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The evolution of the toroidal ion temperature gradient mode instability is numerically studied by
using the equations based on the standard reactive fluid model. The long-term dynamics of the
instability are investigated using random-phase, small-amplitude fluctuations for initial conditions.
The main events during the evolution of the instability that lead to the formation of large-scale
coherent structures are described and the role of the dominant nonlinearities is clarified. The
polarization drift nonlinearity leads to the inverse energy cascade while the convective ion heat
nonlinearity is responsible for the saturation of the instability. Finally, the sensitivity of the saturated
state to the initial plasma conditions is examined. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2171653�
I. INTRODUCTION

Low-frequency electrostatic turbulence driven by spatial
gradients is believed to be the main source of anomalous
transport in magnetically confined fusion plasmas.1,2 During
recent years, a significant number of both theoretical and
numerical investigations in plasma dynamics have focused
on the effects related to the development of the ion tempera-
ture gradient �ITG� mode instability.3 This is due to the suc-
cessful interpretations of various experimental results—
elated to the observed levels of turbulent transport in
tokamak plasmas—through the dynamics of the ITG mode.
The associated instability appears due to the gradient of the
ion temperature profile along the radial direction, and in to-
kamaks it is mainly driven by the magnetic field curvature.4

There have been several descriptions of the toroidal ITG in-
stability based on kinetic, gyrofluid, or fluid models. One
suitable description is based on the so-called reactive fluid
model,5 which exhibits excellent agreement in the estimation
of the ion heat diffusivity coefficient with full three-
dimensional �3D� nonlinear gyrokinetic particle simulations.

Most of the models that are widely used to calculate the
turbulent transport coefficients are based on the estimation of
the mixing length. This approach has raised some questions
since turbulence self-organizes through the nonlinearly self-
generated structures and the dynamics of such complex sys-
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tems cannot be described by a simple mixing length rule �see
the review by Garbet6�. Particular interest has been given to
the anisotropic flows with additional symmetry, commonly
known as zonal flows �ZF’s�, which are convective cells
elongated in the poloidal direction; or streamers, which are
convective cells elongated in the radial direction. In toka-
maks, ZF’s have the ability to limit the radial size of turbu-
lent eddies through the shear decorrelation mechanism,7

while streamers may lead to enhanced or bursty levels of
transport.8 Obviously, the formation of such anisotropic co-
herent structures is rather crucial as it determines the level of
the energy transport in tokamak regimes of enhanced con-
finement.

Based on the reactive fluid model description, it has been
shown9,10 that resonant excitation of ZF’s close to the mar-
ginal stability conditions can take place. Furthermore, nu-
merical simulations11,12 have investigated the stability and
the interaction properties, respectively, of convective cells
governed by the toroidal ITG equations. In these numerical
studies, the authors imposed as initial conditions already
formed convective cells.

In a recent work,13 the explicit instability threshold of
the toroidal ITG instability was determined by taking into
account the finite Larmor radius �FLR� effects. It was shown
that FLR effects may decrease significantly the instability
threshold in regions of peaked plasma density and the asso-

ciated marginally unstable modes attain finite wavelengths.
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These consequences could be rather crucial regarding the
properties of large-scale flows that are attributed to the
development of the toroidal ITG instability near marginal
conditions.

In the present paper, we investigate numerically the evo-
lution of the toroidal ITG instability, choosing randomly
phased small-amplitude fluctuations as initial conditions in
contrast to Refs. 11 and 12, and we examine the properties of
the temporal evolution of the instability, similar to our stud-
ies regarding flute turbulence.14 Furthermore, we chose
plasma conditions near marginally unstable conditions that
allow us to investigate the sensitivity of the saturated state of
the ITG instability to the wave number of the linearly most
grown mode, which actually depends on the FLR effects. We
focus on the long-term dynamics and in particular on the
self-organization of the ITG turbulence, which is significant
for the energy transport in tokamak plasmas.

As it turns out the temporal evolution of the toroidal ITG
instability leads to a saturated stationary state which is char-
acterized by the presence of long-lived coherent structures.
The condensation of energy in such scales is commonly at-
tributed to the inverse energy cascade properties of the po-
larization drift nonlinearity in a similar manner as in the
adiabatic drift wave turbulence, as described by the
Hasegawa-Mima equation. However, the nonlinear evolution
of the ITG instability is also determined by the convective
ion heat flux nonlinearity. Thus, in what follows we also
investigate the separate role that each of the dominant non-
linearities plays in the evolution and the stabilization of the
instability. Furthermore, the influence of the plasma param-
eters, of the dissipative effects, and of the wavelengths of the
linearly unstable ITG modes on the saturated state is exam-
ined.

In Sec. II, we briefly present the model and the linear
properties of the toroidal ITG instability, and in Sec. III we
describe and investigate the properties of the evolution of the
instability based on a series of numerical simulations. Lastly,
in Sec. IV a summary and the conclusions of our study are
given.

II. MODEL OF EQUATIONS

The 2D model equations that describe the dynamics of
the toroidal ITG modes can be derived in the two-fluid
plasma approximation15 by using a low-frequency expansion
based on the standard drift velocity ordering. The ion conti-
nuity and the ion temperature equations, respectively, can be
written in the following normalized form:9
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Details on the derivation may be found in Ref. 5. The curly
brackets on the right-hand side of Eqs. �1� and �2� denote the
Poisson bracket, defined by �A ,B�=�xA�yB−�xB�yA.

To close the system of equations, we assume that elec-
trons follow the Boltzmann distribution and that the low-
frequency electrostatic oscillations ���ci are quasineutral,
i.e.,

ne = ni = � . �3�

The length and the time scales have been normalized
by �s=cs /�ci and Ln /cs, respectively, where cs

2=Te /mi is the
ion sound velocity defined at the electron temperature, �ci

=eB0 /mic is the ion gyrofrequency, and Lg
−1=−d ln g�r� /dr

describes the inverse characteristic scale length of inhomo-
geneity along the radial direction of the plasma parameter
g�r�, where g�r�=n�r�, Ti�r�. The electrostatic potential 	�
has been normalized as �=e	� /Te Ln /�s, the perturbed den-
sity 	n as n=	n /n0 Ln /�s, and the perturbed ion temperature
	Ti as Ti=	Ti /Ti0 Ln /�s. With the curvature R of the mag-
netic field lines and the ion temperature inhomogeneity scale
length LTi

, we define �n=2Ln /R and �i=Ln /LTi
, respectively,

where Ln is the plasma inhomogeneity scale length. Further-
more, �=Ti /Te denotes the ratio of ion to electron tempera-
ture, while � and D are the viscosity and the diffusion coef-
ficients, respectively. We point out that effects attributed to
parallel ion dynamics, magnetic shear, electron particle trap-
ping, Landau damping, plasma shape, and finite beta16 are
omitted.

We should point out here that the model of equations is
invalid for the description of flute �or interchange� type
modes as the Boltzmann relation is invalid for k =0. The
inclusion of flute type modes can be realized numerically by
performing a three-dimensional fluid simulation, and by us-
ing the electron continuity equation for the k =0 modes.
Thus, the description and the results presented in this article
are valid only for modes with finite parallel wave numbers.
This slightly limiting approach is actually well justified for
the description of the modes with finite k and has been
widely used for many drift–type modes.

The dispersion relation for the toroidal ITG instability
can be determined by the linearization of Eqs. �1�–�3� and by
applying the Fourier expansion 
 exp�−i�t+k ·r� to the per-
turbed quantities, where r and k are the position vector and
the wave number of the perturbation, respectively. In the
following, we briefly present the results of Ref. 13 for the
ideal case �=D=0.

The real frequency ��k�� and the growth rate ��k�� of

the toroidal ITG mode are given by
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From Eqs. �5�–�8� it turns out that the toroidal ITG modes
become unstable for �i��ith and the explicit threshold �ith

for the instability is found to be13

�ith��n,��

= ��* for �n  1, and for �n � 1 when 0  �  �*,

�C for �n � 1 when � � �* � 3�1 − 1/�n�/2,
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Further analysis shows that the wave number of the marginal
unstable mode, i.e., ��k�m�=0, is equal to

k�m
2 ��

�1 + �n���i − �B�

�	1 + �i −
5

3
�n
2 ,

when �ith = �*, and

0, when �ith = �C.

. �11�

The threshold of the instability was previously given by
�C without taking into account the FLR effects, e.g., in Ref.
5. However, for �n1 the FLR effects become rather
important,13 leading to a decrease of the threshold and to the
appearance of the marginal unstable modes at a shorter
wavelength regime. As a consequence, for �*�i�C there
is a stable region in the wavelength regime around k�=0.
These results are crucial for the self-generation of large-scale
flows by the toroidal ITG turbulence since they establish new
marginal conditions for the release of the available free en-
ergy, which is necessary for the formation of large-scale

flows.
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III. NUMERICAL RESULTS

In this section, we numerically study the linear and non-
linear temporal evolution of the toroidal ITG modes de-
scribed by the model Eqs. �1�–�3�. We use a dealiased pseu-
dospectral code in a numerical grid of 128�128 points. The
marching in time is performed with a fourth-order Runge-
Kutta technique with adaptive step size. We have imposed
periodic boundary conditions and considered a physical do-
main in the x−y plane of area �x��y= ��−30� ,30��
� �−30� ,30���. The minimum finite wave number that can
be resolved with our scheme is k0=kx0=ky0=0.033. The ini-
tial conditions for the potential and temperature perturbations
consist of an isotropic spectrum of small-amplitude and ran-
domly phased Fourier modes of the form

��x,y� = �
kx

�
ky

�̂ exp�ik� · r� + i�kx,ky
� ,

T�x,y� = �
kx

�
ky

T̂ exp�ik� · r� + i�kx,ky
� ,

where �̂=0.001, T̂=0.0001, and �kx,ky
,�kx,ky

are randomly
generated initial phases.

A. Dynamics of toroidal ITG instability

In what follows, we describe the main parts of the evo-
lution of the toroidal ITG instability based on the numerical
integration of Eqs. �1�–�3�. Furthermore, we investigate the
particular role that each nonlinearity plays in the transfer of
energy between the modes. Throughout this subsection, we
use the values �i=1.02�*, �n=1, �=1, and �=0.2, which can
be characterized as typical plasma parameters in tokamaks.

Linear excitation of the ITG modes. The first phase of
the evolution of the ITG instability is characterized by the
excitation and growth of the linearly unstable modes. During
this phase, radial patterns of the fluctuating potential and
temperature are formed that propagate along the poloidal di-
rection with their characteristic group velocity. In Fig. 1�a�, a
snapshot of the potential fluctuations is plotted, at t=90,
which shows the characteristic radial patterns attributed to
the linear evolution of the instability. The amplitudes of the
corresponding Fourier modes are presented in Fig. 2�a� for
the same time. The highest amplitudes correspond to the
fastest growing unstable modes, which are localized around
wave number klinear�ky �0.4 and have growth rate
��0.07 for the chosen plasma parameters, in agreement
with Eqs. �5�, �6�, and �11�, as expected.

Onset of nonlinear effects. When the amplitudes of the
perturbations reach a critical value, the nonlinear interactions
between the modes become important and modify drastically
the form of the electrostatic fluctuations. The onset of non-
linear effects appears with a sudden excitation of a wide
range of modes which follow the inequality 0k�

2 klinear
2 .

The growth of these modes is attributed to the inverse cas-
cade of the energy stored in the linearly grown modes. In
Fig. 2�b�, the spectrum of the ITG modes is presented right
after the collapse of the linear regime, where it is seen that
the nonlinearities tend first to isotropize the spectra. In Fig.

1�b�, we see that the energy spread leads to the breaking of
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the radial patterns and to a subsequent formation of short-
scale intermediate structures. Later on, the nonlinear effects
lead to a condensation of the energy toward the large-scale
modes.

Saturated state of ITG turbulence. The inverse energy
cascade continues until the system reaches a turbulent sta-
tionary state, which is characterized by the existence of
large-scale coherent structures slightly elongated along the
radial direction �see Fig. 1�c��. This is also evident in the
Fourier spectra �see Fig. 2�c��, where it can be seen that
modes of the type k�0,ky �klinear�, say streamer-type modes,
have accumulated larger amplitudes compared to the modes
of the type k�kx�klinear ,0�, say zonal type modes.

The saturation mechanism occurs due to the nonlinearly
excited modes, which suppress the toroidal ITG instability.
The latter is responsible for the nonlinear excitation of the
longer scales, and when it becomes suppressed, the growth
of the larger scales is suppressed as well.

It should be mentioned here that during the turbulent
stationary state, the onset of a secondary development and

FIG. 1. Profiles of the fluctuating electrostatic potential during the develop-
ment and saturation of the toroidal ITG instability for �a� t=90, �b� t=190,
and �c� t=990. The chosen plasma parameters for this simulation were �n

=�=1, �i=1.02�*, �=0.2, and D=0. As initial conditions �t=0� random-
phase noise fluctuations were chosen.
suppression of the linearly most unstable modes was ob-
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served. This results in the increase of the level of energy �see
Fig. 7�, without changing the overall picture of the fluctua-
tions of the potential.

1. Investigation of the role of the nonlinear terms

The inverse energy cascade mechanism is commonly at-
tributed to the polarization drift nonlinearity �� ,��

2 ��, as in
the drift-wave turbulence described by the Hasegawa-Mima
model equation. However, in our case there is also the con-
vective ion heat flux nonlinearity �� ,Ti�, which appears in
the ion temperature equation and is expected to modify sig-
nificantly the cascade properties of the drift-type electrostatic
turbulence.

In order to shed some light on the role that each Poisson-
bracket nonlinearity plays in the evolution of the ITG insta-
bility, we have made two separate numerical runs for the
same plasma parameters by keeping each time only one non-
linearity. In Fig. 3, the fluctuations of the potential are plot-
ted for the same time �t=340� under the influence of differ-
ent nonlinear interactions. In Fig. 3�a�, the fluctuations are
presented when Eqs. �1�–�3� are considered in their original
form, which corresponds to the case described in the previ-

FIG. 2. The Fourier spectra of the fluctuating electrostatic potential during
the development and saturation of the toroidal ITG instability for the same
times and plasma parameters as in Fig. 1.
ous subsection.
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The initial part of the evolution of Eqs. �1�–�3� under the
sole influence of the polarization drift nonlinearity �� ,��

2 ��
is qualitatively similar to the initial phase of the nonlinear
evolution in the original problem. The sudden transfer of
energy toward larger scales takes place as before �similar to
Fig. 2�b��. However, after some time the cascade does not
continue further toward the largest scales as in the complete
problem. Instead, a strong nonlinear instability with charac-
teristic wave number smaller than klinear is developed result-
ing in the appearance of short-scale spikes of the potential
which grow fast, attaining very large amplitudes �see Fig.
3�b��. This instability does not become suppressed and as a
result the system does not reach any saturated state.

On the other hand, the evolution of Eqs. �1�–�3� under
the sole influence of the ion heat flux nonlinearity �� ,Ti�
leads to the suppression of the linear instability, and the re-
sulting saturated state here is characterized by the presence
of large-scale structures slightly elongated along the radial
direction �see Fig. 3�c��.

The radially elongated structures in the saturated state
are due to the suppression of the ITG linearly unstable

FIG. 3. Profiles of the fluctuating electrostatic potential at t=340 under the
influence of different types of nonlinearities. �a� Both �� ,��

2 �� and �� ,Ti�
included, �b� only the �� ,��

2 �� term, and �c� only the �� ,Ti� term included.
The plasma parameters applied are the same as in Fig. 1.
modes under the sole influence of the ion heat flux nonlin-
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earity. The resulting anisotropy is not attributed to the isotro-
pic nonlinear term but to the anisotropy of the linearly un-
stable spectra and particularly to the fact that the most
unstable modes are those with kx�0. This effect does not
appear in the presence of the polarization drift nonlinearity,
as the �� ,�2�� term leads to an inverse spread of energy
toward both poloidal and radial directions �see Fig. 2�b��
prior to the suppression, which is attributed to the �� ,Ti�
nonlinearity.

These results are useful to explain the evolution of the
toroidal ITG instability and demonstrate the importance of
the synergetic role of the nonlinearities. Hence, we conclude
that the nonlinear term �� ,��

2 �� is responsible for the en-
ergy spread toward the range of larger-scale modes. On the
other hand, the nonlinear term �� ,Ti� is the one that provides
the suppression mechanism against the instabilities, leading
the system to a saturated state that is characterized by
slightly radially elongated coherent structures.

B. Properties of the stationary saturated state
of ITG turbulence

1. Anisotropy

In this subsection, we investigate the anisotropy of the
turbulent spectra, and particularly the regime associated with
large-scale anisotropic modes that are responsible for the for-
mation of anisotropic flows with additional symmetry �zonal
flows, streamers�. In contrast to the saturated state of the
magnetic-curvature-driven flute instability, where the largest
anisotropic modes dominate,14 the saturated state of the tor-
oidal ITG instability is characterized by the coexistence of a
significant number of dominant large-scale modes.

In order to quantify the characteristics of the
anisotropy, we investigate the evolution of the ratios
�ky

2� / �kx
2���kx,ky

ky
2 ���kx ,ky��2 /�kx,ky

kx
2 ���kx ,ky��2 and

�Ly
2� / �Lx

2���kx,ky
ky

−2 ���kx ,ky��2 /�kx,ky
kx

−2 ���kx ,ky��2, which
are useful indices to describe the short- and large-scale
anisotropy of the ITG spectra, respectively. Further-
more, we track the evolution of the ratios �ky0

2 � / �kx0
2 �

��kx,ky
ky

2 ���0,ky��2 /�kx,ky
kx

2 ���kx ,0��2 and �Ly0
2 � / �Lx0

2 �
��kx,ky

ky
−2 ���0,ky��2 /�kx,ky

kx
−2 ���kx ,0��2, which give infor-

mation on the relative energy deposited in the “purely” an-
isotropic short- and large-scale modes, respectively.

In Fig. 4�a�, we present the evolution of the ratios
�Ly

2� / �Lx
2� and �Ly0

2 � / �Lx0
2 �, which describe the anisotropy in

the large scales, and in Fig. 4�b� the evolution of �ky
2� / �kx

2�,
�ky0

2 � / �kx0
2 �, which describes the short-scale anisotropy. The

linear phase terminates around t�90, when the nonlinear
effects start to dominate, driving the system into a saturated
state around t�190. It can be seen that there is an isotropic
spread of the energy between the modes that have finite wave
numbers in both directions �i.e., those with kxky �0� as the
corresponding ratios approach unity for t�190. However,
this is not true for the purely anisotropic large-scale modes
�i.e., those with kxky =0� as the index �Ly0

2 � / �Lx0
2 �, which de-

scribes the ratio of energy between these modes, is larger
than unity. In other words, the large-scale modes with kx=0

possess larger energy compared to those with ky =0 �see Figs.
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2�b� and 2�c��. This is also reflected in the slight elongation
of the coherent structures along the radial direction �see
Fig. 1�c��.

In numerical runs where we kept solely the nonlinear
term �� ,��

2 ��, the relation �Lx0
2 ���Ly0

2 � holds instead,
showing the isotropy of the amplitudes of the modes. On the
other hand, when we kept only the nonlinear term �� ,Ti�, the
inequalities �kx0

2 �� �ky0
2 � and �kx0

−2�� �ky0
−2� held during the

evolution of the ITG instability. These results verify the con-
clusions about the role of the nonlinear terms as reported in
the previous subsection.

2. Effects associated with the linearly
unstable spectra

In order to investigate the effect of the plasma param-
eters on the turbulent saturated spectra, we have made sev-
eral numerical runs, choosing different parameters that cor-
respond to different linearly unstable spectra. This leads to a
modification of the characteristic wave number at which the
available free energy is pumped into the system.

In particular, we modified the inhomogeneity scale

FIG. 4. Evolution of the characteristic anisotropy indices. In the upper
panel, the large-scale ratios �Ly

2� / �Lx
2� �dashed line� and �Ly0

2 � / �Lx0
2 � �solid

line� are plotted. In the lower panel, the short-scale ratios �ky
2� / �kx

2� �dashed
line� and �ky0

2 � / �kx0
2 � �solid line� are plotted. In the saturated state, all the

indices approach unity �isotropy� apart from the index �Ly0
2 � / �Lx0

2 �. The
plasma parameters we have used are the same as in Fig. 1.
length �n for the general case in which ion and electron tem-
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peratures are equal. For each �n we chose a value of �i such
that the growth rate of the most unstable mode is equal to
�=0.7. In Fig. 5�a�, we present the growth rates ��k� of three
different linearly unstable spectra �for the purely poloidal
propagation, i.e., kx=0� for the dissipationless limit �=D
=0, while in Fig. 5�b�, we present similar cases for the dis-
sipation limit �=D=0.1.

When � and D are introduced, the linear growth rates
��k� change. In particular, the presence of D leads to a small
widening of the linear growth rate spectra toward short and
large wave numbers. On the other hand, the presence of �
leads to a small widening toward the small wave numbers.
Furthermore, both � and D suppress the growth rates of the
most unstable modes. It is worthwhile to mention here that
the modification of the plasma parameters �, �, �, �, and D
does not modify the nonlinear terms in Eqs. �1� and �2� as the
parameters have been absorbed by the chosen normalization.

In all the numerical runs we performed, the qualitative
characteristics of the temporal evolution of the toroidal ITG
instability remain the same as described in the previous sub-

FIG. 5. Growth rates of linearly unstable modes for dissipationless �upper
panel� and dissipative �lower panel� cases. The solid lines corresponds to
�n=1, where �i /�*=1.0225 for the upper panel and �i /�*=1.0261 for the
lower panel. Similarly, the long dashed lines corresponds to �n=0.6, where
�i /�*=1.025 for the upper panel and �i /�*=1.0366 for the lower panel, and
the dashed lines correspond to �n=0.3, where �i /�*=1.0515 for the upper
panel and �i /�*=1.099 for the lower panel. Furthermore, �=D=0 �upper
panel� and �=D=0.1 �lower panel�, and �=1.
section. A main result of the comparison between the differ-
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ent numerical simulations concerns the size of the long-lived
coherent structures, which are formed during the nonlinear
phase of the evolution of the instability and persist in the
saturated state. In particular, as the wavelength of the most
linearly unstable mode increases, the size of the formed co-
herent structures also increases. This conclusion was verified
in both dissipative �see Fig. 6� and dissipationless cases and
indicates that the position of the peak in the linearly unstable
spectra influences the characteristic coherency length in the
stationary saturated state of toroidal ITG turbulence.

In Fig. 7, we have plotted the evolution of the electro-
static energy of the fluctuations for the three different sets of
plasma parameters as presented in Fig. 5�b�. The suppression
of the linear instability takes place at lower levels of energy
as the wave number of the most grown mode gets larger, and
as a result the energy of the electrostatic fluctuations in the
stationary turbulent state increases. From the definition of
�k2 ��k�2 one would expect the opposite. A possible expla-
nation lies in the fact that the number of modes that are
nonlinearly excited gets larger as the wavelength of the lin-

FIG. 6. Profiles of the saturated fluctuating electrostatic potential at t=990.
The parameters we have used correspond to the linearly unstable spectra of
Fig. 5�b�, i.e., the dissipative case. �a� ��n ,�i /�*�= �1,1.0261� �upper panel�,
�b� ��n ,�i /�*�= �0.6,1.0366� �middle panel�, and �c� ��n ,�i /�*�
= �0.3,1.099� �lower panel�.
early unstable mode increases �due to the inverse energy cas-
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cade�. Since the nonlinearly generated modes are those re-
sponsible for the saturation of the system, the suppression
mechanism is expected to become more effective as the
number of these modes increases.

In all the comparative studies we did, we noticed that the
amplitudes of the short-wavelength modes in the saturated
state were significantly smaller in the presence of dissipative
effects. At the same time, the amplitudes of the dominant
large-scale modes were higher or at least comparable to
those in the corresponding dissipationless cases. This was
especially true for the large-scale anisotropic poloidal modes
resulting in a further weakening of the radial elongation of
the coherent structures. So, increasing gradually the diffusion
coefficient D, we notice that the ratio �Ly0

2 � / �Lx0
2 � approaches

unity, showing a tendency for isotropy between the large-
scale anisotropic modes. Furthermore, the energy level of the
saturated electrostatic fluctuations �k2 ��k�2 was decreasing.
This can be attributed to the suppression of the growth rates
in the presence of D.

The same conclusions can be drawn from the compari-
sons of the characteristic autocorrelation length along the
radial and poloidal directions, determined from the autocor-
relation function of the turbulent fluctuations of the potential.

IV. CONCLUSIONS

The properties of the toroidal ITG instability have been
investigated. The synergetic role of the polarization drift
nonlinearity, which is responsible for the inverse energy cas-
cade, and of the ion heat flux nonlinearity, which is respon-
sible for the suppression of the instability, on the evolution
and saturation of the toroidal ITG instability was reported. It
becomes evident that the inverse energy cascade attributed to
the nonlinear effects does not lead necessarily to the domi-
nation of the largest possible modes in the simulation box.
The obtained results shows that as the wave number of the
fastest growing linearly unstable mode decreases, �a� the size

FIG. 7. Plots of the evolution of the energy �kk�
2 ��k�2 for the initially

linearly unstable ITG spectra of Fig. 5�b�: �a� ��n ,�i /�*�= �1,1.0261� �solid
line�, �b� ��n ,�i /�*�= �0.6,1.0366� �dashed line�, and �c� ��n ,�i /�*�
= �0.3,1.099� �dotted line�. The peak around t=640 corresponds to the onset
of a secondary development of linearly unstable toroidal ITG modes.
of the coherent structures in the stationary turbulent state
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increases and �b� the amplitude of the fluctuations of the
potential and the energy level increases. These results indi-
cate that large-scale transport events attributed to the self-
generated structures in toroidal ITG turbulence could be en-
hanced as the wavelength of the linear mode increases. Thus,
the adjustment of the linearly unstable spectra through the
control of plasma profiles might affect ITG turbulent trans-
port. Furthermore, it is seen that dissipative effects weaken
the radial elongation of the coherent structures.
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