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Abstract. A set-up is introduced which can be superimposed
onto the existing solar flare cellular automata (CA) models, and
which specifies the interpretation of the model’s variables. It
extends the CA models, yielding the magnetic field, the current,
and an approximation to the electric field, in a way that is con-
sistent with Maxwell’s and the MHD equations. Applications
to several solar flare CA models during their natural state (self-
organized criticality (SOC)) show, among others, that (1) the
magnetic field exhibitscharacteristic large-scale organization
over the entire modeled volume; (2) the magnitude of the cur-
rent seems spatially dis-organized, with no obvious tendency
towards large-scale structures or even local organization; (3)
bursts occur at sites with increased current, and after a burst the
current is relaxed; (4) by estimating the energy released in indi-
vidual bursts with the use of the current as Ohmic dissipation,
it turns out that the power-law distributions of the released en-
ergy persist. The CA models, extended with the set-up, can thus
be considered asmodels for energy-release through current-
dissipation. The concepts of power-law loading and anisotropic
events (bursts) in CA models are generalized to 3–D vector-
field models, and their effect on the magnetic field topology is
demonstrated.

Key words: Sun: flares – Magnetohydrodynamics (MHD) –
turbulence – methods: miscellaneous

1. Introduction

Cellular automata (CA) models for solar flares are successful in
explaining solar flare statistics (peak flux, total flux, and dura-
tion distributions; Lu & Hamilton 1991 (hereafter LH91); Lu et
al. 1993; Vlahos et al. 1995; Georgoulis & Vlahos 1996, 1998;
Galsgaard 1996). They simplify strongly the details of the in-
volved physical processes, and achieve in this way to model
large volumes with complex field topologies and a large num-
ber of events. On the other hand, MHD simulations give insight
into the details of the local processes, they are limited, however,
to modeling relatively small fractions of active regions, due to
the lack of computing power, yielding thus poor statistics and
difficulties in comparing results to observations (e.g. Mikic et

al. 1989; Strauss 1993; Longcope & Sudan 1994; Einaudi et
al. 1996; Galsgaard & Nordlund 1996; Hendrix & Van Hoven
1996; Dmitruk & Gomez 1998; Galtier & Pouquet 1998; Geor-
goulis et al. 1998; Karpen et al. 1998; Einaudi & Velli 1999).
The global MHD flare models are still in the state of rather
qualitative flare scenarios.

The MHD and the CA approach to solar flares seem to have
very little in common: The former are a set of partial differen-
tial equations, based on fluid-theory and Maxwell’s equations,
whereas the latter are a set of abstract evolution rules, based (in
the case of solar flares) on the analogy to critical phenomena
in (theoretical) sand-piles. The scope of this paper is to bridge
the gap in-between these two approaches: the solar flare CA
models are re-interpreted and extended so as (i) to make these
models completely compatible with MHD and with Maxwell’s
equations, and so that (ii) all relevant MHD variables are made
available (e.g. the current and the electric field, which so far
were not available in CA models).

In an earlier paper (Isliker et al. 1998), we have analyzed the
existing solar flare CA models for their soundness with MHD.
We asked the question whether the fields in these CA models
and the evolution rules can be interpreted in terms of MHD. It
turned out that these models can indeed be interpreted as a par-
ticular way of implementing numerically the MHD equations.
This fact is not trivial, since these models had been derived in
quite close analogy to the sand-pile CA model of Bak et al.
(1987 and 1988), with vague association of the model’s vari-
ables with physical quantities. For instance, some authors (Lu
et al. 1993) explicitly discuss the question whether their basic
grid variable is the magnetic field or not, without reaching to a
definite conclusion. Isliker et al. (1998) brought forth not only
how the existing CA models are related to MHD and what sim-
plifications are hidden, but also where they differ from or even
violate the laws of MHD and Maxwell’s equation. Important is
the fact that though the existing CA models can be considered
as a strongly simplified numerical solution of the (simplified)
MHD equations,they do not represent the discretized MHD
equations: the time-step and the spacing between two grid sites
are not small (in a physical sense), but finite; they are a typical
temporal and spatial scale of the diffusive processes involved
(see Isliker et al. 1998).
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From the point of view of MHD, the main short-comings
of the existing CA models are (Isliker et al. 1998): (1) There
is no control over consistency with Maxwell’s equations. In-
terpreting, for instance, the vector-field in the CA models as
the magnetic field leads to the problem that the gradient of the
field (∇B) cannot be controlled. (2) Secondary quantities, such
as currents, are not available, and they cannot be introduced in
the straightforward way by replacing differential expressions by
difference-expressions, since, as mentioned, the grid-size must
be considered finite (see also App. B.1). This lack of knowing
how to calculate derivatives made it also useless to interpret
the primary vector-field in the CA models as the vector poten-
tial (to avoid the∇B-problem), sinceB could not be derived.
The physical interpretation of these CA models remained so far
problematic.

There are two basically different ways of developing CA
models for flares further: (i) Either one considers CA models
per se, tries to change the existing models further or invent new
ones, with the only aim of adjusting them to reproduce still bet-
ter the observations, i.e. one makes them a tool the results of
which explain and maybe predict observed properties of flares.
In this approach, one has not to care about possible inconsis-
tencies with MHD or even Maxwell’s equations, the various
components of the model are purely instrumentalistic. (ii) On
the other hand, one may care about the physical identification
and interpretation of the various components of the model, not
just of its results, and one may want the CA model to become
consistent with the other approach to solar flares, namely MHD.
In the approach (ii), some of the freedom one has in construct-
ing CA models will possibly be reduced, since there are more
‘boundary conditions’ to be fulfilled in the construction of the
model: the observations must be reproduced and consistency
with MHD has to be reached. (Trials to construct new CA mod-
els which are based on MHD and not on the sand-pile analogy
were recently made by Einaudi & Velli 1999, MacPherson &
MacKinnon 1999, Longcope & Noonan 2000, and Isliker et al.
2000a.)

Our aim is in-between these two alternatives: we construct
a set-up which can be superimposed onto each classical solar
flare CA model, and which makes the latter interpretable in a
MHD-consistent way (byclassicalCA models we mean the
models of LH91, Lu et al. 1993, Vlahos et al. 1995, Georgoulis
& Vlahos 1996, 1998, Galsgaard 1996, and their modifications,
which are based on the sand-pile analogy). The set-up thus spec-
ifies the physical interpretation of the grid-variables and allows
the derivation of quantities such as currents etc. It does not in-
terfere with the dynamics of the CA (unless wished): loading,
redistributing (bursting), and the appearance of avalanches and
self-organized criticality (SOC), if the latter are implied by the
evolution rules, remain unchanged. The result is therefore still
a CA model, with all the advantages of CA, namely that they
are fast, that they model large spatial regions (and large events),
and therewith that they yield good statistics. Since the set-up
introduces all the relevant physical variables into the context of
the CA models, it automatically leads to a better physical un-
derstanding of the CA models. It reveals which relevant plasma

processes and in what form are actually implemented, and what
the global flare scenario is the CA models imply. All this was
more or less hidden so far in the abstract evolution rules. It leads
also to the possibility to change the CA models (the rules) at the
guide-line of MHD, if this should become desirable. Not least,
the set-up opens a way for further comparison of the CA models
to observations.

In Sect. 2, we introduce our set-up. Applying it to several
CA models (Sect. 3), we will demonstrate the usefulness and
some of the benefits such extended models (i.e. classical models
extended with our set-up) provide over the classical CA models,
and we will reveal basic physical features of the CA models. The
potential of the extended models to explain more observational
facts than the classical CA models is, among others, outlined in
the conclusions (Sect. 4).

2. Introduction of the set-up

The set-up we propose can be superimposed onto solar flare
CA models which use a 3–D grid and a basic 3–D vector grid-
variable, sayA. The corresponding set of evolution rules is
not changed. (With a few modifications, the set-up can also
be superimposed onto CA models which use a scalar field in
a planar grid, which our set-up necessarily interprets as slab
geometry, as will become clear later.)

We introduce our model on the example of the solar flare
CA model of LH91, which we summarize here in order to make
the subsequent presentation more concrete:

2.1. Summary of the CA model of LH91

In the LH91 model, to each grid-sitexijk of a 3–D cubic grid a
3–D vectorAijk is assigned. Initially,Aijk is set to(1, 1, 1)T ,
everywhere. The system is then loaded with the repeated drop-
ping of increments at randomly chosen sitesxijk (one per time-
step)

A(t + 1,xijk) = A(t, xijk) + δA(t, xijk), (1)

whereδA(t, xijk) has all its components as random numbers
uniformly distributed in[−0.2, 0.8].

After each loading event, the system is checked for whether
the local ‘stress’, defined as

dAijk := Aijk − 1
6

∑
n.n.

An.n., (2)

where the sum goes over the six nearest neighbours of the central
pointxijk, exceeds a thresholdAcr, i.e. whether

|dAijk| > Acr, (3)

whereAcr = 7 is used. If this is the case, the field in the neigh-
bourhood of the critical site is redistributed according to

Aijk −→ Aijk − 6
7
dAijk (4)

for the central point, and

An.n. −→ An.n. +
1
7
dAijk (5)
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for its six nearest neighbours. In such a redistribution event
(burst), energy amounting to

ELH91
rel. =

6
7

|dAijk|2 (6)

is assumed to be released. The grid is scanned again and again to
search for second, third etc. generation bursts, until the system is
nowhere critical anymore and returns to the loading phase (the
details we apply concerning the temporal evolution of the model
are given in App. A; they are not explicitly stated in LH91). The
field outside the grid is held constant and assumed to be zero.

2.2. Our set-up

We turn now to introducing our set-up, starting with a specifica-
tion: We interpret the vectorAijk at the grid sitesxijk to denote
the local vector-field,A(xijk). Note that this was not specified
in the classical CA models. Lu et al. (1993) for instance discuss
this point: it might also have been thought of as a mean local
field, i.e. the average over an elementary cell in the grid.

Guided by the idea that we want to assure∇B = 0 for the
magnetic fieldB, which is most easily achieved by having the
vector-potentialA as the primary variable and lettingB be the
corresponding derivative ofA (B = ∇ ∧ A), we furthermore
assume that the grid variableA of the CA model is identical
with the vector-potential.

The remaining and actually most basic problem then is to
find an adequate way to calculate derivatives in the grid. In
general, CA models assume that the grid-spacing is finite, which
also holds for the CA model of LH91 (as shown in detail by
Isliker et al. 1998), so that the most straightforward way of
replacing differential expressions with difference expressions
is not adequate (see the detailed discussion in App. B.1, below;
Vassiliadis et al. (1998) suggested to interpret CA models as
the straightforwardly discretized (simplified) MHD equations,
which we find problematic for the reasons given in App. B.1,
and we therefore do not follow this approach, here).

Consequently, one has to find a way of continuing the vector-
field into the space in-between the grid-sites, which will allow to
calculate derivatives. There is, of course, an infinite number of
possibilities to do so, and the problem cannot have a unique so-
lution. Adequate possibilities definitely include: a) continuation
of A with the help of an equation (e.g. demanding the resulting
B-field to be potential or force-free); b) interpolation, either lo-
cally (in a neighbourhood), or globally (through the whole grid).
Trying several methods, we concluded that 3–D cubic spline in-
terpolation is particularly adequate to the problem since it has
remarkable advantages over other methods (e.g. it does not in-
troduce oscillations in-between grid-sites, which would strongly
influence the values of the derivatives, and it well reproduces
the derivatives of analytically prescribed primary fields). The
process of evaluating different continuation methods we went
through, as well as the comparison of spline interpolation to
other continuation-methods are described in App. B.

The 3–D interpolation is performed as three subsequent 1–D
interpolations in the three spatial directions (Press et al. 1992).

For the 1–D splines, we assume natural boundaries (the second
derivatives are zero at the boundaries). Moreover, since in the
CA model of LH91 it is assumed that around the grid there is a
zero field which is held constant (see Sect. 2.1), we enlarge the
grid by one grid point in all directions to include this constant
zero-layer explicitly, using it however only for the interpola-
tion. In the interpolation, the derivatives at the grid-points are
immediately given by the analytically differentiated interpolat-
ing polynomials.

With the help of this interpolation, the magnetic fieldB and
the currentJ are calculated as derivatives ofA, according to
the MHD prescription:

B = ∇ ∧ A, (7)

J =
c

4π
∇ ∧ B. (8)

To determine the electric fieldE, we make the assumption
that under coronal conditions the MHD approach is in general
valid, and thatE is reasonably well approximated by Ohm’s law
in its simple form,E = ηJ − 1

cv ∧ B, with η the diffusivity
andv the fluid velocity. Since the classical CA models use no
velocity-field, our set-up can yield only the resistive part,

E = ηJ . (9)

In applications such as to solar flares, where the interest is in cur-
rent dissipation events, i.e. in events whereη andJ are strongly
increased, Eq. (9) can be expected to be a good approximation
to the electric field. Theoretically, the convective term in Ohm’s
law would in general yield just a low-intensity, background elec-
tric field.

Eq. (9) needs to be supplemented with a specification of
the diffusivity η: Isliker et al. (1998) have shown that in the
classical CA models the diffusivity adopts the valuesη = 1 at
the unstable (bursting) sites, andη = 0 everywhere else. This
specifies Eq. (9) completely.

Remark 1:It is worthwhile noting that, since spline interpola-
tion has the property to be the least curved of all twice differen-
tiable interpolating functions, the grid-size is a typical smallest-
possible length-scale of field structures, or, if we would think the
CA to model MHD turbulence, it is something like an average
smallest possible eddy-size.

Remark 2:With our set-up, field lines are made available: the
interpolation was introduced to define derivatives at the grid-
sites, but it can as well be used to determine the vector-potential,
and therewith the magnetic field and the current, in between
the grid sites. However, it is important to note that this field
in between the grid sites is not used for the time-evolution of
the model, it merely allows to visualize the evolution in the
standard way through field-lines, if wished so (second order
derivatives in-between the grid-sites, if needed, would have to
be done numerically, since else their numerical values would
depend on the order in which the three 1–D interpolations are
done).

Remark 3:In this paper, we do not change the rules of the clas-
sical CA models to which we apply our set-up — except for
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the definition of energy release (Sect. 3.1.3). Our aim here is to
show the usefulness of the set-up and to give some results and
reveal some aspects by extending published, classical CA mod-
els. While the redistribution rules have in detail been shown to
represent diffusion events and fit nicely into an MHD scenario
(Isliker et al. 1998), the loading process is strongly simplified
and poorly follows a reasonable flare scenario: For instance, the
loading process acts independently everywhere in the simula-
tion box, whereas according to a realistic flare scenario (see e.g.
Parker 1993) disturbances should appear independently only
on one boundary (the photosphere, due to random foot-point
motions or newly appearing flux), and propagate then into the
interior of the simulation box along the magnetic field lines.

To translate such a realistic loading scenario into the language
of CA models has not been undertaken, so-far. We just note
that it would be quite straightforward to introduce a velocity
field into the CA models: e.g. Isliker et al. (2000a) propose a
CA model which uses a velocity field for the loading phase,
but this model does not fall into the category of classical CA
models since it does not follow the sand-pile analogy and uses
different, MHD based, evolution rules. We leave the problem of
introducing a velocity field and a more physical loading process
into the classical CA models for a future study. In Isliker et al.
2000b, we will — among others — analyze in details what this
simplified loading process physically represents.

3. Applications of our set-up

3.1. Application to the CA model of Lu & Hamilton (1991)

Our first application is to the CA model of LH91 (see Sect. 2.1).
The LH91 model has a fairly long transient phase and reaches
finally a stationary state, the so-called SOC (self-organized
criticality) state, in which spatially spreading series of bursts
(avalanches) appear, alternating with quiet loading phases. The
LH91 model gives basically three results concerning flare statis-
tics, namely the distributions of total energy, peak-flux and du-
rations, which are all power-laws with slopes that are in good
agreement with the observations (Lu et al. 1993, Bromund et al.
1995).

Superimposing our MHD-frame onto the LH91 model such
as it stands does not change anyone of the three results, since at
this first stage we are not interfering with the dynamics (i.e. the
evolution rules). The set-up allows, however, to address several
questions in MHD language: Our main aim in the subsequent
applications is to demonstrate that the set-up indeed yields a
new and consistent interpretation of CA-models, to illustrate
the behaviour of the secondary variables (currents, magnetic
fields), and to reveal major features of them. (In the subsequent
runs, we use a grid of size30 × 30 × 30, as LH91 did to derive
their main results.)

3.1.1. Global structures of the vector-fields

First, we turn to the question what the global fields (vector-
potential, magnetic field, current) look like during the SOC state.

Thereto, the temporal evolution of the model is stopped at an
arbitrary time during SOC state (in a phase where there are no
bursts, i.e. during loading), and the magnitude of the fields at a
cut with fixedz-coordinate are shown as a function of thex- and
y-coordinates in Fig. 1.|A(x, y, z = z0)| obviously exhibits a
large-scale organization over the whole grid, it forms a global
convex surface (Fig. 1(a)). This convex surface has a slight ran-
dom distortion over-lying, which visually cannot be discerned
in Fig. 1(a), but becomes visible in the plot of|B| (Fig. 1(b)), the
curl of A, which still exhibits large-scale organization all over
the grid, but is clearly wiggled. Finally,|J | shows no left-overs
of a large scale organization anymore, it reflects the random
disturbances of the convexity of|A| (Fig. 1(c)).

The large-scale structures shown in Fig. 1 are always main-
tained during the SOC state, neither loading nor bursting (and
avalanches) destroy them, they just ‘tremble’ a little when such
events occur. SOC state in the extended LH91 model thus im-
plies large-scale organization of the vector-potential and the
magnetic field, in the characteristic form of Fig. 1.

The large-scale organization ofA is not an artificial result
of our superimposed set-up, but already inherent in the classical
LH91 model: in the classical LH91 CA model, there is only one
variable, the one we call hereA, whose values are not affected by
the interpolation we perform since it is the primary grid variable,
so that Fig. 1(a) is true also for the classical, non-extended LH91
model.

The large scale structure for the primary grid-variable|A|
is the result of a combined effect: The preferred directionality
of the loading increments (see Sect. 2.1) tries to increase|A|
throughout the grid. The redistribution events, which already in
Bak et al. (1987; 1988) were termed diffusive events, and which
in Isliker et al. (1998) were analytically shown to represent local,
one-time-step diffusion processes, smooth out any too strong
spatial unevenness ofA, and they root theA-field down to
the zero level at the open boundaries. The result is the convex
surface of Fig. 1(a), blown-up from below through loading, tied
to the zero-level at the edges, and forced to a maximum curvature
which is limited by the local, threshold dependent diffusion
events.

As the SOC state, so is the large-scale structure of|A| in-
dependent of the concrete kind of loading, provided it fulfills
the conditions that the loading increments exhibit a preferred
directionality and are much smaller than the threshold (with
symmetric loading, the SOC state is actually never reached, see
LH91 and Lu et al. (1993)).

To make sure of the importance of the boundaries, we per-
formed runs of the model with closed boundaries, and we found
that neither a large-scale structure was developed in|A|, nor the
SOC state was reached.

3.1.2. Bursts

To illustrate the role of the current at unstable sites and dur-
ing bursts, we plot in Fig. 2 the magnitude of the current be-
fore and after a typical burst: obviously, the current at the burst
site (x, y, z) = (20, 18, 3) has high intensity before the burst
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Fig. 1a–c.Surface and contour plots of the magnitudes ofa the vector-
potential (|A|), b the magnetic field (|B|), andc the current (|J |) as a
function ofx andy, for z = 15 fixed.

(Fig. 2(a)), and is relaxed after the burst (Fig. 2(b)). Inspect-
ing a number of other bursts, we found that, generally, at sites
where the LH91 instability criterion is fulfilled, the current is
increased, too, and that bursts dissipate the currents. This is a
first hint that classical CA models can be interpreted as models
for energy release through current-dissipation.

Fig. 2a and b.The magnitude of the current (|J |, contour-plot, with
the ticks pointing ‘downhill’) as a function ofx andy at a zoomed cut
z = 3 through the grid, beforea and afterb a burst, which occurs in
the middle of the plot, at(x, y, z) = (20, 18, 3).

After the burst, at the neighbouring site(21, 18, 3), the in-
tensity of the current is increased, and indeed the presented
burst gives rise to subsequent bursts, it is one event during an
avalanche.

The magnetic field at the bursting site is reshaped, in a way
which is difficult to interpret when using only the magnitude
of it (|B|) for visualization. May-be field line plots would help
visualization, but we leave this for a future study.

3.1.3. Energy release and Ohmic dissipation

We now turn to the question what relation the energy release
formula of LH91 (Eq. 6) has to the respective MHD relations: In
parallel to using the formula of LH91, we determine the released
energy in the following ways, closer to MHD: First, we assume it
to be proportional toηJ2 (with the diffusivityη = 1 at unstable
sites, see Sect. 2.2), which we linearly interpolate between the
two states before and after the burst. This is done in two ways,
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(i) summing over the local neighbourhood,

E
∫ ∑

J2

burst =

t+1∫
t

∫
n.n.

η J(x, t)2 dt dV ≈
t+1∫
t

∑
n.n.

Jn.n.(t)2 dt

=
∑
n.n.

1
2
(
J2

n.n.; before + J2
n.n.; after

)
(10)

and (ii) without summing, but just taking into account the current
at the central point,

E
∫
J2

burst =
∫

dt η J(xijk, t)2

≈ 1
2
(
J2

ijk; before + J2
ijk; after

)
(11)

and finally, we monitor the change in magnetic energy due to a
burst using the difference in magnetic energy in the local neigh-
bourhood,

E∆B2

burst =
∑
n.n.

((
B(before)(xn.n.)

)2
8π

−
(
B(after)(xn.n.)

)2
8π

)
. (12)

(In Eqs. (10), (11), (12), we assume∆h = 1 and∆t = 1 for
the grid-spacing∆h and the time-step∆t, since, according to
Isliker et al. (1998), in the classical CA models both values are
not specified and set to one.)

The corresponding distributions of total energy and peak-
flux are shown in Fig. 3, together with the distributions yielded
by the energy-release formula of LH91, Eq. (6) (the duration
distribution remains the same as in the classical LH91 model,
namely a power-law, and is not shown). Obviously, the four ways
of defining the released energy give basically similar results,
with larger deviations only at the low and high energy ends
(note that the energy in Fig. 3 is in arbitrary units). Using the
formula of Ohmic dissipation does thus not change the results
of the classical LH91 model.

With an estimate of the numerical value of the anomalous
resistivity and of the typical size of a diffusive region or the
typical diffusive time, it would be possible to introduce physi-
cal units. We did not undertake this, since all three parameters
are still known only with large observational and theoretical
uncertainties.

3.1.4. The relation ofdA to J

From the similarity of the distributions of the extended model
with the ones of the classical LH91 model (Fig. 3), and from
Fig. 2, where it was seen that an instability is accompanied by
an enhanced current, we are led to ask directly for the rela-
tion of dA to J , which we plot as a function of each other in
Fig. 4. Obviously, the two quantities are related to each other:
above|dA| ≈ 2, the current is an approximate linear function
of the stress, around|dA| ≈ 2 the current is zero, and below
there is again an approximate linear relationship, with nega-
tive slope, however (above|dA| ≈ 2 the currentJ is actually

Fig. 3a and b.The distribution of the total energy (a), and of the peak-
flux (b), for different ways of measuring the released energy in a burst:
Eburst =

∫
dt

∑
n.n. J(xijk)2 (solid); Eburst =

∫
dt J(xijk)2

(dotted);Eburst as the difference in
∑

n.n. B(xijk, t)2 before and
after the burst (dashed);Eburst = 6

7dA2 (dash-dotted). (The distribu-
tions are normalized probability distributions, the last two were shifted
in both directions for viewing them together with the first two.)

preferably along(1, 1, 1), whereas below it is preferably along
(−1,−1,−1), i.e.J is an approximatly linear function ofdA
in the whole range, it merely changes its directivity at|dA| ≈ 2
with respect todA). In Appendix C, we show analytically why
with our set-up a more or less close relation betweendA andJ
has to be expected.

Of particular interest in Fig. 4 is that if|dA| is above the
thresholdAcr = 7, then|J | is also reaching high values: ob-
viously, large values of|dA| imply large values of|J |. This
confirms the statement made above: The extended CA models
can be considered as models for energy release through current
dissipation. It also explains why the energy distributions remain
very similar when the LH91 formula for the amount of energy
released in a burst (∼ dA2, Eq. (6)) is replaced by Ohmic dis-
sipation (∼ J2, Sect. 3.1.3): bursts occur only for large stresses
|dA|, where|J | is also large and an approximate linear function
of |dA|, so that the distributions ofdA2 andJ2 can be expected
to be the same in shape.
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Fig. 4. Plot of the magnitude of the current|J ijk| vs. the LH91 stress
measure|dAijk|, using the corresponding values in the whole grid at a
time fixed in a loading phase in the SOC state, together with the values
at bursting sites during an avalanche.

3.2. Application to loading with power-law increments

Georgoulis and Vlahos (1996, 1998) introduced power-law dis-
tributed increments for the loading. The main result of such
a way of driving the system is that the power-law indices of
the energy-distributions depend on the power-law index of the
distribution of the loading increments, explaining thus the ob-
served variability of the indices through the variability of the
intensity of the driving. We generalize their way of power-law
loading, which is for a scalar primary field, to a vector field in
the following way: The anisotropic directivity of the loading in-
crementδA is kept (see Sect. 2.1), but|δA| is now distributed
according to

p(|δA|) = C|δA|−β (13)

with |δA| ∈ [0.01,∞] andβ, the power-law index, a free pa-
rameter. Simulations were performed forβ = 1.8 andβ = 2.3.
Interested in global features implied by the CA model, our con-
cern here is the structure of the magnetic field. It turns out that
the magnetic field exhibits still a large scale organization, which
is very similar to the one of theB-field of the (extended with
our set-up) LH91 model (Fig. 1(b)): forβ = 1.8, the respec-
tive plots are visually indiscernible, and forβ = 2.3 the overall
shape is still roughly the same, it merely seems slightly more
distorted. Thus, though the statistical results depend onβ, the
strength and variability of the loading, the structure of the mag-
netic field remains approximately the same as in the case of
the extended model of LH91. Large-scale organization (in the
characteristic form of Fig. 1) must consequently be considered
as an inherent property of SOC state, through the mechanism
explained in Sect. 3.1.1.

3.3. Application to anisotropic bursts

Vlahos et al. (1995) introduced anisotropic bursts for solar flare
CA models, which lead only to small events, but yield a steep
distribution at small energies, predicting thus a significant over-

abundance of small events with a significant contribution to
coronal heating. We have first to generalize the anisotropic evo-
lution rules, which are again for a scalar primary field, to the
case of a primary vector field. A natural generalization would
be to apply the anisotropic rules to the absolute magnitude of
A, but it turns out that this causes the algorithm to get trapped
in infinite loops (two neighbouring grid-sites trigger each other
mutually for ever). The same holds if we apply the anisotropic
rules to the absolute magnitudes of the three components ofA
independently. We finally applied the anisotropic rules to the
three components ofA directly, not using absolute magnitudes,
as also Vlahos et al. (1995) did not use absolute magnitudes,
and this turned out to lead to a stationary asymptotic state: The
anisotropic stress in thex-component is thus defined as

dA
(x)
ijk;n.n. := A

(x)
ijk − A(x)

n.n., (14)

wheren.n. stands for one of the six nearest neighbours. The
instability criterion is

dA
(x)
ijk;n.n. > Acr. (15)

and the redistribution rules become

A
(x)
ijk = A

(x)
ijk − 6

7
Acr. (16)

for the central point and

A(x)
n.n. = A(x)

n.n. +
6
7
Acr.

dA
(x)
ijk;n.n.∑′

n.n. dA
(x)
ijk;n.n.

, (17)

for those nearest neighbours which fulfill the instability criterion
(Eq. 15), where the primed sum is over those neighbours for
which Eq. (15) holds. The rules forA(y), A(z) are completely
analogous (so that actually there are 18 possibilities to exceed
the threshold (Eq. 15) at a given site). The released energy is
assumed to amount to

E
(aniso)
rel =

∑
s=x,y,z

(A(s)
ijk − 6

7
Acr.)2. (18)

We performed a run where only the anisotropic burst-
rules were applied, in order to isolate their effect, although
the anisotropic burst-rules are used always together with the
isotropic ones by Vlahos et al. (1995), since alone they cannot
explain the complete energy distributions of flares. In Fig. 5,
the magnitude of the magnetic field at a cut through the grid is
shown (fixedz), for an arbitrary time (in the loading phase) dur-
ing the asymptotic stationary state of the model. Clearly, there
is no overall large scale structure anymore, except that the mag-
netic field along the boundaries is increased. The magnetic field
topology is thus nearer to the concept of a random, relatively
unstructured magnetic field than the magnetic field topology
yielded by the isotropic models in SOC state.

The anisotropic burst rules do not yield large-scale struc-
tures, as they are, when used alone, also not able to lead the
system to SOC state: this is obvious from the energy distri-
butions they yield, which are much smaller in extent than the
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Fig. 5. Surface and contour plot of the magnitude of the the magnetic
field (|B|) as a function ofx andy at a cutz = 15 through the grid,
for the case of anisotropic redistribution rules.

ones given by the isotropic rules (see Vlahos et al. 1995), and
confirmed by the result of Lu et al. (1993) that isotropy of the
redistribution rules — at least on the average — is a prereq-
uisite to reach SOC state, at all. The anisotropic bursts occur
independently in all directions and are in this way not able to
organize the field in a neighbourhood systematically, and, as a
consequence, also not in the entire grid.

The inquiry of the relation of the energy release formula
Eq. (18), which is different from the isotropic formula (Eq. 6),
to MHD based formulae we leave for a future study. We just
note that the distributions the anisotropic model in our vector-
field version yields are at lower energies, smaller in extent, and
steeper than the ones of the isotropic models.

4. Summary and conclusions

4.1. Summary

We have introduced a new set-up for classical solar flare CA
models which yields, among others, consistency with Maxwell’s
equations (e.g. divergence-free magnetic field), and availability
of secondary variables such as currents and electric fields in ac-
cordance with MHD. Both are new for solar flare CA models.
The set-up specifies the so far open physical interpretation of
the CA models. This specification is to some extent unavoid-
ably arbitrary, and it would definitely be interesting to see what
alternative interpretations would yield — if they can be derived
consistently. We can claim, however, that the interpretation we
chose is reasonable, it is well-behaved in the sense that the
derivatives of analytically prescribed vector-potentials are re-
produced and that the abstract stress-measure of the CA models
is related to the current, due to general properties of spline in-
terpolation. The central problem which was to solve is how to
calculate derivatives in a CA model, i.e. how to continue the pri-
mary grid-variable in-between the grid sites, since the notion of
derivatives is alien in the context of CA models quite in general.

In this article, our main aim with the introduced set-up was
to demonstrate that the set-up truly extends the classical CA
models and makes them richer in the sense that they contain
much more information, now. The main features we revealed
about the CA models, extended with our set-up, are:

1. Large-scale organization of the vector-potential and the
magnetic field: The field topology during SOC state is bound
to characteristic large-scale structures which span the whole
grid, very pronounced for the primary grid variable, the vector-
potential, but also for the magnetic field. Bursts and flares are
just slight disturbances propagating over the large-scale struc-
tures, which are always maintained, also in the largest events.
The magnitude of the current, as a second order derivative of the
primary field, does not show any obvious large-scale structure
anymore, it reflects more or less only the random fluctuations of
the large-scale organized magnetic field. It is worthwhile not-
ing that the large-scale structure of the primary grid-variable is
not an artificial result of our set-up, but a natural consequence
of the SOC state in which the system finds itself. The appear-
ance of large-scale structures for the primary grid variable was
shown here for the first time. It may have been known to differ-
ent authors, but it never has explicitly been shown: SOC models
for flares are derived in analogy to sand-pile dynamics, and the
paradigm of a pile reappears in the field topologies of the solar
flare CA models.

2. Increased current at unstable grid-sites:Unstable sites are
characterized by an enhanced current, which is reduced after
a burst has taken place, as a result of which the current at a
grid-site in the neighbourhood may be increased.

3. Availability of the electric field: The electric field is ap-
proximated with the resistive part of Ohm’s law in its simple
form, which can in general be expected to be a good approxima-
tion in coronal applications and where the interest is in current-
dissipation events, e.g. in the case of solar flares.

4. Energy release in terms of Ohmic dissipation:We replaced
the some-whatad hocformula in the CA models to estimate
the energy released in a burst with the expression for Ohmic
dissipation in terms of the current. The distributions yielded
in this way are very similar to the ones based on the ad hoc
formula, so that the results of the CA models remain basically
unchanged.

5. CA as models for current dissipations:As a consequence
of point 2 and 4 in this list, and of the fact that there is an approx-
imate linear relation between the current and the stress measure
of the CA, we can conclude that theextendedCA models can
be considered as models for energy release through current dis-
sipation.

4.2. Conclusions

Our set-up is to be contrasted to the recently suggested MHD-
derived (not based on the sand-pile analogy) CA models of Ein-
audi & Velli (1999), MacPherson & MacKinnon (1999), Long-
cope and Noonan (2000), and Isliker et al. (2000a). They all sug-
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gest new evolution rules, derived from MHD, and all in different
ways (they actually focus on different processes, namely the mi-
croscopic, macroscopic, and mesoscopic physics, respectively,
in active regions). Our set-up, on the other hand, uses existing
CA models, does not interfere (if not wished) with their evo-
lution rules, does also not change their main results, as shown,
but reinterprets them, extends them essentially, and makes them
compatible with MHD.

The set-up we introduced allows different future applica-
tions and posing questions which could not be asked so far in
the frame of CA models. In preparation is a study (Isliker et al.
2000b) to reveal in detail what physical flare scenario the ex-
tended CA models imply. We will address the questions: (1) how
to interpret the small scale processes of the models (loading and
bursting) in terms of MHD; (2) what theglobal flare-scenario
implied by the models is; (3) whether the global magnetic field
topology of the models can be considered to represent observed
magnetic topologies in active regions; (4) what spatio-temporal
evolution of the electric field during flares is yielded by the
models.

A different future application we plan with CA models ex-
tended with our set-up is the introduction of particles into the
models, with the aim to study thermal emission, particle ac-
celeration, and non-thermal emission. This will allow a much
deeper comparison of the CA models to observations than was
possible so far, and this is actually the most important benefit of
the set-up we introduced. Such comparisons will allow a new
judgment of the adequateness or not of classical CA models
(in their current form) to the problem of solar flares, beyond
the three statistical distributions of the primarily released en-
ergy. Solar flare CA models which include particle acceleration
would represent the first global and complete model for solar
flares.
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Appendix A: temporal evolution of the CA

The temporal evolution of the CA models presented in this ar-
ticle is governed by the following rules:

0. initializing
1. loading
2. scanning: create a list of the unstable sites; if there are none,

return to loading (1)
3. scanning and bursting: redistribute the fields at the unstable

sites which are in the list created in the scannings 2 or 4
4. scanning: create a list of the unstable sites. If there are any,

go to bursting (3), else return to loading (1)

The extra scannings 2 and 4 are needed for causality: if a
site becomes unstable through a burst in the neighbourhood,

then it should be redistributed in the subsequent scan, and not
in the same as the primary unstable site. The same is true for the
scanning 4, since in the next bursting phase (if any) only those
sites should burst who had become unstable through a burst in
their neighbourhood during the foregoing time-step.

As a time-step is considered one scanning of the grid, point
3. The released energy per time-step is the sum of all the energy
released by bursts in this time-step (a burst is considered a single
redistribution event in 3). We term a flare or avalanche the loop
3,4, from the occurring of the first burst in 3 until the activity
has died out and one returns via the scanning 4 to loading (1).
The duration of the flare is the number of time-steps it lasted,
the total flare energy is the sum of all the energies released in
the duration of the flare, and the peak flux or peak energy is the
maximum of the energies of all the time-steps of the flare.

Appendix B: why spline interpolation is particularly
adequate: comparison to other methods of continuation

We mentioned in Sect. 2.2 that other possibilities for continua-
tion of the vector-potential besides spline interpolation would
be: a) continuation ofA with the help of an equation; b) other
kinds of interpolation, either locally (in a neighbourhood), or
globally (through the whole grid). Possibility a) implies that an
equation has to be solved in each time-step (after each load-
ing and after each burst), in the worst case numerically, with
open boundary condition and theAijk given at the grid-sites.
This computational effort might slow down the algorithm of the
model considerably (and bring it near to the computational effort
of MHD equation integration). Besides that, the problem is what
equation to use: to make the magnetic field always a potential
field (i.e. using a corresponding equation for the vector-potential
A) implies that, from the point of view of MHD, at all times
a very ‘well-behaved’ magnetic field resides in the CA, with
no tendency towards instabilities, which makes it difficult to
understand why bursts should occur at all, since critical quanti-
ties such as currents do not become excited. A better candidate
could be expected to be force-freeness, except that, possibly, one
may be confronted with incompatibility of the boundary condi-
tions with the vector-potential values given at the grid-sites, i.e.
existence-problems for solutions eventually arise.

Though definitely possibility a) cannot be ruled out on solid
grounds, we found it more promising to proceed with possibility
b), interpolation. A guide-line for choosing a particular interpo-
lation method is the reasonable demand that the interpolation
should not introduce wild oscillations in-between grid-sites, for
we want to assure that the derivatives at the grid sites, which
are very sensitive to such oscillations, are not ‘random’ values
solely due to the interpolation, but that they reflect more or less
directly the change of the primary grid-variable from grid-site
to grid-site. This calls for interpolating functions which are as
little curved as possible.

The easiest and fastest way of interpolating would be to per-
form local interpolations around a point and its nearest neigh-
bours (e.g. using low-order polynomials or trigonometric func-
tions of different degrees). This interpolation leads, however, to
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ambiguities for the derivatives: the derivatives, say at a point
xijk, are not the same, if the used interpolation is centered at
xijk, with the ones calculated with an interpolation centered
at e.g.xi+1jk. In this sense, local interpolation is not self-
consistent, the derivatives at a grid-site depend on where the
used interpolation is centered.

Finally, we are left with global interpolation through the
whole grid. Among the candidates are, besides more exotic
interpolating functions, polynomials of degree equal to the
grid size, trigonometric functions (also in the form of Fourier-
transforms), low-order smooth polynomials (e.g. splines). The
first candidate, polynomials of a high degreen (with n the num-
ber of grid points in one direction), we reject immediately since
it is notorious for its strong oscillations in-between grid-sites,
mainly towards the edges of the grid. We tried the second candi-
date, trigonometric interpolation, in the form of discrete Fourier
transform. Testing this by prescribing analytic functions for
A(x) and comparing the numerical derivatives with the analytic
ones, it turned out that there arise problems with representing
structures inA as large as the entire grid (the wave-number
spectrum is too limited), and with structures as short as roughly
the grid-spacing (different prescribed short structures are taken
for the same).

Trying cubic spline-interpolation, we found that it does not
suffer from the problems stated for the other types of interpola-
tion: neither does it introduce wild oscillations, unmotivated by
the values at the grid-sites, nor does spline interpolation have
problems with describing large or small scale structures (if a
functional form ofA is prescribed, then the analytic derivatives
and the derivatives yielded by the interpolation give very close
values, in general).

Moreover, based on results of Sect. 3, App. C, and Isliker
et al. (1998), there is another reason why spline-interpolation is
particularly adequate to our problem: It relates the quantitydA
(Eq. (2)), which measures the stress at a site in the CA model,
closely to∇2A, the Laplacian ofA (see App. C). The latter is
related to the current (J = − c

4π ∇2A + c
4π ∇(∇A)), which,

from the point of view of MHD, can be considered as a mea-
sure of stress in the magnetic field configuration. If this relation
would not hold, then the redistribution rules (Eqs. (4) and (5))
of the CA would not be interpretable as the diffusion process re-
vealed by Isliker et al. (1998), and the instability criterion (Eq. 3)
would not be so closely related to the current (see Sect. 3 and
App. C).

B.1. why in particular differencing is not adequate
to calculate derivatives in a CA

We had rejected above (Sect. 1, Sect. 2.2) the use of difference
expressions to calculate derivatives, stating that differencing is
not in the spirit of CA models quite in general, since the nature
of CA is truly discrete. We think it worthwhile to make this
argument more concrete and to show what problems arise if
differencing were used:
1. Consistency with the evolution rules: Isliker et al. (1998)
have shown that the classical solar flare CA are not just the

discretized form of a differential equations. Instead, they de-
scribe the time-evolution of a system by rules which express
the direct transition from a given initial to a final state which
is the asymptotic solution of a simple diffusion equation. The
time-step corresponds therewith to the average time needed for
smallest scale structures (structures as large as a neighbourhood)
to diffuse, and the grid-size corresponds to the size of these
smallest occurring structures. Assuming that the CA models
were just discretized differential equations would lead to severe
mathematical and physical contradictions and inconsistencies
(continuity for∆h → 0 is violated (with∆h the grid-size), and
negative diffusivities appear). Therewith, in order to be consis-
tent with the evolution rules, which assume a finite grid-size,
one cannot assume for the purpose of differentiating this same
grid-size to be approximately infinitesimal.
2. Derivatives as difference expressions are not self-consistent:
There are several equivalent ways to define numerical deriva-
tives with the use of difference expressions: there are
e.g. the backward difference∂xAx(xijk) = (Ax(xijk) −
Ax(xi−1jk))/∆h, and the forward difference∂xAx(xijk) =
(Ax(xi+1jk) − Ax(xijk))/∆h. Both should give comparable
values in a given application, else, in the context of differen-
tial equation integration, one would have to make the resolution
higher. In the case of CA-models, we find that the two difference
expressions yield values which differ substantially from each
other: E.g. for an initial loading of the grid with independent
random values for theA-field, the difference between the back-
ward and the forward difference expression can be as large as the
field itself. Such an initial condition would of course not make
sense in the context of partial differential equations, in the con-
text of CA, however, it is a reasonable starting configuration, and
the evolution is unaffected by such an initial loading. Moreover,
when the CA models we discuss in this article have reached the
SOC state, then the differences between e.g. the backward- and
forward-difference expressions can be as large as 400%. There
is no way to reduce this discrepancy, since grid-refinement is
principally impossible for CA: the evolution is governed by a
set of rules, and making the grid spacing smaller by introduc-
ing new grid-points in-between the old ones would actually just
mean to make the grid larger, since the evolution rules remain
the same, there are no rules for half the grid-spacing.

Appendix C: relation of dA to ∆A

The stress measure of LH91,dAijk = Aijk − 1
6

∑
n.n. An.n.,

can be related to continuous expressions by representing the
values ofAn.n. as Taylor-series expansions aroundxijk, setting
the spatial differences to∆h = 1. It turns out that e.g.

dAz = −1
6
∆Az − 1

72
(∂4

x + ∂4
y + ∂4

z )Az − ... (C.1)

and so on for the other two components.In general,it is therefore
notadequate to considerdA to be a good 4th order approxima-
tion to ∆A, since higher order corrections can be large, they
depend on the way the vector potential is continued in-between
grid-sites. If we had, for instance, chosen global polynomial
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interpolation instead of spline-interpolation, the higher order
terms would not be negligible, above all towards the edges of
the grid, since polynomial interpolation is known for introduc-
ing fluctuations near the edges of the grid. Consequently,dA
would be a bad approximation to∆A. In orderdA to be a good
approximation to∆A, interpolation with, for example, 3rd or-
der polynomials would be an optimum choice (dA would be
an exact approximation to∆A). Thus, 3rd order polynomials
would be the choice for local interpolation, which, however, is
not applicable, since it introduces discontinuities inB andJ
(see App. B). The way out of the dilemma we suggested in this
article is the use of cubic splines, which provide global interpo-
lation with 3rd order polynomials, withB andJ continuous,
and only third order derivatives are discontinuous (this is the
price of the compromise). For splines then, Eq. (C.1) writes as

dAz = −1
6
∆Az − 1

36

[
( ∂3

xA+
z − ∂3

xA−
z )+

( ∂3
yA+

z − ∂3
yA−

z )+

( ∂3
zA+

z − ∂3
zA−

z )
]
, (C.2)

due to the discontinuities in the 3rd order derivatives (the su-
perscripts+ and − refer to the right and left derivative, re-
spectively). Thus, in case where the third order right and left
derivatives are not too different,dA is a good approximation to
∆A.
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