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We analyze statistically the energization of particles in a large scale environment of strong turbulence
that is fragmented into a large number of distributed current filaments. The turbulent environment is
generated through strongly perturbed, 3D, resistive magnetohydrodynamics simulations, and it emerges
naturally from the nonlinear evolution, without a specific reconnection geometry being set up. Based on
test-particle simulations, we estimate the transport coefficients in energy space for use in the classical
Fokker-Planck (FP) equation, and we show that the latter fails to reproduce the simulation results. The
reason is that transport in energy space is highly anomalous (strange), the particles perform Levy flights,
and the energy distributions show extended power-law tails. Newly then, we motivate the use and derive the
specific form of a fractional transport equation (FTE), we determine its parameters and the order of the
fractional derivatives from the simulation data, and we show that the FTE is able to reproduce the high
energy part of the simulation data very well. The procedure for determining the FTE parameters also makes
clear that it is the analysis of the simulation data that allows us to make the decision whether a classical FP
equation or a FTE is appropriate.
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Introduction.—Particle transport in weakly turbulent
environments (δB=B ≪ 1) has been discussed extensively
for several decades with the use of the Fokker-Planck (FP)
equation, mostly in combination with the quasilinear (QL)
approximation [1–3] but also with other physical motiva-
tions for the form of the transport coefficients (e.g., [4]).
Recent research on the development of strong magnetic

turbulence (δB=B ≈ 1) has shown the importance of two
scenarios: Initially extended current filaments (CF) or
current sheets (CS) or multiple interacting CF or CS develop
on fast time scales into a strongly turbulent environment
that is fragmented into a collection of small-scale current
structures [5–8]. On the other hand, reconnection at existing
CS is reinforced and new CF or CS are formed by Alfvén
waves that propagate along complex magnetic topologies
(see [9–14]). In this context, two fundamental questions
remain open: (1) Is the FP equation still valid in strongly
turbulent environments? (2) How to model transport when
the FP approach is not valid anymore?
In this Letter, we consider a large scale environment of

strong turbulence that is fragmented into a large number of
distributed current filaments, and we analyze statistically
the energization of particles in this environment, focusing
on the case of acceleration by the electric field and on the
high energy part (tail) of the energy distribution.
The magnetohydrodynamics (MHD) turbulent

environment.—We consider a strongly turbulent environ-
ment as it naturally results from the nonlinear evolution of
the MHD equations, in a similar approach as [11]. Thus, we
do not set up a specific geometry of a reconnection

environment or prescribe a collection of waves as a
turbulence model, but allow the MHD equations them-
selves to build naturally correlated field structures (which
are turbulent, not random) and coherent regions of intense
current densities (current filaments or CS).
The 3D, resistive, compressible, and normalized MHD

equations used here are

∂tρ ¼ −∇ · p; ð1Þ

∂tp ¼ −∇ · ðpu −BBÞ − ∇P − ∇B2=2; ð2Þ

∂tB ¼ −∇ ×E; ð3Þ

∂tðSρÞ ¼ −∇ · ½Sρu�; ð4Þ

with ρ the density, p the momentum density, u¼p=ρ, P the
thermal pressure, B the magnetic field, E¼−u×BþηJ the
electric field, J ¼ ∇ × B the current density, η the resistivity,
S¼P=ρΓ the entropy, and Γ¼5=3 the adiabatic index.
The MHD equations are solved numerically in Cartesian

coordinates with the pseudospectral method [15], combined
with the strong-stability-preserving Runge-Kutta scheme of
[16], and by applying periodic boundary conditions to a grid
of size 128 × 128 × 128. As initial conditions, we use a
superposition of Alfvén waves, with a Kolmogorov type
spectrum in Fourier space, together with a constant back-
groundmagnetic fieldB0 in the z direction. Themeanvalue of
the initial magnetic perturbation is hbi ¼ 0.6B0, its standard
deviation is 0.3B0, and the maximum equals 2B0, so that we
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indeed consider strong turbulence. The initial velocity field
is 0, and the initial pressure and energy are constant.
For the MHD turbulent environment to build, we let the

MHD equations evolve until the largest velocity component
starts to exceed twice the Alfvén speed. The magnetic
Reynolds number at final time is hjujil=η ¼ 3.5 × 103,
with l ≈ 0.01 a typical eddy size, and the ratio of the energy
carried by the magnetic perturbation to the kinetic energy is
ð0.5hb2iÞ=ð0.5hρu2iÞ ¼ 1.4, which is a second indication
that we consider strong turbulence.
The test particles are tracked in a fixed snapshot of the

MHD evolution, and we evolve the particles for short times,
so we do not probe the scattering of particles off waves, but
the interaction with electric fields. Also, we take into
account anomalous resistivity effects by increasing the
resistivity to ηan ¼ 1000η locally when the current density
J ¼ j Jj exceeds a threshold Jcr. The threshold is determined
from the frequency distribution of the current density, which
exhibits an exponential tail, and the threshold is chosen as
the value abovewhich the tail is formed (Jcr ¼ 60). Physical
units are introduced by using the parameters L ¼ 105 m for
the box size, vA ¼ 2 × 106 m=s for the Alfvén speed, and
B0 ¼ 0.01 T for the background magnetic field. We apply a
cubic interpolation of the fields at the grid points to the actual
particle positions.
Test-particle simulations.—The relativistic guiding

center equations (without collisions) are used for the
evolution of the position r and the parallel component
ujj of the relativistic four-velocity of the particles [17],

dr
dt

¼ 1

B�
∥

�
u∥
γ

B� þ b̂ ×

�
μ

qγ
∇B − E�

��
; ð5Þ

du∥
dt

¼ −
q

m0B�
∥
B� ·

�
μ

qγ
∇B − E�

�
; ð6Þ

where B� ¼ B þ ðm0=qÞujj∇ × b̂, E� ¼ E−
ðm0=qÞujjð∂b̂=∂tÞ, μ ¼ ðm0u2⊥=2BÞ is the magnetic

moment, γ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðu2=c2Þ

p
, B ¼ jBj, b̂ ¼ B=B, u⊥ is

the perpendicular component of the relativistic four-
velocity, and q, m0 are the particle charge and rest mass,
respectively.
The test particles we consider throughout are electrons.

Initially, all particles are located at random positions;
they obey a Maxwellian distribution with temperature
T ¼ 100 eV. The simulation box is open, and the particles
can escape from it when they reach any of its boundaries.
The acceleration process is very efficient, and we

consider a final time of 0.002 s (7 × 105 gyration periods),
at which the asymptotic state has already been reached.
Figure 1 shows the current-density component Jz in the
regions of above-critical current density, which clearly are
fragmented into a large number of small-scale coherent
structures within the nonlinear, super-Alfvénic MHD envi-
ronment. The figure also shows the trajectories of four
particles that reach high energies (10 MeV), and Fig. 2(a)

shows the energy of the same four particles as a function of
time. The particles can lose energy, yet they mostly gain
energy in a number of sudden jumps in energy, the
energization process thus is localized and there is multiple
energization at different current filaments, as is also visible
from the color-coded energy in Fig. 1. Figure 2(b) shows the
energy distribution at the final time, which exhibits a clear
power-law part in the intermediate to high energy rangewith
power-law index −1.51, with a slight turnover at the highest
energies.
Transport coefficients and classical FP equation.—We

now turn to the question of whether or not the test-particle
results can be reproduced as a solution of the FP equation.
In order to simplify the FP equation (e.g., [18]), we neglect
the spatial diffusion and consider particle diffusion only in
energy space, including an escape term,

∂n
∂t þ

∂
∂W

�
Fn −

∂½Dn�
∂W

�
¼ −

n
tesc

; ð7Þ

with n the distribution function, W the kinetic energy, and
tesc the escape time, and where D is the energy diffusion
coefficient,

DðW; tÞ ¼ h½Wðtþ ΔtÞ −WðtÞ�2iW
2Δt

; ð8Þ

and F is the energy convection coefficient,

FðW; tÞ ¼ hWðtþ ΔtÞ −WðtÞiW
Δt

; ð9Þ

with Δt a small time interval. With h� � �iW we denote the
conditional average thatWðtÞ ¼ W (see, e.g., [19]). For the
estimate of the coefficients, we follow the method described

FIG. 1. Isocontours of the supercritical current density compo-
nent Jz (positive in brown, negative in violet), and a few orbits of
energetic particles, colored according to the logarithm of their
kinetic energy in keV (see color bar).
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in [20], i.e., we keep track of the energy of the particles at a
number of monitoring times separated byΔt, and to account
for the conditional averaging, we divide the energies of the
particles at time t into a number of logarithmically equi-
spaced bins and perform the requested averages separately
for the particles in each bin.
The estimates of FðWÞ andDðWÞ at t ¼ 0.002 s and as a

function of the energy are shown in Fig. 2(c), and they
show a power-law shape, with power-law indexes aF ¼
0.63 and aD ¼ 1.31.

In [20], we have shown that the described procedure of
estimating the transport coefficients is consistent for the
case of classical Fermi acceleration, in the sense that the
test-particle distribution is reproduced quite well by the FP
solution when the coefficients are inserted into the FP
equation and the latter is solved numerically. We thus also
here insert F and D, into the FP equation and solve it
numerically in the energy interval ½0;∞Þ, with the method
described in [20] (pseudospectral method based on rational
Chebyshev polynomials, combined with the backward

(a) (b)

(c) (d)

(e) (f)

FIG. 2. (a) The energy evolution of four energetic particles (marked with different colors) is shown. (b) Initial and final (at t ¼ 0.002 s)
kinetic energy distribution from the test-particle simulations, together with a power-law fit, and the solution of the fractional transport
equation at final time. (c) The energy convection and diffusion coefficients as a function of the kinetic energy at t ¼ 0.002 s. (d) Solution
of the classical FP equation up to a final time of 0.002 s, together with the solution at a few intermediate times, and the energy
distribution from the test-particle simulations at t ¼ 0.002 s. (e) The distribution pðwÞ of the energy increments w of the particles.
(f) The estimator ~qw of the characteristic function q̂w, based on the sample of energy increments of the test-particle simulations.
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Euler scheme; see, e.g., [15]). We also include the escape
term, for which the escape time is estimated by assuming
that the number of particles that stays inside the simulation
box decays exponentially, which yields tesc ¼ 0.004 s.
The resulting evolution of the energy distribution up to a

final time of 0.002 s, is shown in Fig. 2(d). A clear power-
law tail has developed, much flatter though than the one of
the test-particle simulations. The discrepancy between the
solution of the FP equation and the simulation data actually
persists when applying larger integration times.
The failure of the classical FP equation can be explained

by analyzing the sample of energy increments wj ≔
Wjðtþ ΔtÞ −WjðtÞ (with j the particle index), onwhich the
estimates of F and D are based [Eqs. (9) and (8)]. These
increments follow a power-law distribution with index
−1.49 at intermediate-to-high energies, as shown in
Fig. 2(e), and as a consequence the particles occasionally
perform very large jumps in energy space (Levy flights), as
illustrated in Fig. 2(a). The fact that the energy increments
have a power-law distribution with the specific index has
several consequences: (1) The estimates ofF as ameanvalue
and D as a variance theoretically are infinite, and thus in
practice they are very problematic. (2) The mean is not
representative for a scale-free power-lawdistribution. (3) The
prerequisites for deriving a FP equation are not fulfilled; see
the comments below.
Fractional transport equation (FTE).—A general

description of transport in energy space is given by a
variant of the Chapman-Kolmogorov equation

nðW; tÞ ¼
Z

dw
Z

t

0

dτ nðW − w; t − τÞqwðwÞqτðτÞ

þ nðW; 0Þ
Z

∞

t
qτðτÞ dτ; ð10Þ

see, e.g., [21,22], which expresses a conservation law in
energy space, and which can be interpreted as describing a
continuous time random walk process. qw is the probability
density for a particle tomake a randomwalk stepw in energy,
and qτ the probability density for this step to be performed in
a time interval τ, and for simplicity we have assumed the two
probabilities to be independent. When both qw and qτ are
practically bounded, allowing only small increments, as if,
e.g., they are Gaussians, then the FP equation can be derived
fromEq. (10) throughTaylor expansions (see, e.g., [18]). For
now, we do not make this smallness assumption.
A Fourier Laplace transform (W → k, t → s), by apply-

ing the respective convolution theorems, yields

~̂nðk; sÞ ¼ ~̂nðk; sÞq̂wðkÞ ~qτðsÞ þ n̂ðk; 0Þ 1 − ~qτðsÞ
s

; ð11Þ

which is the Montroll-Weiss equation [21,23], written in
nonstandard form.
For the distribution of energy increments, expressed in

Fourier space (i.e., the characteristic function), we consider
the symmetric stableLevydistributions q̂wðkÞ¼expð−ajkjαÞ,

with 0 < α ≤ 2, which exhibit a power-law tail in energy
space, qwðwÞ ∼ 1=w1þα for α < 2 andw large, and for α ¼ 2
they are Gaussian distributions [24]. For the waiting time
distribution, we assume one sided stable Levy distributions,
expressed in Laplace space, ~qτ ¼ expð−bsβÞwith b > 0 and
0 < β ≤ 1, which have a power-law tail, qτ ∼ 1=τ1þβ for β <
1 and τ large, and for β ¼ 1 they equalqτðτÞ ¼ δðτ − bÞ [24].
In order to derive a mesoscopic equation, we consider the

fluid limit where w, τ are large, and thus k, s are small (e.g.,
[22], and references therein), so that the distributions of
increments can be approximated as q̂w ≈ 1 − ajkjα and
~qτ ≈ 1 − bsβ. Upon inserting into Eq. (11), we find

bsβ ~̂nðk; sÞ − bsβ−1n̂ðk; 0Þ ¼ −ajkjα ~̂nðk; sÞ; ð12Þ
which can be written as a fractional transport equation

bDβ
t n ¼ aDα

jWjn; ð13Þ
withDβ

t the Caputo fractional derivative of order β, defined
in Laplace space as

LðDβ
t nÞ ¼ sβ ~nðW; sÞ − sβ−1nðW; 0Þ ð14Þ

and Dα
jWj the symmetric Riesz fractional derivative of order

α, defined in Fourier space as

F ðDα
jWjnÞ ¼ −jkjαn̂ðk; tÞ; ð15Þ

see, e.g., [22]. Note that Eq. (13) includes the cases of a
pure diffusion or convection equation (β¼ 1 and α¼ 2 or 1,
respectively). From the derivation of the FTE it is clear that
the order of the fractional derivative is given by the index of
the power-law tail of the distribution of increments, if any,
otherwise, if the mean and variance of the increments are
finite, then the classical FP equation is appropriate.
We need to estimate two parameter sets, α, a and β, b. α

can be inferred from the index z of the power-law tail of
pwðwÞ in Fig. 2(e) as α ¼ −z − 1 ¼ 0.49. As a second
method to determine α and also a, we use the characteristic
function approach [25,26], with the estimator ~qw of the
characteristic function q̂w that is based on the sample of
increments fwjg from the test-particle simulations,

~qwðkÞ ¼ heikwjij ð16Þ
for a suitable set of k values. If the wj obey a stable Levy
distribution, then q̂wðkÞ ¼ expð−ajkjαÞ should hold, and a
linear fit to lnð− ln j ~qwj2Þ as a function of ln kwill yield α as
the slope and lnð2aÞ as the intercept with the y axis.
Figure 2(f) shows q̂wðkÞ, there indeed is a linear range, andwe
find α ¼ 0.49 and a ¼ 0.36, with the value of α being equal
to the one inferred from the power-law tail of the increments.
We have probed the energy increments over a fixed time

interval Δt, and thus we considered the waiting time
distribution to be pτðτÞ ¼ δðt − ΔtÞ, from which it follows
that β ¼ 1 and b ¼ Δt. This approach seems unavoidable if
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the test-particle data are given in the form of time series,
where there is no direct information on the waiting times
between scattering events. Thus, in the following we
consider the fractional transport equation to have an
ordinary, first order derivative in time direction and a
fractional derivative in energy direction,

∂tn ¼ ða=bÞDα
jWjn − n=tesc; ð17Þ

where we also have added an escape term.
For the numerical solution of the fractional transport

equation, we use the Grünwald-Letnikov definition of
fractional derivatives (e.g., [27]) in the matrix formulation
of [28], and in order to use the same grid points in ½0;∞Þ as
above for the solution of the classical FP equation, we use
the derivative scheme given in [29] for nonequidistant grid
points. Also, we apply the fractional derivative only above
energies of 10 eV, being interested here in the evolution of
the high energy part, and considering that the FTE in its
current form is not an appropriate tool to model low energy
phenomena and heating, being motivated and derived here
for modeling long tails at the high energy side of the energy
distribution.
Figure 2(b) shows the solution of the FTE at t ¼ 0.002 s,

and obviously the distribution from the test-particle sim-
ulations is very well reproduced in what the power-law tail
in its entire extent is concerned. Varying the anomalous
resistivity ηan from 10η to 104η, we find that the FTE we
have introduced is always appropriate and successful in
reproducing the simulation data (for ηan ¼ η no power-law
tail is being formed).
Summary and discussion.—It is to be noted that the

statistical analysis of the simulation data, and in particular
the analysis of the distribution of increments, plays a
crucial role. First of all, this analysis allows us to decide
whether a classical FP equation or a FTE is appropriate.
In the case of anomalous transport, the data have to be

analyzed statistically more in depth. The order of the frac-
tional derivative is directly related to the index of the power-
law tail of the increments and thus it is easy to estimate, and
for an estimate of the scale parameter a we have used the
characteristic functionmethod. After all, the form of the FTE
and its parameters, most prominently the order of the
fractional derivative, are directly inferred from the simulation
data (and thus they are not universal or unique).
Also, we made no effort to model the low energy part of

the distribution, which could possibly be achieved by
combining the fractional term in the FTE with classical
diffusive and convective terms.
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