
growing zonal mode becomes of the order similar to the
potential amplitude of the most grown streamer mode, both
amplitudes start to oscillate in an out-of phase manner fash-
ion. This can be clearly seen in Fig. 3 and indicates the
coupling between the dominant and largest anisotropic
modes of the potential. The result of this mode coupling is
the suppression of the streamer instability and the saturation
of the growth of the zonal mode. Similar description ac-
counts also for the evolution and suppression of the smaller
zonal and streamer modesscf. Fig. 2d, since the mechanism
is qualitatively the same. The linear flute instabilities, as the
streamer modes, are suppressed through the shear stabiliza-
tion mechanismkx

2F, which is provided by the growing
zonal modes. This leads to the subsequent saturation of the
zonal modes as well, since the flute modes which were re-
sponsible for the zonal growth got suppressed by the zonal
modes themselves. In the saturated state which follows the
suppression of the flute instabilities, the amplitudes of the
zonal and the dominant streamer modes of the potential re-

main almost constant. On the contrary, the smaller streamer
modes get dampedscf. Fig. 2d.

In order to shed some light onto the coupling mechanism
between the dominant anisotropic modes, we have investi-
gated the role of the largest and most grown isotropic modes.
These are the modes with wave numberskW =s±k0, ±k0d,
which provide the necessary matching conditions for a three-
wave coupling between the largest anisotropic modes. We
have carried out a numerical simulation by setting the ampli-

FIG. 4. Evolution of the dominant zonalssolid lined and streamersdashed
lined modes in the absence of the dominant isotropic modeskWs±k0, ±k0d for
t=1. The growth of the zonal mode stops at low amplitude, and as a result
the dominant flute instabilitysstreamer moded does not get suppressed.

FIG. 5. Temporal evolution and saturation of the dominant isotropic and
anisotropic modes forsad the potential andsbd the density in the cold ion
limit. The zonal modekWsk0,0d is depicted with solid line, the streamer mode
kWs0,k0d with dashed line, and the isotropic modeskWsk0,k0d, kWsk0,−k0d with
the smaller dashed and the dotted lines, respectively. The amplitudes of the
isotropic modes in the saturation state are significant for the density
fluctuations.

FIG. 3. Oscillating behavior of the dominant anisotropic modes for the
potential during the suppression of the instabilities fort=0. The zonal mode
uFsk0,0du2 is depicted with the solid line and the streamer modeuFs0,k0du2
with the dashed line.
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tudes of these large-scale isotropic modes equal to zero. The
numerical results regarding the temporal evolution of the
dominant anisotropic potential modes for this particular case
are presented in Fig. 4. As one may see, the excitation and
the initial growth of the zonal mode do not seem to be sig-
nificantly dependent on the presence of the large-scale iso-
tropic modes. However, the growth of the zonal mode termi-
nates at a smaller amplitude compared to that of the
dominant streamer mode. This occurs because the smaller
scale instabilities that support the growth of the dominant
zonal mode got suppressed by the smaller zonal modes. As a
direct consequence, the most unstable flute instability does
not get suppressed. These results show that the large-scale
isotropic modes, being the coupling carrier between the larg-
est anisotropic modes, support the mechanism:sad for the
further growth of the zonal mode,sbd for the suppression of
the largest streamer mode and hence,scd for the subsequent
formation of the poloidal flow. From the above, it is evident
that short scale fluctuations can be significant for the genera-
tion of zonal flows, and large-scale isotropic modes for the
suppression of the flute instabilities. Hence, one may claim
that a wide range of modes contributes to the growth of the
zonal modes, which enable the subsequent suppression of the
flute instabilities. Consequently, models based on scale sepa-

ration between the short scale fluctuations and large-scale
flows seem not to be suitable for the complete description of
the evolution of flute instabilities.

In Fig. 5 we present the temporal evolution of the largest
anisotropic and isotropic modes. In the saturated state, which
follows the suppression of the instabilities, the amplitudes
obey an oscillatory behavior as they remain coupled and ex-
change energy with each other. However, as one may note
there is an important difference between the dominant satu-
rated modes of the potential and the density. Concerning the
potential fluctuations, the largest zonal mode is always the
dominant, while the amplitudes of the isotropic modes are
much smaller compared to the anisotropic ones. On the con-
trary, the amplitude of the largest zonal mode of the density
can be of the same order or smaller compared to that of the
isotropic large-scale modes. Hence, it becomes evident that
the modes of the potential and the density are organized dif-
ferently on reaching the dynamical equilibrium that deter-
mines the saturated state of the flute turbulence. This result is
not surprising since the plasma density response is not
Boltzmannian in the flute limit, and hence the density fluc-
tuations are expected to behave differently than the potential
ones.

d. Finite ion temperature effects. Performing numerical

FIG. 6. Evolution of the dominant
modes of the potential and the density
for different values of the ion tempera-
ture: sad t=0.5, sbd t=1, andscd t=3.
The zonal mode is depicted with solid
lines, the streamer mode with dashed
lines, and the isotropic modeskWsk0,k0d
kWsk0,−k0d with smaller dashed and
dotted lines, respectively. In the satu-
rated state, the dominant mode of the
potential is always the zonal mode. On
the contrary, the type of the dominant
mode of the density depends on the
ion temperature. The secondary insta-
bilities of the streamer mode are attrib-
uted to the increase of the linear
growth rate and are connected to the
increase of the ion temperature.
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calculations for different values of the ion temperaturet and
keeping the same values for the rest of the parameters, we
have investigated the influence of ion temperature on the
evolution and saturation of the flute instability. Qualitatively,
the description is similar to that presented in the preceding
section. This is particularly true concerning the excitation of
the dominant anisotropic modesscf. Fig. 6d. In that phase,
the ion temperature modifies the growth rates of the insta-
bilities, as expected, due to the presence of the ion curvature
drift which co-drives together with the electron curvature
drift the excitation of the linear flute modes. Consequently,
the amplitudes of the saturated modes depend also on the
value of the ion temperature. In Fig. 7, we have plotted the
evolution of the power of the potential fluctuation
ok'

k'
2 uFku2 for different values of the ion temperature. In the

lower panel, we note that ast increases the saturation level
of the power of the potential fluctuations also increases. On
the contrary, in the upper panel, it is clearly shown that fur-
ther increase of the ion temperature, abovet.2, leads to a
decrease of the saturated level. A similar description ac-
counts also for the amplitudes of the saturated large-scale
modes. In addition to this, the relative amplitudes between
the saturated modes are also changing for different values of
the ion temperature. As one may see in Fig. 6, the saturated
potential spectra, e.g., fort=1 are dominated by the zonal
mode while fort=3 the saturated amplitudes of streamers

and zonal modes become of the similar order. This modifies
the structures of the saturated potential in the real space as
shown in Fig. 1. The saturated amplitudes of the density
modes seem to be even more sensitive to the value of the ion
temperaturet. As one may see in the right-hand side panels
of Fig. 6, the dominant modes of density are of zonal type
for t=0 andt=1, but not when the ion temperature adopts
the valuest=0.5 andt=3. An additional effect associated
with the increase of the ion temperature is the appearance of
secondary excitations and subsequent saturations of streamer
modes. This can be seen for instance in the lower panel of
Fig. 6 and in the upper panel of Fig. 7. Hence, it seems that
the dynamical equilibrium between the coupled modes in the
saturation state is sensitive to ion temperature effects.

In order to determine, the role of the diamagnetic com-
ponent of the polarization drift nonlinearity,t divh¹'f ,nj,
which appears when finite ion Larmor effects are considered,
we have performed a set of numerical simulations with and
without this term. As major result, we found that its presence
always leads to smaller saturated amplitudes for the large
scale modes and similarly for the total power of the potential
fluctuationsokk'

2 uFku2. Furthermore, we notice that the ab-
sence oft divh¹'f ,nj increases the number of secondary
excitations of the streamer modes. These results justify the
prediction of Ref. 21, according to which the diamagnetic
component of the polarization drift nonlinearity leads to the
direct cascade towards short scale modes. Subsequently, it is
expected that the ion temperature through this nonlinear
mechanism: sad suppresses the inverse cascade towards
large-scale modes andsbd stabilizes the secondary excita-
tions of streamers. From the above, it follows that the in-
crease of the amplitudes of the saturated modes for 0,t
,3 and the appearance of the secondary instabilities are re-
lated to the linear terms proportional tot in Eq. s1d, and
hence to the increase of the linear growth rate.

IV. DISCUSSION AND CONCLUSIONS

We have numerically investigated the excitation and sup-
pression of large-scale anisotropic modes as a result of the
development of the flute instability. The initial formation of
the streamer flow is attributed to the linear growth of the
streamer modes, while the subsequent formation of the zonal
flow is the result of the excitation of large-scale zonal modes
through the inverse energy cascading mechanism. The most
grown instabilities are the largest scale ones and saturate last.
The numerical results show that their suppression can be
attributed to the nonlinear interaction between the largest
scale flute modes. The saturated state which follows is char-
acterized by the domination of the largest zonal mode for the
potential. However, the complexity increases when ion tem-
perature effects are considered, especially concerning the
type of the dominant saturated mode of the density. In gen-
eral, as long the value of ion temperature is small, the am-
plitudes of the saturated modes increase as the ion tempera-
ture increases. On the contrary, for large values of the ion
temperature, the saturated amplitudes decrease due to the
suppression of the inverse energy cascade, which can be at-
tributed to the diamagnetic component of the polarization

FIG. 7. Plots of the evolution of the energyokk'
2 uFku2. In the lower panel we

see that as the ion temperature increases, the saturation level is increasing as
well. This occurs till a certain value oft. Further increase of the ion tem-
perature leads to a decrease of the saturated level. The decrease in energy
during the very initial phasestø80d is due to the damping of the very short
scale modes. Moreover, the “blobs” on the saturation levelsupper paneld are
signatures of the secondary instabilities of the streamer mode which appear
ast increases.
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drift nonlinearity. It was also shown that modes of various
scales are rather significant for the suppression of the flute
instabilities. Hence, theoretical models based on the scale
separation approximation, or zero models which incorporate
only short scale fluctuations, STs and ZFs, may only be ad-
equate to describe just the excitation of the zonal modes. The
complex behavior concerning the suppression and saturation
of the instabilities can possibly be described in terms of
mode competition type models with three competitive large-
scale populations, namely, the streamer, the zonal and the
largest scale isotropic modes for each fluctuating quantity,
i.e., for the potential and the density.
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