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Abstract
The most promising technique for the control of neoclassical tearing modes in tokamak
experiments is the compensation of the missing bootstrap current with an electron-cyclotron
current drive (ECCD). In this frame, the dynamics of magnetic islands has been studied
extensively in terms of the modified Rutherford equation (MRE), including the presence of a
current drive, either analytically described or computed by numerical methods. In this article,
a self-consistent model for the dynamic evolution of the magnetic island and the driven current
is derived, which takes into account the island’s magnetic topology and its effect on the current
drive. The model combines the MRE with a ray-tracing approach to electron-cyclotron
wave-propagation and absorption. Numerical results exhibit a decrease in the time required for
complete stabilization with respect to the conventional computation (not taking into account
the island geometry), which increases by increasing the initial island size and radial
misalignment of the deposition.

1. Introduction

An important issue for the ITER design, which is under
careful investigation, is the stabilization of neoclassical tearing
modes (NTMs) by using an electron-cyclotron current drive
(ECCD). NTMs inhibit the optimal operation of tokamak
devices because the generated magnetic islands, on surfaces
with a rational safety factor value q = m/n, taper the plasma
energy and angular momentum leading to a gradual loss of
confinement and finally disruption [1, 2]. It is estimated that
NTMs will be dynamically unstable in ITER, due to the
high plasma pressure scenarios to be envisaged for achieving
effective fusion results, and that both the 2/1 and 3/2 modes
will be present [3]. The successful control of NTMs with
ECCD has been demonstrated in large-scale experiments like
AUG, DIII-D and JT-60U [4, 5]; these results form the basis
for designing a corresponding control system for ITER.

There has been a lot of research on the properties of
the NTM stabilization by EC waves, mainly investigating the
effect of localized wave power deposition and current drive
on the magnetic island growth (reviews on this topic are [3]
and [6]). The evolution of ECCD-driven magnetic islands has
been extensively analyzed in terms of the modified Rutherford
equation (MRE): a modification of the Rutherford equation
for classical tearing modes with the inclusion, among other
physics, of the bootstrap current and the external current drive
[4, 7]. It has been understood in both theory and experiment
that, in order to succeed in a more effective mode stabilization,
the cyclotron resonance should be highly localized around the
island’s O-point and the direction of the driven current should
be aligned with the equilibrium bootstrap current.

The common knowledge that NTM stabilization will
probably be a major issue in ITER (and maybe also in DEMO)
has led to an effort of improving the modeling of magnetic
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island dynamics in the presence of a stabilizing ECCD, both
on a general theoretical basis as well as in terms of simulations
oriented to specific devices, so that the goal of successful
validation with experiments can be reached. Many effects that
may play a role in the stabilization effort and that were excluded
from the earlier exploratory research, like e.g. local electron
transport, diamagnetic rotation [8], wave-induced electric field
([9], with comments by [10]), edge turbulence [11] and EC
beam misalignment, as well as the possible advantage of early
ECCD application [12], are currently being analyzed through
the use of different techniques.

Regarding the modeling of ECCD, a variety of methods
are available for computing the wave propagation, resonant
absorption and driven current. For the propagation, one mainly
bases it on the asymptotic methods originating from geometric
optics [13]. In ray tracing, canonical equations provide the
position and the wavenumber along the ray trajectory in terms
of the derivatives of the dispersion relation [14]. The rays
do not interact among themselves, therefore wave effects like
diffraction are not properly accounted for. In quasi-optics, a
beam is simulated as a set of interacting rays, therefore the basic
wave effects are retained [15], whereas pWKB beam tracing is
a more convenient description, based on a combination of ray
tracing with a set of functions for the beam width and the wave-
front curvature [16]. The computation of the wave damping
breaks down to evaluating the linear absorption coefficient
along the ray path [17], whereas the current drive may be
calculated analytically with the linear adjoint method [18].
There are a number of advanced codes implementing the
above schemes and the results, in some cases, are in sufficient
agreement with the experiment [19].

In almost all the codes that simulate ECCD-based NTM
stabilization, the analysis of the wave evolution is done in
the unperturbed magnetic configuration, assuming sufficient
alignment of the EC resonance with the island’s O-point on the
flux surface of interest, yet ignoring effects from the island’s
topology. This approach does not introduce an error in the
computation of the ray propagation due to the smallness of
the amplitude of the magnetic perturbation. However, islands
bring up significant changes in the magnetic topology and the
plasma profiles in comparison to the axisymmetric case: the
different nesting of the flux surfaces and the flattening of the
pressure profile within the island may play a crucial role in
the wave deposition [20]. Moreover, the ECCD efficiency in
the presence of an island has been shown to be much different
from the axisymmetric case, leading to different estimates for
the minimum current required for stabilization [9, 21].

There have been many efforts to introduce effects owed to
the island geometry in the MRE formalism, since, in general,
changes to the island shape are neglected by considering
only the dominant harmonic of the perturbed flux. In this
direction, the MRE has been reformulated to include a model
for asymmetric island deformation [22], with the goal to
ascertain the additional requirements that an ECCD-based
NTM control system must satisfy if the magnetic islands
undergo deformations induced e.g. by a sheared viscous flow.
The results show that such deformations nonlinearly affect the
time-scale of the island growth and can introduce a severe

reduction in the ECCD control capability. This may have
consequences for the localization of the beam around the O-
point and the estimate of the minimum power needed for island
quench.

A different modeling option for improving the accuracy
in the description of the island topology within the frame of
the MRE is to introduce a set of device-dependent parameters
as multipliers of each term and determine these by fitting the
MRE solution to experimental results from specific devices
[6, 23]. In this fashion, deviations owed to simplifications in
the modeling (like the adoption of cylindrical geometry in some
cases) are minimized. The main results indicate that in ITER, if
the wave beam and the island’s O-point are sufficiently aligned,
the minimum wave power required to stabilize the 2/1 and
3/2 modes is always within the capabilities of the planned EC
system. This suggests that the most challenging task for NTM
control in ITER might be the optimization of the alignment
between the ECCD injection and the island motion.

The effect of the island’s topology on the ECCD is studied
also in terms of electron transport models. Simulations of
the 2/1 NTM have been performed using the transport code
TOPICS [24], combined with an experimentally fitted version
of the MRE; the temporal evolution of the island’s width,
as observed in JT-60U, was found to be well reproduced by
the model. The simulation also showed that increasingly
precise injection is required for smaller EC power and that
the allowable error in the ECCD location does not increase
significantly, even for large EC wave power. These results
are similar to the ones from DIII-D for a 3/2 NTM [25].
In addition, the TOPICS simulation predicts that the ECCD
deposition width has a strong effect on the NTM control. This
has experimentally been demonstrated in AUG, where it has
been shown that narrow ECCD deposition could stabilize a
NTM more effectively [5].

The Monte-Carlo method has been applied in the study of
the characteristics of ECCD in the magnetic island as a test-
particle problem in the island topology, including Coulomb
collisions and the EC quasilinear diffusion process [21]. The
driven current was found to remain localized within the helical
flux tube and its profile tended to have a peak around the O-
point, whereas the ECCD efficiency was computed to be larger
than in the axisymmetric case. The enhancement of the current
occurs because the resonant electrons are well-confined in the
smaller volumes defined by the island, despite the nonlinear
effect introduced by high-power density [26]. In such cases,
where the control is achieved by a current density driven around
the O-point, the required power can be significantly reduced.

A self-consistent treatment of the wave-island interaction
has been made with the numerical code NIMROD [27], by
augmenting the code with a quasilinear model for the basic
EC wave physics to a closed set of RF-MHD equations [28].
The investigation of the effect of ECCD on the dynamical
behavior of NTMs demonstrated the complete suppression
of initially saturated 2/1 and 3/2 modes by the application
of toroidally symmetric ECCD. Also demonstrated were the
consequences of the shifting of the mode flux surface in
response to the injected current and of the spatial ECCD
misalignment. These effects cannot be easily described by
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models based on the MRE. In a further development, the
incorporation of the ability to use data from ray tracing codes in
the NIMROD simulations, in order to determine the amplitude
and spatial localization of the induced electromotive forces,
has been theoretically established in terms of an advanced RF-
MHD model [29].

In this paper, a self-consistent computation of the dynamic
evolution of the NTM growth in the presence of a stabilizing
ECCD is performed, on the basis of linear wave–particle
physics and including the effect of island geometry on the
ECCD, as presented in recent work [20]. The connection of
the effect of the island topology on the EC wave propagation
and the resonant electron transport with the NTM dynamics,
through the modification of the ECCD, is formulated by
coupling the generalized Rutherford model with a ray-tracing
solver. The geometric effect is introduced in this approach in
terms of a fitting function that connects the island’s width and
the driven current density, which is determined with the ray-
tracing code. Then, the MRE is solved as a function of time,
with the instantaneously required values of the ECCD density
being given through the mentioned and pre-computed fitting
function.

The structure of the paper is as follows: in section 2, the
self-consistent numerical model is presented with a synopsis
of the theory behind it, focusing on the coupling of the wave-
field solution with the MRE; in section 3, the numerical results
are presented and analyzed for the different cases studied.
Finally, in section 4, the main results are summarized and the
limitations of our model are discussed.

2. Overview of the self-consistent model

Keeping the focus on the effect of island geometry on ECCD
deposition, the most important aspects to be considered are
the influence of the helical magnetic field on the wave
propagation and on the determination of the resonance region,
the flattening of the radial profiles of the plasma electron
density and temperature within the island region and the
structure of the volumes of the perturbed flux surfaces into
which the wave power is deposited. The simulation tool we
use for the computation of the EC propagation in a magnetic
configuration that includes islands is the ray-tracing code
CODERAY [20], whereas the connection of the results for
the wave to the dynamics of the NTM suppression is made by
solving numerically the MRE.

In the ray-tracing asymptotic technique, which stems
from geometric optics theory, the propagation of waves is
formulated in terms of a set of ordinary differential equations
(ODEs), which may be integrated by means of a standard
numerical solver and therefore are simpler to tackle than
the (partial differential) Helmholtz equation. The canonical
equations for the ray propagation in this framework are [14, 30]

dk

dt
= −∂ω

∂r
, (1a)

dr

dt
= ∂ω

∂k
, (1b)

where the ray position r and the wave vector k are canonical
variables and the wave frequency ω plays the role of the
Hamiltonian. The solution of (1a) and (1b) determines the
propagation in the plasma as a function of time, with a
characteristic wave period time-scale. A new independent
variable τ can be introduced, such that the equations take
a form where t is replaced by τ and ω is replaced by a
new Hamiltonian H that is the solvability condition of the
dispersion relation viewed as a function of (r, k). With εh,
the Hermitian part of the plasma dielectric tensor and c the
light speed in a vacuum, we have

H = det

[(ω

c

)2 (−k2I + kk
)

+ εh

]
. (2)

This formalism is most appropriate in the case of
monochromatic wave propagation in stationary plasma,
because it provides a relation of the integration step with the
time, which is parametric-dependent only on the frequency;
therefore, the time dependence can be further neglected.
Assuming cold plasma propagation, one may adopt the cold
plasma dielectric tensor [30], which gives the final expression
for the Hamiltonian used here (for more information on the
wave code, see [20]).

In the context of geometric optics, the wave propagation
is a zero-order process, whereas the absorption and,
consequently, the driven current are described by first-order
equations. The wave absorption is computed along the ray
path in terms of the imaginary part of the wave vector, as
determined from the dispersion relation [17]. The evolution of
the absorbed wave power Pabs is then given by

dPabs

dτ
= −2Im(k) · vg(P0 − Pabs), (3)

where vg is the group velocity and P0 is the injected wave
power. With the absorbed power along the ray path known,
the power dPabs deposited in a small radial interval can be
calculated from (3); a division by the volume dVabs contained
between the two flux surfaces enclosing the radial interval gives
the absorbed power density. The total driven current ICD over
the absorbed power defines the current drive efficiency ζCD

(rmaj is the major plasma radius)

ζCD = 2πrmaj
ICD

Pabs
. (4)

Following [18], the ECCD efficiency is computed in terms
of the linear adjoint method, based on a Green’s function
formulation with the magnetic field approximated as a square
well, in order to obtain an analytic solution; it includes the
effects of trapped particles, ion–electron collisions and the
spatial variation of the collision operator.

As an input to the wave solver, the magnetic field topology
and the radial profiles of the electron density/temperature of
the plasma must be provided. The non-axisymmetric magnetic
configuration used here has been formulated as in [20]. To start
with, the total magnetic field is expressed as

B = 1

r

∂ψt

∂r
êr +

1

R

∂ψp

∂r
êθ − 1

rR

(
∂ψp

∂θ
+

∂ψt

∂ϕ

)
êφ, (5)
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with ψt , ψp the toroidal and poloidal flux functions, r , θ , ϕ

the radial, toroidal and poloidal coordinates with unit base
vectors êr , êθ , êϕ and with R = rmaj + r cos θ . For the
axisymmetric part of the magnetic field, corresponding to the
background equilibrium, the expression used is the one known
as the ‘vacuum magnetic field’

Bt0(r, θ) = B0

1 + εA(r) cos θ
, (6a)

Bp0(r, θ) = εA(r)

q (r)
Bt0(r), (6b)

where Bt0, Bp0 are the toroidal and poloidal components,
respectively, B0 the toroidal field on the magnetic axis,
εA(r) = r/R0 the inverse aspect ratio and q(r) = dφ/dθ is
the safety factor, chosen as a monotonically increasing rational
function, see [20]. The flux functions ψt0, ψp0 corresponding
to the fields can be calculated from the relations ∂rψt0 = rBt0

and ∂rψp0 = RBp0. The local magnetic field structure of the
island is described by a perturbation ψp1 to the poloidal flux,
ψp = ψp0 + ψp1, with

ψp1(r, θ, φ) = εmn(r) cos(mθ − nφ), (7)

see e.g. [31], where εmn is the perturbation strength and m, n

are the mode numbers of the NTM. For an implementation of
the NTM topology, one has to specify εmn(r), and, as described
in detail in [20], we use the low-order approximation of [32]
to the self-consistent expression given in [33],

ψp1 = − r

m
ε(0)
mn

(
1 +

r − rs

α±

)
cos(mθ − nφ), (8)

with α± the slopes and rs the radius of the resonant surface,
determined through the equation q(rs) = m/n.

Apart from the changes in the magnetic topology, an
excited NTM causes the plasma pressure to assume a constant
value inside the separatrix of the island chain. This flattening
in the pressure profile leads in turn to a flattening in the
electron density and temperature profiles. In order to model
this alteration of the plasma profiles, we assume the density
and temperature profiles to be parabolic functions outside the
island, as in the unperturbed case, to be constant within the
island region, to be equal to the density and temperature values
at the outer island boundary and to be continuous at the inner
island boundary (see [20] for details).

For computing the power absorption in the presence of
the island, calculation of the plasma volume between two
adjacent flux surfaces is required. Again following [20], the
total volume Vabs contained inside a flux surface is

Vabs = −1

n

∫ 2πn

0

∫ ξ2

ξ1

∫ r2

r1

(
rmaj + r cos θ

)
r dr dξ dθ, (9)

with ξ = mθ −nφ the helical angle in the direction transverse
to the line through the island’s O-point and r1, r2, ξ1, ξ2 the
integration limits. The definition of the integration limits, as
given in [20], requires an analytical labeling � of the flux

surfaces in the island region. This expression has been derived
in [20] as

� = 1

2
(r − rs)

2 +
r

rs
�s

(
1 +

r − rs

α±

)
cos (ξ) , (10)

with

�s = rsε
(0)
mn

m rmaj
(
∂rrψp0

) ∣∣∣
rs

(11)

the value of � on the separatrix; the island half-width W1/2

approximately is

W1/2 =
√√√√√ 2rsε

(0)
mn

m rmaj
(
∂rrψp0

) ∣∣∣
rs

. (12)

Having these at hand, along with the ray-tracing data, the
absorbed power per unit volume can be evaluated as

dPabs

dVabs
= dPabs

dτ

(
dVabs

dτ

)−1

. (13)

The established model for the dynamic evolution of the
NTM is the MRE, which is based on a generalization of the
classical Rutherford equation for tearing modes [3, 7]. In
the case of classical tearing modes, only the Ohmic current
contributes, whereas for NTMs, other currents that flow in the
island region, as appearing in neoclassical transport, need to
be accounted for, the most important of which is the bootstrap
current. In this context and with the inclusion of the stabilizing
ECCD, the MRE becomes [6]

τr

rs

dW

dt
= rs�

′
β = rs

(
�′ + �′

BS + �′
CD

)
, (14)

where W is the full island width, τr = 0.82µ0r
2
s /ηp the

resistive time-scale of the plasma (ηp the plasma resistivity), �′

the neoclassical stability index, including the classical index
and a term connected to the nonlinear island saturation, �′

BS
the stability index corresponding to the bootstrap current and
�′

CD the term which represents the stabilizing effect of the
driven current. These stability indices are given as [1, 6]

�′ = −m

rs
− W

2.44r2
min

, (15a)

�′
BS =

√
εAβP

W

Lq

Lp

(
W 2

W 2 + W 2
d

+
W 2

W 2 + 28W 2
b

− W 2
pol

W 2

)
,

(15b)

�′
CD = −16

π

µ0Lq

Bθ

1

W 2
ICDηCDU(t − ton

CD). (15c)

In the above, rmin is the minor radius, εA = rmin/rmaj is the
aspect ratio of the tokamak, βP is the ratio of the plasma and
magnetic pressures, Lq and Lp are the shear lengths of the
safety factor and the plasma pressure, ton

CD is the time when the
ECCD is turned on (with U the Heaviside step function [34]),
ICD is the driven current (ηCD is defined below) and Wd ,Wb and
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Wpol are characteristic threshold values for the island width:
Wd is the critical width for classical destabilization, Wb is the
width below which banana orbits contribute significantly to
the bootstrap current and Wpol is the width below which the
current generated in response to the diamagnetic island rotation
is significant (for more details on the physics of the different
parameters and terms see [1, 3, 35] and the references therein).

In the computation of the term �′
CD, the total driven

current is expressed in terms of the current density as
ICD = π3/2rsdCDjCD, where jCD is assumed to have a Gaussian
radial profile around the O-point with peak value jCD0 and
width dCD

jCD = jCD0 exp

[
− (r − rs − rmis)

2

d2
CD

]
, (16)

and rmis denotes a small distance of radial misalignment
between the deposition center and the O-point. The efficiency
of the ECCD injection in stabilizing the NTM is described by
the factor ηCD appearing in (15a)–(15c). ηCD is a measure of
the geometrical optimization of the deposition on the basis of
the ECCD radial profile width as compared to the island width
(not to be confused with the current-drive efficiency ζCD, given
in (4)). This factor, among other things, depends heavily on
the synchronization of the island motion with the wave power
constancy or modulation. For locked islands, stabilization is
possible only if the O-point position is geometrically accessible
to the EC system and no power modulation is required. When
the islands rotate, conventionally �′

CD should be obtained by
averaging (16) over the rotation period, in order to assess
properly the distribution of the wave power over the different
island phases. In our model, we have assumed that: (a) for
locked modes, the EC deposition around the O-point is feasible
and (b) for rotating modes, the power is modulated exactly at
the island rotation frequency and the power-on phase is exactly
centered around the O-point passage through the beam. In this
framework, ηCD has the form [23]

ηCD = 0.07

(
W

dCD

)2

+

[
0.34 − 0.07

(
W

dCD

)2
]

×
[

0.3W

dCD
U

(
2 − W

dCD

)
+ exp

(
−dCD

W

)
U

(
W

dCD
− 2

)]
.

(17)

In including the current drive modification caused by the
island into the NTM dynamics self-consistently, the direct
coupling of the MRE with the ray-tracing algorithm based on
(1a) and (1b), with time as the common independent variable,
exhibits the problem of the vastly different time-scales of
evolution: in ITER, the wave period T is of the order of at
most 10−10 s, whereas the resistive time-scale is of the order of
at least 10−4 s. It becomes obvious that the island evolution,
being a ‘slow’ process, will not be affected by wave effects
on a time-scale comparable to T , whereas the ‘fast’ wave
propagation could potentially also be affected on a time-scale
of the order of tr . Since it would be obligatory, in order to obtain
a physically consistent solution, to time-step the problem on the
slow time-scale, an inefficiency in the computational scheme
would result.

In order to reduce the computational burden for treating
the problem, we evolve the plasma instability process on the
tr time-scale during the EC wave propagation. For better
efficiency, we actually progress only the MRE and, at each time
step (which is comparable to tr ), we compute the radial profile
of the ECCD with the ray-tracing code, using the instantaneous
value of the island width for determining the magnetic field
perturbation and other related parameters. The resulting new
value of the driven current density, which now includes the
modification caused by the change of the island width, is then
provided back to the MRE in order to compute the next step that
yields the new island width, and so on. Non-strictly speaking,
this defines a self-consistent model for the evolution of the
magnetic island width and the ECCD profile.

One may further disengage from running the wave code
at each time-step of the MRE: since the problem setup for
the wave evolution is linear, as the propagation/absorption
is treated in terms of a linear dielectric response tensor and
the current drive is computed with the linear adjoint method,
what is practically needed for including the effect of the island
on the ECCD is an analytic or tabular function connecting
W and jCD. According to (15a)–(15c) and (17), in order to
express the relation jCD = f (W) for a specific injection setup
(P0, θl , φl), one needs to determine, via the ray-tracing data,
the dependence of jCD0 and dCD on W (rs depends only on
the q-profile). In this sense, one can use the wave code to
compute the parameters of the driven current for many different
W values in order to build a table of the corresponding jCD0

values; then, in evolving the MRE, at a certain time t when the
island width is W , one computes the required value of jCD0 by
linear interpolation/extrapolation of the tabulated values.

3. Numerical results

This section contains the numerical results for the estimation
of the effect of the magnetic topology on the NTM dynamics
via the alteration of the driven current, using the self-
consistent model previously described. As described above,
we incorporate the island geometry via a set of tabulated values
connecting the island width and the driven current density,
which are computed by the ray-tracing code CODERAY.
Thereafter, the MRF is solved numerically, with the required
values of the ECCD being determined from the pre-computed
and tabulated values of jCD0 versus W .

Regarding the characteristics of the stabilization process,
especially its global efficiency and speed in both cases of
locked and rotating islands, the important effects to be
investigated here have to do with the following parameters:
(a) the initial value of the island width, (b) the radial
misalignment of the ECCD peak with respect to the O-point
and (c) the specific time instant at which the wave power is
turned on.

3.1. Ray tracing computations of ECCD

In ray-tracing computations, we use a magnetic equilibrium
with islands, as generated by a NTM of order 3/2, in
combination with the varying magnetic perturbation strengths
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Figure 1. EC wave propagation and current drive, as computed by the ray-tracing code CODERAY, for the case of a m/n = 3/2 mode in
ITER with W0 = 30 cm (in comparison with the same computation performed in axisymmetric geometry): (a) poloidal projection of the ray
propagation path, (b) radial profile of the ECCD density.

(and thus island widths); we also include the effect of the
flattening of the plasma pressure profile (for details see
[20]). The wave is launched from the outermost flux surface
(r = rmin), at a poloidal angle such that the ray propagation
targets extremely close to the O-point (the necessity for
rmis ≈ 0 will be analyzed later on) and a toroidal magnetic
field for which the EC resonance layer is located around
the O-point. The plasma and wave parameters are the ones
foreseen in ITER: the major and minor radii are rmaj = 6.2 m
and rmin = 1.9 m, the magnetic field on the tokamak magnetic
axis is B0 = 5.51 T, the electron density and temperature
follow parabolic profiles with values at the plasma center
equal to ne(0) = 1020 m−3, Te(0) = 10 KeV and at the edge
ne(rmin) = 1019 m−3, Te(rmin) = 1 KeV, the q-profile is also
parabolic with q(0) = 1, q(rmin) = 4 (see [20]), the wave
frequency is ω/2π = 170 GHz (fundamental O-mode) and
the initial wave power is P0 = 10 MW.

An indicative result from the wave code is shown in
figure 1, where, apart from the parameters mentioned above,
the magnetic perturbation strength has a value such that the
island width is W0 = 30 cm. In figure 1(a), we show the
projection of the ray path onto the poloidal plane in the presence
of the NTM and also compare it to the corresponding path in the
unperturbed equilibrium (i.e. in the absence of the mode). The
injection angles of the EC wave beam are θl = −30◦ poloidally
and φl = −5◦ toroidally. For the assumed profiles of B, q, ne,
Te and the chosen value of ω, the layer of the EC resonance
is located around R = 6 m, as marked in figure 1(a) with the
narrow region between the two vertical lines. In figure 1(b),
the radial profile of the ECCD density is visualized for the two
cases, with and without a NTM present, respectively; here we
just note that the obvious characteristic differences and effects
have been analyzed and discussed in detail in [20].

The shape of the radial profile in figure 1(b) highly
resembles a Gaussian function curve, which implies that fitting
the profile data against the Gaussian function in equation (16)
is appropriate. This fitting, provided that rmis ≈ 0 (as ensured
during ray-tracing computations), yields the parameters jCD0,
dCD for a given profile and value of W and that it has been

Table 1. The numerical values of jCD0 and dCD, for different values
of W (or ε32), determined through a Gaussian fit to the ray-tracing
data (ECCD profiles).

ε32 W (m) jCD0 (MA m−2) dCD (m)

0.000 0.0000 0.1102 0.019 04
0.012 0.1134 0.2123 0.019 84
0.015 0.1247 0.2216 0.019 85
0.017 0.1350 0.2283 0.019 91
0.020 0.1450 0.2368 0.020 02
0.023 0.1553 0.2451 0.020 16
0.026 0.1654 0.2528 0.020 23
0.029 0.1749 0.2614 0.020 33
0.032 0.1853 0.2732 0.020 47
0.036 0.1952 0.2864 0.020 58
0.039 0.2047 0.2986 0.020 66

repeated for varying values of W . The resulting data for the
peak value and the 1/e-width of the ECCD profile, as a function
of the island width or the dimensionless magnetic perturbation
amplitude, are given in table 1. The only parameter that has
changed with respect to the above is φl = 0◦; in the first
row the results for the unperturbed case W = 0 is included,
in order to perform comparisons. The physical reason for
the dependence of jCD0 and dCD on W stems from the fact
that, in the presence of the island, the wave power is deposited
into volumes smaller than those in its absence, which in turn
leads to larger values of the absorbed power density and the
driven current. As the island width increases, so does the
magnetic perturbation strength; the flux surface nesting in the
interior of the island becomes more complicated, therefore this
effect appears stronger. The dependence of dCD on W is much
weaker (the overall increase is 0.16 cm over a 20 cm increase
of the island size), however it was included in the modeling
for consistency reasons.

For practical reasons, instead of interpolating/extrapolating
jCD0 and dCD from the values of table 1 to arbitrary values of W ,
one may introduce appropriate functional forms jCD0 = f1(W)

and dCD = f2(W) and make them specific by fitting them to
the tabulated values. Since the ECCD computation is done in
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Result of linear fitting
f1(W) = 0.8942W + 0.1088

Error = 0.41%
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Figure 2. Results of the linear fitting (least-squares method) to the tabulated values of (a) jCD0 and (b) dCD in table 1, as a function of the
island width.
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Figure 3. Self-consistent solution of the MRE for the case of a 3/2 mode in ITER with W0 = 12.47 cm, in comparison with two cases of the
non-self-consistent computation in axisymmetric geometry, namely in the presence and absence of ECCD, respectively: (a) time-evolution
of the island width and (b) phase diagram of the MRE.

terms of the linear adjoint method, it is expected that the scal-
ing of jCD0 and dCD with W will be, in a good approximation,
linear. Indeed, as shown in figure 2, the result of the linear
fitting is very successful in both cases: the regression error
for f1(W) is less than 1% and for f2(W) it is less than 3%.
So, in the frame of the MRE evolution, we will use the fitted
functions f1 and f2.

3.2. Solution of the MRE

In this section, the MRE is solved self-consistently by using the
results on the current drive from the previous section and the
results are analyzed in comparison to those from the non-self-
consistent case in axisymmetric geometry. The parameters
used here are the same as in the wave computations; the
parameters specific to the MRE are chosen as βP = 0.5,
Lq = Lp = 1, Wd = 0.01rs, Wb = 0.02rs and Wpol = 0.015rs.
The radius of the flux surface where the mode resides is
found by solving the algebraic equation q(rs) = 3/2; the
ECCD density (peak value, width and misalignment) is
given by the fitted functions f1 and f2 from the previous
section. Concerning the results, we mostly focus on the
time-domain signal (W versus t) and the phase diagram (rs�

′
β

versus W/rmin).

In figure 3, the solution of the MRE for initial width
W0 = 12.47 cm and ton

CD = 0 s, rmis = 1 cm for the EC power
is presented, in the cases of no ECCD applied (jCD = 0), of
ECCD applied and computed in the axisymmetric geometry
(∂jCD/∂W = 0) and of ECCD applied and computed self-
consistently in the perturbed geometry (∂jCD/∂W �= 0). The
evolution of W(t), as seen in figure 3(a), reveals that the
NTM is stabilized faster on the basis of the self-consistent
computation. This occurs because the ECCD density, as
computed in terms of the self-consistent model, is always
larger than the one in the axisymmetric case, due to the
geometric effect of smaller flux-surface volumes (see [20]),
which ultimately leads to an enhancement of �′

CD. This can
also be seen in figure 3(b), which is actually an imprint of the
growth dynamics, and where the phase curve from the self-
consistent model attains larger negative values than in the other
two cases.

In the following, we will further investigate the deviation
appearing in the computation of the time required for complete
stabilization between the two models. As ‘stabilization time’
we define the time interval from the time-instant the mode that
is affected by the EC control system till the nullification of
the island width, which we denote by tnsc

stab for the non-self-
consistent computation and by t sc

stab for the self-consistent one.
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Table 2. Numerical values of the non-self-consistent and self-consistent computations of the stabilization time tnsc
stab, t sc

stab and their deviation
�tstab in the case of a 3/2 NTM in ITER for different values of the initial width W0 and for different combinations of ton

CD and rmis.

W0 (m) tnsc
stab − t sc

stab = �tstab (s)

0.1134 9.436 − 5.978 = 3.458 12.359 − 7.766 = 4.593 27.798 − 17.124 = 10.674
11.518 − 7.923 = 3.596 14.505 − 9.897 = 4.608 29.496 − 19.165 = 10.331

0.1247 11.432 − 7.067 = 4.365 14.866 − 9.138 = 5.728 32.410 − 19.751 = 12.659
13.531 − 8.997 = 4.534 16.905 − 11.051 = 5.854 34.045 − 21.866 = 12.179

0.1350 13.369 − 8.107 = 5.262 17.273 − 10.442 = 6.831 36.622 − 22.167 = 14.455
15.402 − 10.032 = 5.370 19.349 − 12.579 = 6.770 38.099 − 24.178 = 13.921

0.1450 15.348 − 9.153 = 6.195 19.704 − 11.737 = 7.967 40.709 − 24.534 = 16.175
17.495 − 11.038 = 6.457 21.635 − 13.848 = 7.787 42.046 − 26.425 = 15.621

0.1553 17.482 − 10.272 = 7.210 22.291 − 13.109 = 9.182 44.903 − 26.955 = 17.948
19.485 − 12.386 = 7.099 24.091 − 15.192 = 8.889 46.124 − 28.770 = 17.354

0.1654 19.640 − 11.393 = 8.247 24.901 − 14.481 = 10.420 48.983 − 29.338 = 19.645
21.620 − 13.518 = 8.102 26.649 − 16.570 = 10.079 50.128 − 31.139 = 18.989

0.1749 21.739 − 12.467 = 9.272 27.401 − 15.799 = 11.602 52.791 − 31.586 = 21.205
23.605 − 14.580 = 9.025 29.048 − 17.864 = 11.184 53.843 − 33.311 = 20.532

0.1853 24.096 − 13.671 = 10.425 30.188 − 17.261 = 12.927 56.914 − 34.019 = 22.895
25.855 − 15.766 = 10.089 31.740 − 19.463 = 12.277 57.884 − 35.692 = 22.192

0.1952 26.390 − 14.840 = 11.550 32.884 − 18.673 = 14.211 60.803 − 36.334 = 24.469
28.062 − 16.921 = 11.141 34.341 − 20.807 = 13.534 61.718 − 37.956 = 23.762

0.2047 28.634 − 15.977 = 12.657 35.497 − 20.036 = 15.461 64.498 − 38.550 = 25.948
30.234 − 18.038 = 12.196 36.884 − 22.117 = 14.767 65.342 − 40.134 = 25.208

rmis (m) 0.00 0.01 0.02
ton
CD (s) 0 (1st line for each W0) 2 (2nd line for each W0)

The deviation may then be defined as follows

�tstab = tnsc
stab − t sc

stab, (18)

as illustrated also in the schematic representation in figure 3(a).
The parameters expected to affect the form of the self-
consistent solution and the deviation from the standard result
in axisymmetric geometry are the initial width W0, the time-
instant ton

CD and the maximum misalignment rmis. In order to
ascertain the effect of these parameters on the overall process,
tnsc
stab, t sc

stab and �tstab have been computed for several values of
W0 and different combinations of ton

CD, rmis. The results of these
computations are shown in table 2.

The concept of the stabilization time and its behavior as a
function of the ECCD have been analyzed in previous studies
(see e.g. [5, 6]); since our work emphasizes the difference
appearing in the estimation of the stabilization time when
the effect of the island topology is taken into account self-
consistently, an extensive analysis of stabilization times will
not be made here. Just to mention, as seen in table 2, the
values of tstab range from 9 to 65 s, depend mainly on W0 and
rmis. The stabilization times computed are nearly the same as
the ones presented in [6], where complete stabilization was
found to occur roughly in a minute for the 3/2 NTM and less
than the characteristic NTM growth time expected in ITER
(around 100 s). In the modeling setup, the wave power may
safely be considered to be active for all this time interval, since
a realistic high-power ECRH pulse from the 1 MW gyrotron
planned for ITER can last up to 400 s.

For each one of the six combinations of rmis and ton
CD, the

time-lag �tstab is an increasing function of W0, meaning that
for initially larger islands, the self-consistent model predicts
a faster stabilization of the mode. This is visualized in
figure 4(a), where �tstab is plotted against W0 for ton

CD = 0

s and three different values of rmis. The specific scaling occurs
because the geometric effect on �′

CD, which results in the
increase of the latter, becomes more important when the size of
the island is larger. Furthermore, after a closer examination of
table 2, the first impression is that the scaling of �tstab with W0

does not depend on ton
CD. The respective plot of �tstab versus

W0 is shown in figure 4(b), for rmis = 0.01 m and two different
values of ton

CD. As a matter of fact, the time-instant ton
CD just

determines the island width in the beginning of the stabilization
effort, which, for the values of ton

CD occurring in the experiments
(<2 s) and the slow evolution of the island when the ECCD is
off (see figure 3), retains a value very close to W0.

Contrary to the above, there is clearly a dependence of the
scaling of �tstab with W0 on rmis. In figure 4(a), this appears in
the form of a parametric up-shift of the scaling relation. This
effect can be expected, because as rmis increases, the quantity
of deposited ECCD in the island region decreases and, whereas
�′

CD decreases within each computation alone, the difference
of �′

CD values coming from the self-consistent model and the
standard computation continuously becomes larger. In this
sense, and up to the relatively small values of rmis for which
the island ultimately still disappears (W = 0 is still reached,
see below), i.e. where the definition of equation (18) still yields
finite values for �tstab, this time lag is expected to increase with
increasing rmis.

An additional computation of �tstab for many different
values of rmis within the range occurring in experiments
(<3 cm) was performed, keeping the initial width constant at
W0 = 0.1247 m and ton

CD = 0 s. The results are plotted in
figure 5(a) and, according to these, the increase of �tstab with
increasing rmis is obvious. The scaling has been followed up
to rmis = 3 cm because for larger values of the misalignment,
the driven current is not optimized enough with the O-point
position and the island does ultimately not disappear anymore.
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This is verified in figure 5(b), a plot similar to figure 3, for
the same parameters as in figure 5(a) and with rmis = 3.5 cm,
where the island stops shrinking at a width between 5.5 and
8 cm (depending on the simulation model). In this case,
according to its definition, �tstab becomes infinite, a trend that
already appears in figure 5(a).

The results presented so far on the deviation in the
computed stabilization time between the two different models
have been derived for a driven current based on the same
injection power and geometry in all cases. A higher value
of the current density achieved in terms of a larger value of P0

would not yield a different picture for �tstab, since �′
CD ∝ jCD0

and the ratio of the ECCD peak values, as computed by the
two models, would not alter because the island geometry
encountered by the ray has not changed much. On the contrary,
a higher value of jCD0 achieved in terms of changing φl would
result in a further increase of �tstab since the ratio of the peak
values increases due to geometric effects [20].

4. Conclusion

In the context of the current drive requirements in modern
fusion devices, including ITER and DEMO [36], a self-
consistent model for the dynamic evolution of the NTM growth
in the presence of a stabilizing ECCD has been performed,

assuming linear wave–particle interaction and including the
effect of the island geometry on the ECCD. The model
includes the effect of the helical magnetic perturbation on
the propagation, the flattening of the plasma electron pressure
within the island region and the volumes of the perturbed flux
surfaces into which the wave deposits it power. In general,
the inclusion of the island geometry in the NTM dynamics has
the problem of the distant time scales for the wave and the
instability. The most efficient treatment would be to evolve
the plasma process at certain time slices during the NTM
evolution and at each step to compute the ECCD profile with
the ray-tracing code and provide the results back to the plasma
process. Here, we used an even simpler setting and avoided
using the wave code at each step; we numerically computed
the current density for many values of the island width in
advance and then solved the MRE, getting the required values
of the current density from the tabulated results of the wave
computation.

Numerical computations were performed for the mode
3/2, expected to be dominant in ITER, and parameters were
chosen as relevant for a specific stabilization scenario, using
the upper EC launcher. The main results are the following:

• The mode stabilization occurs faster in terms of the
self-consistent model as compared to the conventional
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estimation, since the corresponding term �′
CD in the MRE

is always larger than the one in the axisymmetric case.
• The time-lag �tstab is an increasing function of the initial

island width W0, because the geometric effects on �′
CD

are more important when the magnetic island is larger.
• The scaling of �tstab is almost independent of the EC

turn-on time ton
CD, since ton

CD actually only causes a slight
change of W0.

• �tstab is an increasing function of rmis, since for larger
values of the misalignment �′

CD becomes larger with
respect to the axisymmetric computation.

The fact that the stabilization process is computed to be
faster when the island geometry is taken into account self-
consistently in the ECCD suggests that the effect of the island
geometry on the wave deposition is favorable for control,
something that counteracts other known mechanisms that trim
the ECCD efficiency and hamper the control effort, like e.g.
quasilinear electron transport and wave beam broadening.
The implementation of the island topology within the model
allows for an accurate estimation of the ECCD effect on
the NTM suppression. Revisiting the discussion in [20],
it is verified that the enhanced ECCD peaking within the
island may allow the use of less wave power than the one
determined in axisymmetric geometry. This effect could serve
in the direction of power economy, since less ECCD will
be required for stabilization, provided that the coupling of
power modulation with the frequency of island rotation is
efficient.

A discussion of the limitations of our model is required.
First, it has to be mentioned that the models for the wave
propagation, absorption and current drive do not take into
account diffraction or nonlinear wave–particle interaction.
Second, the coupling of the wave propagation with the island
growth dynamics has been realized in terms of a linear model of
the scaling of the driven current with the island width, instead
of a routine use of the wave code at each step of the mode
evolution. This increases the computational efficiency and,
within the linear plasma response context, it is sufficiently
accurate. Third, the island dynamics were described in terms
of a version of the modified Rutherford equation (MRE) that
includes a simplification in the description of the classical
stability index �′, which, in principle, should be evaluated
numerically by using the correct equilibrium current profile
in a fully toroidal geometry. Finally, the stabilizing term
�′

CD has been considered for the simple case where the island
rotation is coped with by the ECRH system. The problem of
asynchronism of the power modulation with the island rotation,
as well as other relevant effects, are currently being studied in
the community (see e.g. [8]).

Issues requiring further study include the modeling of
modulated and broad ECCD, which have been studied only
partially in this article, and the inclusion of the effect of edge
density fluctuations as a mechanism for the undesired increase
of the misalignment and/or the broadening of the EC beam.
Also, a deeper study of the scaling laws of �tstab with W0

and rmis could provide valuable information in an effort to
construct simple models for the effect of island topologies
on the NTM dynamics. Other issues worthy of investigation

are the modeling of the wave propagation with the plasma
response computed in terms of the full particle dynamics in
the non-axisymmetric fields and the effect of the ECCD on
the background magnetic equilibrium, which may have been
underestimated in the computations done up to now.
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