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Abstract. A set-up is introduced which can be superimposeal. 1989; Strauss 1993; Longcope & Sudan 1994; Einaudi et
onto the existing solar flare cellular automata (CA) models, aal 1996; Galsgaard & Nordlund 1996; Hendrix & Van Hoven
which specifies the interpretation of the model’s variables. 1896; Dmitruk & Gomez 1998; Galtier & Pouquet 1998; Geor-
extends the CA models, yielding the magnetic field, the curregqulis et al. 1998; Karpen et al. 1998; Einaudi & Velli 1999).
and an approximation to the electric field, in a way that is cofthe global MHD flare models are still in the state of rather
sistent with Maxwell's and the MHD equations. Applicationgjualitative flare scenarios.
to several solar flare CA models during their natural state (self- The MHD and the CA approach to solar flares seem to have
organized criticality (SOC)) show, among others, that (1) thery little in common: The former are a set of partial differen-
magnetic field exhibitgharacteristic large-scale organizationtial equations, based on fluid-theory and Maxwell’s equations,
over the entire modeled volume; (2) the magnitude of the curhereas the latter are a set of abstract evolution rules, based (in
rent seems spatially dis-organized, with no obvious tenderttye case of solar flares) on the analogy to critical phenomena
towards large-scale structures or even local organization; {8)theoretical) sand-piles. The scope of this paper is to bridge
bursts occur at sites with increased current, and after a burstttie gap in-between these two approaches: the solar flare CA
current is relaxed; (4) by estimating the energy released in indiodels are re-interpreted and extended so as (i) to make these
vidual bursts with the use of the current as Ohmic dissipatiompdels completely compatible with MHD and with Maxwell's
it turns out that the power-law distributions of the released edquations, and so that (ii) all relevant MHD variables are made
ergy persist. The CA models, extended with the set-up, can tlawsilable (e.g. the current and the electric field, which so far
be considered amodels for energy-release through currentwere not available in CA models).
dissipation The concepts of power-law loading and anisotropic In an earlier paper (Isliker et al. 1998), we have analyzed the
events (bursts) in CA models are generalized to 3—D vectexisting solar flare CA models for their soundness with MHD.
field models, and their effect on the magnetic field topology We asked the question whether the fields in these CA models
demonstrated. and the evolution rules can be interpreted in terms of MHD. It
turned out that these models can indeed be interpreted as a par-
Key words: Sun: flares — Magnetohydrodynamics (MHD) -ticular way of implementing numerically the MHD equations.
turbulence — methods: miscellaneous This fact is not trivial, since these models had been derived in
quite close analogy to the sand-pile CA model of Bak et al.
(1987 and 1988), with vague association of the model’s vari-
ables with physical quantities. For instance, some authors (Lu
et al. 1993) explicitly discuss the question whether their basic
Cellular automata (CA) models for solar flares are successfugfid variable is the magnetic field or not, without reaching to a
explaining solar flare statistics (peak flux, total flux, and durgefinite conclusion. Isliker et al. (1998) brought forth not only
tion distributions; Lu & Hamilton 1991 (hereafter LH91); Lu ethow the existing CA models are related to MHD and what sim-
al. 1993; Vlahos et al. 1995; Georgoulis & Vlahos 1996, 1998lifications are hidden, but also where they differ from or even
Galsgaard 1996). They simplify strongly the details of the irviolate the laws of MHD and Maxwell’s equation. Important is
volved physical processes, and achieve in this way to modie¢ fact that though the existing CA models can be considered
large volumes with complex field topologies and a large nurais a strongly simplified numerical solution of the (simplified)
ber of events. On the other hand, MHD simulations give insightHD equations,they do not represent the discretized MHD
into the details of the local processes, they are limited, howeveguationsthe time-step and the spacing between two grid sites
to modeling relatively small fractions of active regions, due t@re not small (in a physical sense), but finite; they are a typical
the lack of computing power, yielding thus poor statistics ariimporal and spatial scale of the diffusive processes involved
difficulties in comparing results to observations (e.g. Mikic dsee Isliker et al. 1998).

1. Introduction
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From the point of view of MHD, the main short-cominggrocesses and in what form are actually implemented, and what
of the existing CA models are (Isliker et al. 1998): (1) Therthe global flare scenario is the CA models imply. All this was
is no control over consistency with Maxwell's equations. Immore or less hidden so far in the abstract evolution rules. It leads
terpreting, for instance, the vector-field in the CA models adso to the possibility to change the CA models (the rules) at the
the magnetic field leads to the problem that the gradient of theide-line of MHD, if this should become desirable. Not least,
field (V.B) cannot be controlled. (2) Secondary quantities, sutie set-up opens a way for further comparison of the CA models
as currents, are not available, and they cannot be introducetbimbservations.
the straightforward way by replacing differential expressions by In Sect. 2, we introduce our set-up. Applying it to several
difference-expressions, since, as mentioned, the grid-size moat models (Sect. 3), we will demonstrate the usefulness and
be considered finite (see also App. B.1). This lack of knowirgpme of the benefits such extended models (i.e. classical models
how to calculate derivatives made it also useless to interpeatended with our set-up) provide over the classical CA models,
the primary vector-field in the CA models as the vector poteand we will reveal basic physical features of the CAmodels. The
tial (to avoid theV B-problem), sinceB could not be derived. potential of the extended models to explain more observational
The physical interpretation of these CA models remained so facts than the classical CA models is, among others, outlined in
problematic. the conclusions (Sect. 4).

There are two basically different ways of developing CA
models for flares further: (i) Either one considers CA modefs |ntroduction of the set-up
per se tries to change the existing models further or invent new
ones, with the only aim of adjusting them to reproduce still befhe set-up we propose can be superimposed onto solar flare
ter the observations, i.e. one makes them a tool the result<"éf models which use a 3-D grid and a basic 3-D vector grid-
which explain and maybe predict observed properties of flar&ariable, sayA. The corresponding set of evolution rules is
In this approach, one has not to care about possible incon&@t changed. (With a few modifications, the set-up can also
tencies with MHD or even Maxwell's equations, the variouge superimposed onto CA models which use a scalar field in
components of the model are purely instrumentalistic. (i) GhPlanar grid, which our set-up necessarily interprets as slab
the other hand, one may care about the physical identificat@®ometry, as will become clear later.)
and interpretation of the various components of the model, not We introduce our model on the example of the solar flare
just of its results, and one may want the CA model to becorfé* model of LH91, which we summarize here in order to make
consistent with the other approach to solar flares, namely MHibe subsequent presentation more concrete:

In the approach (ii), some of the freedom one has in construct-

ing CA models will possibly be reduced, since there are moge;. Summary of the CA model of LH91

‘boundary conditions’ to be fulfilled in the construction of the o o

model: the observations must be reproduced and consistelt{?® LH91 model, to each grid-site,;, of a 3-D cubic grid a
with MHD has to be reached. (Trials to construct new CA mod—D VECtorA;; is assigned. InitiallyA;;. is set to(1, 1, Dt

els which are based on MHD and not on the sand-pile anald@§erywhere. The system is then loaded with the repeated drop-
were recently made by Einaudi & Velli 1999, MacPherson &Ng of increments at randomly chosen sites. (one per time-
MacKinnon 1999, Longcope & Noonan 2000, and Isliker et a¥t€P)

2000&) o . A(t + 1, :cijk) = A(t, acijk) -+ 6A(t,mijk), (1)

Our aim is in-between these two alternatives: we construct ,

a set-up which can be superimposed onto each classical s¥3predA(t, i;r) has all its components as random numbers
flare CA model, and which makes the latter interpretable in4giformly distributed in[—0.2,0.8]. .

MHD-consistent way (byclassical CA models we mean the After each Ioadlng event, the system is checked for whether
models of LH91, Lu et al. 1993, Vlahos et al. 1995, Georgouif@€ local ‘stress’, defined as

& Vlahos 1996, 1998, Galsgaard 1996, and their modification . 1

which are based on the sand-pile analogy). The set-up thus sﬁfé%éjk = Ak — 6 Z Anin.s @

ifies the physical interpretation of the grid-variables and allows . )

the derivation of quantities such as currents etc. It does not Y{1€re the sum goes over the six nearest neighbours of the central
terfere with the dynamics of the CA (unless wished): loadin§CiNtZiji, exceeds a thresholdi..., i.e. whether

redistributing (bursting), and the appearance of avalanches and, ikl > Acr, (3)

self-organized criticality (SOC), if the latter are implied by the . . . :
evolution rules, remain unchanged. The result is therefore s\fYIPereA” = Tis used. If this is the case, the field in the neigh-

a CA model, with all the advantages of CA, namely that th&purhood of the critical site is redistributed according to
are fast, that they model large spatial regions (and large evenltg), 6

; : e . A — —dA; 4
and therewith that they yield good statistics. Since the set—upSJk 7 ik 7d ik @
introduces all the relevant physical variables into the contextgf the central point, and
the CA models, it automatically leads to a better physical un- 1
derstanding of the CA models. It reveals which relevant plasm®, ,,, — A, + ?dAijk (5)

n.n.
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for its six nearest neighbours. In such a redistribution evefor the 1-D splines, we assume natural boundaries (the second

(burst), energy amounting to derivatives are zero at the boundaries). Moreover, since in the
CA model of LH91 it is assumed that around the grid there is a
ELHOT 6 ‘dAijk|2 (6) zero field which is held constant (see Sect. 2.1), we enlarge the
7 grid by one grid point in all directions to include this constant

is assumed to be released. The grid is scanned again and agaRf@-layer explicitly, using it however only for the interpola-
search for second, third etc. generation bursts, until the systefi@g. In the interpolation, the derivatives at the grid-points are
nowhere critical anymore and returns to the loading phase (iRgnediately given by the analytically differentiated interpolat-
details we apply concerning the temporal evolution of the mod@@ Polynomials.

are given in App. A; they are not explicitly stated in LH91). The  With the help of this interpolation, the magnetic figiland

field outside the grid is held constant and assumed to be zef®€ currentJ are calculated as derivatives df, according to
the MHD prescription:

2.2. Our set-up B=VAA, (7)

We turn now to introducing our set-up, starting with a specificgr = £ VAB. (8)

tion: We interpret the vectod, ;;, at the grid sitex:;;, to denote

the local vector-fieldA(z; ;). Note that this was not specified ~ To determine the electric fiel#l, we make the assumption

in the classical CA models. Lu et al. (1993) for instance discut under coronal conditions the MHD approach is in general

this point: it might also have been thought of as a mean lod&lid, and tha is reasonably well approximated by Ohm's law

field, i.e. the average over an elementary cell in the grid.  in its simple form,E = nJ — Lo A B, with 5 the diffusivity
Guided by the idea that we want to assi®& = 0 for the andwv the fluid velocity. Since the classical CA models use no

magnetic fieldB, which is most easily achieved by having th&elocity-field, our set-up can yield only the resistive part,

vector-potentiald as the primary variable and lettidg be the 5 _ nJ. (9)

corresponding derivative oA (B = V A A), we furthermore

assume that the grid variabk of the CA model is identical In applications such asto solar flares, where the interestis in cur-

with the vector-potential. rent dissipation events, i.e. in events wheendJ are strongly
The remaining and actually most basic problem then is iigcreased, Eq. (9) can be expected to be a good approximation

find an adequate way to calculate derivatives in the gr|d ‘ﬁ the electric field. Theoretica”y, the convective term in Ohm'’s

general, CA models assume that the grid-spacing is finite, whighy would in general yield just a low-intensity, background elec-

also holds for the CA model of LH91 (as shown in detail bic field.

Isliker et al. 1998), so that the most straightforward way of Ed.(9) needs to be supplemented with a specification of

replacing differential expressions with difference expressiolfe diffusivity n: Isliker et al. (1998) have shown that in the

is not adequate (see the detailed discussion in App. B.1, bel&hgssical CA models the diffusivity adopts the values: 1 at

Vassiliadis et al. (1998) suggested to interpret CA models #& unstable (bursting) sites, and= 0 everywhere else. This

the straightforwardly discretized (simplified) MHD equationsPecifies Eq. (9) completely.

which we find problematic for the reasons given in App. B.Remark 1.t is worthwhile noting that, since spline interpola-

and we therefore do not follow this approach, here). tion has the property to be the least curved of all twice differen-
Consequently, one hasto find away of continuing the vect@iaple interpolating functions, the grid-size is a typical smallest-

field into the space in-between the grid-sites, which will allow tgossible length-scale of field structures, or, if we would think the

calculate derivatives. There is, of course, an infinite number @ to model MHD turbulence, it is something like an average
possibilities to do so, and the problem cannot have a unique sgrallest possible eddy-size.

lution. Adequate possibilities definitely include: a) continuation . i . .
of A with the help of an equation (e.g. demanding the resultir) mark Z.:W'th our set-up, field I|ne.s are ”.‘ad? available: the
B-field to be potential or force-free); b) interpolation, either Io" erpolation was introduced to define derivatives at the grid-
cally (in a neighbourhood), or globally (through the whole gridf'tes’ but it can as well be used to determine the vector-potential,

Trying several methods, we concluded that 3-D cubic spline and therewith the magnetic field and the current, in between

terpolation is particularly adequate to the problem since it hgge gnid sites. Hoyveyer, 'F IS Important to not_e that thls. field
remarkable advantages over other methods (e.g. it does nof'?nt—)emeen _the grid sites is not qsed .for the t|me-eyolu.t|on of
troduce oscillations in-between grid-sites, which would strong}{)© model, it merely allows to visualize the evolution in the
influence the values of the derivatives, and it well reproduc E"’?da.rd way through fleld-l|'nes., i W'Shed S0 (second order
the derivatives of analytically prescribed primary fields). T erivatives m-be_tween j[he grld-3|tes_, i needgd, would have to
process of evaluating different continuation methods we w ft done numerlcally,_smce_ else their numen_cal value_s would
through, as well as the comparison of spline interpolation géapend on the order in which the three 1-D interpolations are
other continuation-methods are described in App. B. done).

The 3—-Dinterpolation is performed as three subsequent 1R@mark 31n this paper, we do not change the rules of the clas-
interpolations in the three spatial directions (Press et al. 199@al CA models to which we apply our set-up — except for
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the definition of energy release (Sect. 3.1.3). Our aim here isTtbereto, the temporal evolution of the model is stopped at an
show the usefulness of the set-up and to give some results antltrary time during SOC state (in a phase where there are no
reveal some aspects by extending published, classical CA mbdrsts, i.e. during loading), and the magnitude of the fields at a
els. While the redistribution rules have in detail been shown ¢at with fixedz-coordinate are shown as a function of thend
represent diffusion events and fit nicely into an MHD scenarigcoordinates in Fig. 1A (z, y, = = z)| obviously exhibits a
(Isliker et al. 1998), the loading process is strongly simplifiddrge-scale organization over the whole grid, it forms a global
and poorly follows a reasonable flare scenario: For instance, tmavex surface (Fig. 1(a)). This convex surface has a slight ran-
loading process acts independently everywhere in the simud@m distortion over-lying, which visually cannot be discerned
tion box, whereas according to a realistic flare scenario (see éndrig. 1(a), but becomes visible in the plof & | (Fig. 1(b)), the
Parker 1993) disturbances should appear independently atuyl of A, which still exhibits large-scale organization all over
on one boundary (the photosphere, due to random foot-pdimé grid, but is clearly wiggled. FinallyJ | shows no left-overs
motions or newly appearing flux), and propagate then into tbéa large scale organization anymore, it reflects the random
interior of the simulation box along the magnetic field lines. disturbances of the convexity oA| (Fig. 1(c)).

- . . The large-scale structures shown in Fig. 1 are always main-
To translate such a realistic loading scenario into the Iangquﬁ]ed during the SOC state, neither loading nor bursting (and

of CA models has .not be‘?” undertaken’. so-far. We just r.]%t\?alanches) destroy them, they just ‘tremble’ a little when such
that it would be quite straightforward to introduce a veIocnthentS oceur. SOC state in the extended LH91 model thus im-

gil\d intg tlhehC.Ar; models: e.iq. I.\:,Iikf.erlgtfal.t(hZO(l)Oag.propﬁse ies large-scale organization of the vector-potential and the
model which uses a veloclly eld Tor the loading phas agnetic field, in the characteristic form of Fig. 1.

but this model does not fall into the category of classical C The large-scale organization & is not an artificial result

”?Ode's since it does not follqw the sand-pile analogy and Ui Dur superimposed set-up, but already inherent in the classical
different, MHD based, evolutionrules. We leave the problem PHo1 model: in the classical LH91 CA model, there is only one

introducing a velocity field and a more physical loading proce Sriable, the one we call herk, whose values are not affected by

;gg(t)ge clasg;lc:al CA modetls fora futurle stqd;g I? I.f’“kehr ?tth he interpolation we perform since itis the primary grid variable,
DOUh, We Will — among Others — analyze in aetalls what thig, i, ¢ Fig. 1(a) is true also for the classical, non-extended LH91
simplified loading process physically represents. model
The large scale structure for the primary grid-varidie
3. Applications of our set-up is the result of a combined effect: The preferred directionality
o ) of the loading increments (see Sect. 2.1) tries to incr¢dse
3.1. Application to the CA model of Lu & Hamilton (1991)  ,rqghout the grid. The redistribution events, which already in

Our first application is to the CA model of LH91 (see Sect. 2.1Bak etal. (1987; 1988) were termed diffusive events, and which
The LH91 model has a fairly long transient phase and reactésliker etal. (1998) were analytically shownto represent local,
finally a stationary state, the so-called SOC (self-organiz€ge-time-step diffusion processes, smooth out any too strong
criticality) state, in which spatially spreading series of burséPatial unevenness oA, and they root thed-field down to
(avalanches) appear, alternating with quiet loading phases. 1 zero level at the open boundaries. The result is the convex
LH91 model gives basically three results concerning flare statitrface of Fig. 1(a), blown-up from below through loading, tied
tics, namely the distributions of total energy, peak-flux and dipthe zero-level atthe edges, and forced to a maximum curvature
rations, which are all power-laws with slopes that are in god#hich is limited by the local, threshold dependent diffusion
agreement with the observations (Lu et al. 1993, Bromund et@€nts.
1995). As the SOC state, so is the large-scale structuied¢fn-
Superimposing our MHD-frame onto the LH91 model sucHependent of the concrete kind of loading, provided it fulfills
as it stands does not change anyone of the three results, sinéd&gonditions that the loading increments exhibit a preferred
this first stage we are not interfering with the dynamics (i.e. tiférectionality and are much smaller than the threshold (with
evolution rules). The set-up allows, however, to address seveérgnmetric loading, the SOC state is actually never reached, see
questions in MHD language: Our main aim in the subsequddd91 and Lu et al. (1993)).
applications is to demonstrate that the set-up indeed yields a T0 make sure of the importance of the boundaries, we per-
new and consistent interpretation of CA-models, to illustraf@rmed runs of the model with closed boundaries, and we found
the behaviour of the secondary variables (currents, magnéhat neither alarge-scale structure was developgd jmor the
fields), and to reveal major features of them. (In the subsequ&fC state was reached.
runs, we use a grid of siz#) x 30 x 30, as LH91 did to derive
their main results.) 3.1.2. Bursts

To illustrate the role of the current at unstable sites and dur-
ing bursts, we plot in Fig. 2 the magnitude of the current be-
First, we turn to the question what the global fields (vectoflore and after a typical burst: obviously, the current at the burst
potential, magnetic field, current) look like during the SOC stat@ite (z,y, z) = (20,18,3) has high intensity before the burst

3.1.1. Global structures of the vector-fields
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Fig. la—c.Surface and contour plots of the magnitudea tife vector-
potential (A|), b the magnetic field|B]), andc the current|(J|) as a
function ofx andy, for z = 15 fixed.
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,
20 [y m

Fig. 2a and b. The magnitude of the currentf|, contour-plot, with

the ticks pointing ‘downhill’) as a function of andy at a zoomed cut
z = 3 through the grid, befora and afterb a burst, which occurs in
the middle of the plot, atz, y, 2) = (20, 18, 3).

After the burst, at the neighbouring sit2l, 18, 3), the in-
tensity of the current is increased, and indeed the presented
burst gives rise to subsequent bursts, it is one event during an
avalanche.

The magnetic field at the bursting site is reshaped, in a way
which is difficult to interpret when using only the magnitude
of it (| B]) for visualization. May-be field line plots would help
visualization, but we leave this for a future study.

3.1.3. Energy release and Ohmic dissipation

We now turn to the question what relation the energy release

(Fig. 2(a)), and is relaxed after the burst (Fig. 2(b)). Inspedbrmula of LH91 (Eg. 6) has to the respective MHD relations: In
ing a number of other bursts, we found that, generally, at sitgarallel to using the formula of LH91, we determine the released
where the LH91 instability criterion is fulfilled, the current isenergy in the following ways, closer to MHD: First, we assume it
increased, too, and that bursts dissipate the currents. This te be proportional tgJ? (with the diffusivityn = 1 at unstable
first hint that classical CA models can be interpreted as modsites, see Sect. 2.2), which we linearly interpolate between the

for energy release through current-dissipation.

two states before and after the burst. This is done in two ways,
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—-22

(i) summing over the local neighbourhood, 0 (;)
t41 t+1 i N |
2
ElZT = // nd (@, 1) dtdV ~ /Z Jn (1) dt 107 - o |
t nlr:‘l':. ‘t o ] \v/\\,/ i
= Z 5 (Jnn, be fore + Jnn, after) (10) g 107261 N
n.n. 3

&
and (i) without summing, but just taking into account the current -

at the central point, 028

J? 2
El.)furst = / dt n J(:Eijk-, t) L B
1,5 9 L0301 i
T2 (Jijk; before Jijk; after) (11) 10‘21 10"22 1023 1024 1025 1026 1027

Ey i q larbitrary units]

and finally, we monitor the change in magnetic energy due to a
burst using the difference in magnetic energy in the local neigh-w%:w ————— )
bourhood, (b) Ky

(B(before)(w n))Q H

AB? n
Bhurse = 3
burst 87 1024

B after 2 L -
(B () > 12)

81

—R6

p(Epeak)
/
\

(In Egs. (10), (11), (12), we assuneh = 1 and At = 1 for | ;
the grid-spacing\h and the time-step\¢, since, according to NN
Isliker et al. (1998), in the classical CA models both values areio% - R s
not specified and set to one.) \ \

The corresponding distributions of total energy and peak- O T RN
flux are shown in Fig. 3, together with the distributions yielded 0! 107 107
by the energy-release formula of LH91, Eq. (6) (the duration
distribution remains the same as in the classical LH91 modeig. 3a and b.The distribution of the total energgy, and of the peak-
namely a power-law, and is not shown). Obviously, the four wafgx (b), for different ways of measuring the released energy in a burst:
of defining the released energy give basically similar result@yurst = [dt 3, . J(@ijx)? (solid); Epurer = f2dtJ(wijk)2
with larger deviations only at the low and high energy endgoted); Evurs; as the difference > 1, . B(@:x,1)° before and
(note that the energy in Fig. 3 is in arbitrary units). Using th?efterthe burst (?.aszedm’g”gzl.t: Z.Cl?.b((tj.aSh_?ﬁtt?d)t' t(The d'sm?:.]f't d
formula of Ohmic dissipation does thus not change the resqlfsgs are normatized probabliity cStrioutions, te st two were Shifte

- oth directions for viewing them together with the first two.)
of the classical LH91 model.

With an estimate of the numerical value of the anomalous
resistivity and of the typical size of a diffusive region or thereferably alond1, 1, 1), whereas below it is preferably along
typical diffusive time, it would be possible to introduce physit—1, -1, —1), i.e. J is an approximatly linear function efA
cal units. We did not undertake this, since all three parametérshe whole range, it merely changes its directivitydd | ~ 2
are still known only with large observational and theoreticalith respect talA). In Appendix C, we show analytically why
uncertainties. with our set-up a more or less close relation betwédrand.J
has to be expected.

Of particular interest in Fig. 4 is that |l A| is above the
thresholdA., = 7, then|J| is also reaching high values: ob-
From the similarity of the distributions of the extended modeiously, large values ofdA| imply large values ofJ|. This
with the ones of the classical LH91 model (Fig. 3), and frommonfirms the statement made above: The extended CA models
Fig. 2, where it was seen that an instability is accompanied bgn be considered as models for energy release through current
an enhanced current, we are led to ask directly for the retiissipation. It also explains why the energy distributions remain
tion of dA to J, which we plot as a function of each other invery similar when the LH91 formula for the amount of energy
Fig. 4. Obviously, the two quantities are related to each otheeleased in a burst( dA2, Eq. (6)) is replaced by Ohmic dis-
above|dA| ~ 2, the current is an approximate linear functiosipation ¢ J2, Sect. 3.1.3): bursts occur only for large stresses
of the stress, arounld A| ~ 2 the current is zero, and below|dA|, where|.J| is also large and an approximate linear function
there is again an approximate linear relationship, with negaf-|dA|, so that the distributions afA? and.J? can be expected
tive slope, however (aboydA| ~ 2 the currentJ is actually to be the same in shape.

Epeak [arbitrary units]

3.1.4. The relation of A to J
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abundance of small events with a significant contribution to
coronal heating. We have first to generalize the anisotropic evo-
lution rules, which are again for a scalar primary field, to the
case of a primary vector field. A natural generalization would
be to apply the anisotropic rules to the absolute magnitude of
A, but it turns out that this causes the algorithm to get trapped
in infinite loops (two neighbouring grid-sites trigger each other
mutually for ever). The same holds if we apply the anisotropic
rules to the absolute magnitudes of the three componems of
independently. We finally applied the anisotropic rules to the
three components oA directly, not using absolute magnitudes,
as also Vlahos et al. (1995) did not use absolute magnitudes,
Lo and this turned out to lead to a stationary asymptotic state: The

2.0x10""

1.5x10"!

[ ]

1.ox10'!

£S5 I B BRI B B B

5.0x10'0

0 2 4 |t | 8 10 anisotropic stress in the.component is thus defined as
Fig. 4. Plot of the magnitude of the currefal;;1,| vs. the LH91 stress dAZ(,"’,”;An = AE;”% —A@ (14)

measuréd A, |, using the corresponding values in the whole grid at a
time fixed in a loading phase in the SOC state, together with the valwvgberen.n. stands for one of the six nearest neighbours. The

at bursting sites during an avalanche. instability criterion is
()
3.2. Application to loading with power-law increments dAjjknn. > Aer. (15)

Georgoulis and Vlahos (1996, 1998) introduced power-law digtd the redistribution rules become
tributed increments for the loading. The main result of such,,, @ 6
a way of driving the system is that the power-law indices dtije = Aijk — ?ACT- (16)

the energy-distributions depend on the power-law index of the .

distribution of the loading increments, explaining thus the oﬂl)Qr the central point and

served variability of the indices through the variability of the 6 dA®)

intensity of the driving. We generalize their way of power-lam(*) = A(®) 4 24, Whknn. (17)
loading, which is for a scalar primary field, to a vector field in 7 Z;_n, dAEf,Zm,n_

the following way: The anisotropic directivity of the loading in-]c h tneiahb hich fulfill the instabilitv criteri
crementy A is kept (see Sect. 2.1), bl#tA| is now distributed orthose nearest neighbours which Ut In€ Instability criterion
according to (Eq. 15), where the primed sum is over those neighbours for

which Eq. (15) holds. The rules fot¥), A(*) are completely
p(|6A]) =C|sA|# (13) analogous (so that actually there are 18 possibilities to exceed
the threshold (Eqg. 15) at a given site). The released energy is

with |0 A 0.01, andg, the power-law index, a free pa-
04] € | ] b P P assumed to amount to

rameter. Simulations were performed foe= 1.8 andg = 2.3.
Interested.m global features implied by the QA model, our CO%T(alnzso) _ Z (A(s_])c _ §Acr.)2. (18)
cern here is the structure of the magnetic field. It turns out that® * 7

the magnetic field exhibits still a large scale organization, which
is very similar to the one of th&-field of the (extended with We performed a run where only the anisotropic burst-
our set-up) LH91 model (Fig. 1(b)): fg8 = 1.8, the respec- rules were applied, in order to isolate their effect, although
tive plots are visually indiscernible, and f6r= 2.3 the overall the anisotropic burst-rules are used always together with the
shape is still roughly the same, it merely seems slightly moisotropic ones by Vlahos et al. (1995), since alone they cannot
distorted. Thus, though the statistical results depend,dhe explain the complete energy distributions of flares. In Fig. 5,
strength and variability of the loading, the structure of the matjie magnitude of the magnetic field at a cut through the grid is
netic field remains approximately the same as in the casesbbwn (fixed:), for an arbitrary time (in the loading phase) dur-
the extended model of LH91. Large-scale organization (in tieg the asymptotic stationary state of the model. Clearly, there
characteristic form of Fig. 1) must consequently be considerischo overall large scale structure anymore, except that the mag-
as an inherent property of SOC state, through the mechanisetic field along the boundaries is increased. The magnetic field
explained in Sect. 3.1.1. topology is thus nearer to the concept of a random, relatively
unstructured magnetic field than the magnetic field topology
yielded by the isotropic models in SOC state.

The anisotropic burst rules do not yield large-scale struc-
Vlahos et al. (1995) introduced anisotropic bursts for solar flatgres, as they are, when used alone, also not able to lead the
CA models, which lead only to small events, but yield a steeystem to SOC state: this is obvious from the energy distri-
distribution at small energies, predicting thus a significant ovdmtions they yield, which are much smaller in extent than the

s=w,y,z

3.3. Application to anisotropic bursts
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In this article, our main aim with the introduced set-up was
to demonstrate that the set-up truly extends the classical CA
models and makes them richer in the sense that they contain
much more information, now. The main features we revealed
about the CA models, extended with our set-up, are:

1. Large-scale organization of the vector-potential and the
magnetic field: The field topology during SOC state is bound
to characteristic large-scale structures which span the whole
grid, very pronounced for the primary grid variable, the vector-
potential, but also for the magnetic field. Bursts and flares are
just slight disturbances propagating over the large-scale struc-
tures, which are always maintained, also in the largest events.
The magnitude of the current, as a second order derivative of the
primary field, does not show any obvious large-scale structure
anymore, it reflects more or less only the random fluctuations of
the large-scale organized magnetic field. It is worthwhile not-
Fig. 5. Surface and contour plot of the magnitude of the the magnefity that the large-scale structure of the primary grid-variable is
;f:?hifégsf‘;so?;‘r‘]?scg'tfg ?frzgi%riizzocr:“ril:sl5 through the grid, 1\t 4 artificial result of our set-up, but a natural consequence
P : of the SOC state in which the system finds itself. The appear-
ance of large-scale structures for the primary grid variable was

ones given by the isotropic rules (see Vlahos et al. 1995), a#fpwn here for the first time. It may have been known to differ-
confirmed by the result of Lu et al. (1993) that isotropy of thent authors, but it never has explicitly been shown: SOC models
redistribution rules — at least on the average — is a prerdg! flares are derived in analogy to sand-pile dynamics, and the
uisite to reach SOC state, at all. The anisotropic bursts oc@@radigm of a pile reappears in the field topologies of the solar
independently in all directions and are in this way not able ftare CA models.

organize the field in a neighbourhood systematically, and, as ancreased current at unstable grid-siteslUnstable sites are
consequence, also not in the entire grid. characterized by an enhanced current, which is reduced after
The inquiry of the relation of the energy release formula st has taken place, as a result of which the current at a

Eq. (18), which is different from the isotropic formula (Eq. 6)grid-site in the neighbourhood may be increased.
to MHD based formulae we leave for a future study. We just

note that the distributions the anisotropic model in our vectot- Availability of the electric field: The electric field is ap-

field version yields are at lower energies, smaller in extent, aRgPximated with the resistive part of Ohm's law in its simple
steeper than the ones of the isotropic models. form, which can in general be expected to be a good approxima-

tion in coronal applications and where the interest is in current-
dissipation events, e.g. in the case of solar flares.

4. Summary and conclusions ] S
4. Energy release in terms of Ohmic dissipationWe replaced

4.1. Summary the some-whaad hocformula in the CA models to estimate

We have introduced a new set-up for classical solar flare ¢ energy released in a burst with the expression for Ohmic
| issipation in terms of the current. The distributions yielded

models whichyields, among others, consistency with Maxwe ! L
y v y ; this way are very similar to the ones based on the ad hoc

equations (e.g. divergence-free magnetic field), and availabil | hat th its of the CA model in basicall
of secondary variables such as currents and electric fields inyéﬁ\iﬁézgt atthe results of the models remain basically

cordance with MHD. Both are new for solar flare CA model
The set-up specifies the so far open physical interpretation5ofCA as models for current dissipations:As a consequence

the CA models. This specification is to some extent unavoidfpoint 2 and 4 in this list, and of the fact that there is an approx-
ably arbitrary, and it would definitely be interesting to see whahate linear relation between the current and the stress measure
alternative interpretations would yield — if they can be derivesf the CA, we can conclude that tlextendedCA models can
consistently. We can claim, however, that the interpretation We considered as models for energy release through current dis-
chose is reasonable, it is well-behaved in the sense that $kgation.

derivatives of analytically prescribed vector-potentials are re-
produced and that the abstract stress-measure of the CA mogeis
is related to the current, due to general properties of spline in-"
terpolation. The central problem which was to solve is how ©ur set-up is to be contrasted to the recently suggested MHD-
calculate derivatives in a CA model, i.e. how to continue the pderived (not based on the sand-pile analogy) CA models of Ein-
mary grid-variable in-between the grid sites, since the notionafidi & Velli (1999), MacPherson & MacKinnon (1999), Long-
derivatives is alien in the context of CA models quite in generaope and Noonan (2000), and Isliker etal. (2000a). They all sug-

Conclusions
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gest new evolution rules, derived from MHD, and all in differerthen it should be redistributed in the subsequent scan, and not
ways (they actually focus on different processes, namely the rmithe same as the primary unstable site. The same is true for the
croscopic, macroscopic, and mesoscopic physics, respectivebgnning 4, since in the next bursting phase (if any) only those
in active regions). Our set-up, on the other hand, uses existsitgs should burst who had become unstable through a burst in
CA models, does not interfere (if not wished) with their evaheir neighbourhood during the foregoing time-step.
lution rules, does also not change their main results, as shown,As a time-step is considered one scanning of the grid, point
but reinterprets them, extends them essentially, and makes tf8fhe released energy per time-step is the sum of all the energy
compatible with MHD. released by bursts in this time-step (a burstis considered a single
The set-up we introduced allows different future applicaedistribution event in 3). We term a flare or avalanche the loop
tions and posing questions which could not be asked so far3/, from the occurring of the first burst in 3 until the activity
the frame of CA models. In preparation is a study (Isliker et dlas died out and one returns via the scanning 4 to loading (1).
2000b) to reveal in detail what physical flare scenario the €khe duration of the flare is the number of time-steps it lasted,
tended CA modelsimply. We will address the questions: (1) hdhe total flare energy is the sum of all the energies released in
to interpret the small scale processes of the models (loading dmelduration of the flare, and the peak flux or peak energy is the
bursting) in terms of MHD; (2) what thglobal flare-scenario maximum of the energies of all the time-steps of the flare.
implied by the models is; (3) whether the global magnetic field
topology of the models can be considered to represent observed i o . i
magnetic topologies in active regions: (4) what spatio-tempofdfPendix B: why spline interpolation is particularly
evolution of the electric field during flares is yielded by th@deduate: comparison to other methods of continuation
models. We mentioned in Sect. 2.2 that other possibilities for continua-
A different future application we plan with CA models eXtion of the vector-potential besides spline interpolation would
tended with our set-up is the introduction of particles into th&e: a) continuation ofA with the help of an equation; b) other
models, with the aim to study thermal emission, particle aginds of interpolation, either locally (in a neighbourhood), or
celeration, and non-thermal emission. This will allow a muc§iobally (through the whole grid). Possibility a) implies that an
deeper comparison of the CA models to observations than Wagiation has to be solved in each time-step (after each load-
possible so far, and this is actually the most important benefitigfy and after each burst), in the worst case numerically, with
the set-up we introduced. Such Comparisons will allow a nbeen boundary condition and th{h&'jk given at the grid_sites_
judgment of the adequateness or not of classical CA modelsis computational effort might slow down the algorithm of the
(in their current form) to the problem of solar flares, beyonghodel considerably (and bring it near to the computational effort
the three statistical distributions of the primarily released egf MHD equation integration). Besides that, the problem is what
ergy. Solar flare CA models which include particle accelerati@gyuation to use: to make the magnetic field always a potential
would represent the first global and complete model for solgé|d (i.e. using a corresponding equation for the vector-potential
flares. A) implies that, from the point of view of MHD, at all times

o , a very ‘well-behaved’ magnetic field resides in the CA, with
Acknowledgementsie thank K. Tsiganis and M. Georgoulis formany , tandency towards instabilities, which makes it difficult to
helpful discussions on several issues. We also thank G. Einaudi f?{derstand why bursts should occur at all, since critical quanti-
stimulating discussions on MHD aspects of flares, and the referee UI_ . .
MacKinnon for useful comments. The work of H. Isliker was partli\l'es such as currents do not become excited. A better candidate

supported by a grant of the Swiss National Science Foundation (U!d be expected to be force-freeness, exceptthat, possibly, one

grant nr. 8220-046504). may be confronted with incompatibility of the boundary condi-
tions with the vector-potential values given at the grid-sites, i.e.
existence-problems for solutions eventually arise.

Appendix A: temporal evolution of the CA Though definitely possibility a) cannot be ruled out on solid

The temporal evolution of the CA models presented in this &ounds, we found it more promising to proceed with possibility

ticle is governed by the following rules: b), interpolation. A guide-line for choosing a particular interpo-
lation method is the reasonable demand that the interpolation

0. initializing should notintroduce wild oscillations in-between grid-sites, for
1. loading we want to assure that the derivatives at the grid sites, which
2. scanning: create a list of the unstable sites; if there are no@g very sensitive to such oscillations, are not ‘random’ values
return to loading (1) solely due to the interpolation, but that they reflect more or less

3. scanning and bursting: redistribute the fields at the unstaglieectly the change of the primary grid-variable from grid-site
sites which are in the list created in the scannings 2 or 4 to grid-site. This calls for interpolating functions which are as

4. scanning: create a list of the unstable sites. If there are dit{le curved as possible.
go to bursting (3), else return to loading (1) The easiest and fastest way of interpolating would be to per-

form local interpolations around a point and its nearest neigh-
The extra scannings 2 and 4 are needed for causality: ibaurs (e.g. using low-order polynomials or trigonometric func-
site becomes unstable through a burst in the neighbourhotiohs of different degrees). This interpolation leads, however, to
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ambiguities for the derivatives: the derivatives, say at a poitdiscretized form of a differential equations. Instead, they de-
x;;k, are not the same, if the used interpolation is centeredsatibe the time-evolution of a system by rules which express
xi;i, With the ones calculated with an interpolation centerdtle direct transition from a given initial to a final state which
at e.g.x;11;5. In this sense, local interpolation is not selfis the asymptotic solution of a simple diffusion equation. The
consistent, the derivatives at a grid-site depend on where time-step corresponds therewith to the average time needed for
used interpolation is centered. smallest scale structures (structures as large as a neighbourhood)
Finally, we are left with global interpolation through theo diffuse, and the grid-size corresponds to the size of these
whole grid. Among the candidates are, besides more exaimallest occurring structures. Assuming that the CA models
interpolating functions, polynomials of degree equal to theere just discretized differential equations would lead to severe
grid size, trigonometric functions (also in the form of Fouriemathematical and physical contradictions and inconsistencies
transforms), low-order smooth polynomials (e.g. splines). Tlfeontinuity forAh — 0 is violated (withAh the grid-size), and
first candidate, polynomials of a high degre@vith n the num- negative diffusivities appear). Therewith, in order to be consis-
ber of grid points in one direction), we reject immediately sindent with the evolution rules, which assume a finite grid-size,
it is notorious for its strong oscillations in-between grid-sitesne cannot assume for the purpose of differentiating this same
mainly towards the edges of the grid. We tried the second cangliid-size to be approximately infinitesimal.
date, trigonometric interpolation, in the form of discrete Fouri&. Derivatives as difference expressions are not self-consistent:
transform. Testing this by prescribing analytic functions foFhere are several equivalent ways to define numerical deriva-
A(x) and comparing the numerical derivatives with the analytives with the use of difference expressions: there are
ones, it turned out that there arise problems with representimg. the backward differenc@, A, (x;jx) = (Az(Tij) —
structures inA as large as the entire grid (the wave-numbet, (x;_1,%))/Ah, and the forward difference, A, (x;i) =
spectrum is too limited), and with structures as short as roughilyt,, (z;+1;%) — Az (z;;x))/Ah. Both should give comparable
the grid-spacing (different prescribed short structures are takehues in a given application, else, in the context of differen-
for the same). tial equation integration, one would have to make the resolution
Trying cubic spline-interpolation, we found that it does ndtigher. In the case of CA-models, we find that the two difference
suffer from the problems stated for the other types of interpolexpressions yield values which differ substantially from each
tion: neither does it introduce wild oscillations, unmotivated bgther: E.g. for an initial loading of the grid with independent
the values at the grid-sites, nor does spline interpolation haemdom values for thd-field, the difference between the back-
problems with describing large or small scale structures (ifveard and the forward difference expression can be as large asthe
functional form ofA is prescribed, then the analytic derivativeield itself. Such an initial condition would of course not make
and the derivatives yielded by the interpolation give very closense in the context of partial differential equations, in the con-
values, in general). text of CA, however, itis areasonable starting configuration, and
Moreover, based on results of Sect. 3, App. C, and Islikére evolution is unaffected by such an initial loading. Moreover,
et al. (1998), there is another reason why spline-interpolationiten the CA models we discuss in this article have reached the
particularly adequate to our problem: It relates the quardtdly SOC state, then the differences between e.g. the backward- and
(Eq. (2)), which measures the stress at a site in the CA modelward-difference expressions can be as large as 400%. There
closely toV2 A, the Laplacian ofd (see App. C). The latter is is no way to reduce this discrepancy, since grid-refinement is
related to the currentl{ = —ﬁVQA + 1=V(VA)), which, principally impossible for CA: the evolution is governed by a
from the point of view of MHD, can be considered as a meaet of rules, and making the grid spacing smaller by introduc-
sure of stress in the magnetic field configuration. If this relatiang new grid-points in-between the old ones would actually just
would not hold, then the redistribution rules (Egs. (4) and (5Mean to make the grid larger, since the evolution rules remain
of the CA would not be interpretable as the diffusion process fxe same, there are no rules for half the grid-spacing.
vealed by Isliker et al. (1998), and the instability criterion (Eqg. 3)
would not be so closely related to the current (see Sect. 3 ai'gpendix C: relation of dA to AA

App. C).
The stress measure of LHAUA,;;, = A;ji, — % Yonm Anns
can be related to continuous expressions by representing the
values of4,, ,,. as Taylor-series expansions aroungl,, setting
the spatial differences tdh = 1. It turns out that e.g.
We had rejected above (Sect. 1, Sect. 2.2) the use of difference
expressions to calculate derivatives, stating that differencingzig  — —EAA — i(all + 34 +0HA, — ... (C.1)
not in the spirit of CA models quite in general, since the nature

of CA is truly discrete. We think it worthwhile to make thisand so on for the other two componeritsgeneralijtis therefore
argument more concrete and to show what problems ariseétadequate to consideér to be a good 4th order approxima-
differencing were used: tion to A A, since higher order corrections can be large, they
1. Consistency with the evolution rules: Isliker et al. (1998epend on the way the vector potential is continued in-between
have shown that the classical solar flare CA are not just t§d-sites. If we had, for instance, chosen global polynomial

B.1. why in particular differencing is not adequate
to calculate derivatives in a CA
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interpolation instead of spline-interpolation, the higher ord&inaudi G., \Velli M., Politano H., Pouquet A., 1996, ApJ 457, L13
terms would not be negligible, above all towards the edgeskgfiaudi G., Velli M., 1999, Physics of Plasmas 6 (No. 11), 4146
the grid, since polynomial interpolation is known for introducGalsgaard K., 1996, A&A 315, 312

ing fluctuations near the edges of the grid. Consequedtly, Gals_gaard K., Nordlund A., 1996, J. Geophys. Res. 101, 13445
would be a bad approximation tvA. In orderd A to be a good gglc:reroiii'spl\juveﬁltiﬁ 1;3211 iuoé; P%Sg-slnglj:; 057
apprommaﬂo_n tAA, mterpolatlon_ with, for gxample, 3rd Or'Georgoulis M Viahos ’L., 1996, AF;J 469: Lf35 '

der polynomials would be an optimum choicé4A would be

. . .. Georgoulis M., Vlahos L., 1998, A&A 336, 721
an exact approximation ta A). Thus, 3rd order polynomials o qrix D.L.. Van Hoven G.. 1996 ApJ 467, 887

would be the choice for local interpolation, which, however, igjiker H., Anastasiadis A., Vassiliadis D., Viahos L., 1998, A&A 335,
not applicable, since it introduces discontinuitiesBnand J 1085

(see App. B). The way out of the dilemma we suggested in thégiker H., Anastasiadis A., Vlahos L., 2000a, In: Seimenis J., et al.
article is the use of cubic splines, which provide global interpo- (eds.) A solar flare model in between MHD and Cellular Automa-
lation with 3rd order polynomials, wittB andJ continuous, ton. The Fourth Astronomical Conference of The Hellenic Astro-
and only third order derivatives are discontinuous (this is the nomical Society in press

Karpen J.T., Antiochos S.K., Devore C.R., Golub L., 1998, ApJ 495,

_ 1 1 3 4+ 34— 491
da; = _EAAZ 36 [ (047 — AT )+ Longcope D.W., Noonan E.J., 2000, ApJ in press
(BAF—03A )+ Longcope L., Sudan L., 1994, ApJ 437, 491
34+ 93 4— Lu T.E., Hamilton R.J., 1991, ApJ 380, L89 [LH91]
(04, —8:4; )}’ (C.2) Lu T.E., Hamilton R.J., McTiernan J.M., Bromund K.R., 1993, ApJ
412,841

due to the discontinuities in the 3rd order derivatives (the SHacPherson K.P.. MacKinnon AL 1999. A&A 350. 1040

perscripts+ and — refer to the right and left derivative, re-) ... Z., Schnack D.D., Van Hoven G., 1989, ApJ 338, 1148

spectively). Thus, in case where the third order right and lgdt, .o, E.N., 1993, ApJ 414, 389

derivatives are not too differentA is a good approximation to press W.H., Teukolsky S.A., Vetterling W.T., Flannery B.P., 1992, Nu-

AA. merical Recipes in Fortran. 2nd ed., Cambridge University Press,
Cambridge

Strauss H., 1993, Geophys. Res. Lett. 20, 325
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