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ABSTRACT

Aims. Coronal heating through the explosive release of magnetic energy remains an open problem in solar physics. Recent hydrody-
namical models attempt an investigation by placing swarms of “nanoflares” at random sites and times in modeled one-dimensional
coronal loops. We investigate the problem in three dimensions, using extrapolated coronal magnetic fields of observed solar active
regions.
Methods. We applied a nonlinear force-free field extrapolation above an observed photospheric magnetogram of NOAA active region
(AR) 11 158. We then determined the locations, energy contents, and volumes of “unstable” areas, namely areas prone to releasing
magnetic energy due to locally accumulated electric current density. Statistical distributions of these volumes and their fractal dimen-
sion are inferred, investigating also their dependence on spatial resolution. Further adopting a simple resistivity model, we inferred
the properties of the fractally distributed electric fields in these volumes. Next, we monitored the evolution of 105 particles (electrons
and ions) obeying an initial Maxwellian distribution with a temperature of 10 eV, by following their trajectories and energization
when subjected to the resulting electric fields. For computational convenience, the length element of the magnetic-field extrapolation
is 1 arcsec, or ∼725 km, much coarser than the particles’ collisional mean free path in the low corona (0.1−1 km).
Results. The presence of collisions traps the bulk of the plasma around the unstable volumes, or current sheets (UCS), with only a
tail of the distribution gaining substantial energy. Assuming that the distance between UCS is similar to the collisional mean free path
we find that the low active-region corona is heated to 100−200 eV, corresponding to temperatures exceeding 2 MK, within tens of
seconds for electrons and thousands of seconds for ions.
Conclusions. Fractally distributed, nanoflare-triggening fragmented UCS in the active-region corona can heat electrons and ions with
minor enhancements of the local resistivity. This statistical result is independent from the nature of the extrapolation and the spatial
resolution of the modeled active-region corona. This finding should be coupled with a complete plasma treatment to determine whether
a quasi-steady temperature similar to that of the ambient corona can be maintained, either via a kinetic or via a hybrid, kinetic and
fluid, plasma treatment. The finding can also be extended to the quiet solar corona, provided that the currently undetected nanoflares
are frequent enough to account for the lower (compared to active regions) energy losses in this case.
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1. Introduction

The solar corona is a hot (temperature in excess of 106 K), ten-
uous (≈108−109 cm−3), fully ionized plasma. Below the corona,
the transition region and the chromosphere are the sites of intrin-
sically nonlinear dynamical phenomena. The mechanisms heat-
ing the coronal plasma and maintaining its temperature above
one million K are poorly understood for more than 75 yr. The so-
lar coronal heating problem, extending also to Sun-type stars, re-
mains among the main astrophysical puzzles. Although consid-
erable progress has been made, apparent solutions remain highly
controversial. A key reason why the problem remains open is
that it is ill-posed: while the nature of coronal heating is as-
sumed to be magnetic, the magnetic field vector is known in
only the thin photospheric interface. Hence, the pertinent open
questions are: (a) how does the solar atmospheric system (pho-
tosphere, chromosphere, transition region and corona) interact
and interlink to sustain the observed temperatures? (b) What is
the precise role of the magnetic field emerging from the turbu-
lent convection zone and extending into the solar atmosphere to
release part of its energy?

What is already known is that emergence of new magnetic
flux and interaction with pre-existing magnetic fields forms
complex magnetic topologies which are continuously tangled
and shuffled by the photospheric flow field, leading to an in-
herently complex, nonlinear dissipation of magnetic energy
(Longcope & Tarr 2015; Archontis & Hansteen 2014, and refer-
ences therein).

The most prominent candidate mechanisms for coronal heat-
ing are dissipation of magnetohydrodynamic (MHD) waves
and magnetic reconnection (see reviews Klimchuk 2006, 2015;
Parnell & De Moortel 2015; Cargill et al. 2015), both eligible
due to the low value of the β-parameter in the coronal plasma.
However, an attempted distinction between the two mechanisms
is probably artificial, as the dissipation of unstable current sheets
(UCS) involves the production of waves and the nonlinear evo-
lution of waves or turbulent eddies in a structured medium can
lead to the formation of current sheets (Einaudi et al. 1996;
Georgoulis et al. 1998). The turbulent convection zone trans-
ports energy to the solar atmosphere and into oscillating modes,
transient currents and evolving current sheets. Waves and current
sheets hence maintain independent roles only in a first-order, lin-
ear approximation (Velli et al. 2015).
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Among the leading theories for coronal heating is the well-
known Parker conjecture (Parker 1987, 1988), also known
as “nanoflare heating”. The main idea is that strong, local-
ized currents in the solar corona are produced by the braid-
ing of magnetic fields whose photospheric footprints are con-
tinuously shuffled. Tangential discontinuities are then formed,
where magnetic-field gradients and associated electric currents
are steep, signifying the interface between different magnetic-
flux systems. These currents may dissipate via magnetic recon-
nection, by some resistive instability. The released energy is
responsible for heating and acceleration of the local ambient
plasma, while the post-reconnection magnetic configuration is
partly relaxed.

Rappazzo et al. (2007, 2008) used reduced MHD to investi-
gate the formation and evolution of current sheets and the tur-
bulent cascade of magnetic energy toward small-scale release
events (nanoflares) in simple magnetic configurations (isolated
coronal loops). Their system is continuously driven by the photo-
spheric boundary and leads to the dissipation of numerous small-
scale current sheets (see also Rappazzo et al. 2010; Velli et al.
2015).

It is clear that a key aspect of coronal heating is hidden in the
unknown magnetic-field properties above the photosphere and
its evolution due to the turbulent photospheric interface. In a se-
ries of articles, the formation of null points, separators and sep-
aratrix surfaces are discussed and associated with coronal heat-
ing and flaring in active regions (see the review of Parnell et al.
2015). Most of the analyses presented so far relied on relatively
simple magnetic configurations, initially based on independent
or interacting magnetic loops (magnetic threads). Nonetheless,
the dynamical evolution of even simple structures soon leads to
extremely complex magnetic fields, where small scales domi-
nate both the evolution of the system and the energy-dissipation
process (Bowness et al. 2013; Tam et al. 2015).

An interesting development is the use of three-dimensional
(3D) MHD simulations for the understanding of both nanoflares
and coronal heating (Peter et al. 2004; Gudiksen & Nordlund
2005; Binger & Peter 2013; Hansteen et al. 2015). Several au-
thors have discussed the limits of their MHD simulations based
on simple arguments (see also the review by Peter 2015). For a
coronal temperature of 106 K and a coronal density of 109 cm−3

the mean free path of plasma particles is 0.1–1 km. At such small
scales, special care should be taken to ensure validity of the
MHD approximation. It is also well known that UCS have di-
mensions on the order of the mean free path. Hence, their evolu-
tion can be followed by 3D particle-in-cell simulations. The use
of adaptive grids in large-scale simulations of the solar corona
is difficult because the fragmentation of electric currents soon
drops below even the finest spatial resolution. It is then obvious
that a kinetic approach combined with the MHD methodology is
necessary to capture the coronal heating process. Another fun-
damental question is then borne, namely “how do large scales
evolve when the main dissipation processes (reconnection and
waves) are operating on sub-resolution scales?” (Cargill 2013).

A simple method to detect MHD discontinuities and mag-
netic reconnection in the solar wind was employed (Greco et al.
2008, 2009; Servidio et al. 2011; Osman et al. 2014). They used
the Partial Variance of Increments method (Greco et al. 2008)
applied to either MHD simulation results or in-situ magnetic-
field measurements. The reconnection events and current sheets
were found to be concentrated in intervals of intermittent
turbulence.

Vlahos & Georgoulis (2004) followed a different approach,
aiming to identify unstable magnetic discontinuities and

reconnection in complex active-region magnetic configurations.
They based their analysis on linear force-free extrapolated mag-
netic fields of the active-region corona, aiming to detect discon-
tinuities and subsequent electric-current fragmentation. A key
finding was that flaring and non-flaring active regions share sim-
ilar statistical distributions of unstable volumes, with available
energies in agreement with the observed occurrence frequency
distributions of solar flares, (i.e., robust power laws with similar
indices, on the order ∼1.5).

We follow a similar reasoning in this work, although by
adopting a different approach: we investigate the statistical prop-
erties of the fragmented distributions of tangential discontinu-
ities and UCS. The magnetic field of the active-region corona is
reconstructed using a nonlinear force-free extrapolation method,
validated by recently published techniques. The target is the re-
peatedly eruptive NOAA active region (AR) 11158, studied in
literally dozens of works, none of which in this light, however.
Section 2 describes the extrapolation method and the statisti-
cal properties of UCS, comparing also the results with those of
previous studies. In Sect. 3 we release a large number of elec-
trons and ions in random locations, with energies following a
Maxwellian distribution, and follow their heating and accelera-
tion in connection with the statistical properties of the extrapo-
lated fields. In Sect. 4 we summarize the key points of our anal-
ysis and present our main results and conclusions.

2. Nonlinear magnetic field extrapolation
and the statistics of current fragmentation

We focused on a well-studied active region, NOAA AR
11158 (e.g., Schrijver et al. 2011; Jiang et al. 2012;
Sun et al. 2012; Liu & Schuck 2012; Vemareddy et al. 2012;
Chintzoglou & Zhang 2013). This AR gave the first X-class
flare of the current solar cycle (X2.2 on February 15, 2011
01:44 UT) as well as many M- and C-class flares during the
interval February 11–16, 2011. The AR evolved from a simple,
bipolar, to a complex, quadrupolar, structure with an enhanced
and strongly sheared magnetic polarity inversion line (PIL). The
total unsigned magnetic flux of the AR was increasing during
this period and reached a maximum value of ∼6 × 1022 Mx
(Tziotziou et al. 2013).

The input for our analysis were photospheric vector mag-
netogram cutouts from the Helioseismic and Magnetic Imager
(HMI; Scherrer et al. 2012) onboard the Solar Dynamics Ob-
servatory. HMI magnetograms were already transformed into
cylindrical equal area projections which preserve the pixel area
and treated for the azimuthal 180◦ ambiguity as described in
Hoeksema et al. (2014). The pixel size is ∼0.36 Mm (∼0′′.5) and
the size of the cutouts 600 × 600 pixels. We selected two snap-
shots from the AR evolution, one on February 13, 2011 03:58 UT
and another one on February 14, 2011 21:58 UT, for reasons that
will be explained in the following section.

2.1. Magnetic field extrapolation

A force-free magnetic field model of the solar corona dictates
field-aligned electric currents by a valid (i.e., divergence-free)
magnetic field solution. Hence,

∇ × B = α B; ∇ · B = 0, (1)

where α is the force-free parameter, generally varying as a func-
tion of position but remaining constant along a given mag-
netic field line. This is the case of nonlinear force-free (NLFF)
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Fig. 1. Original magnetogram for the eruptive NOAA AR 11158 on February 14, 2011 at 21:58 UT together with the NLFF field lines (left), and
zoomed view with isosurfaces of the current density (right) showing the low-lying current fragmentation.

fields, which has generally advanced our understanding of the
overall morphology of ARs and current channels along PILs
(Wiegelmann & Sakurai 2012, and references therein). A special
case is the linear force-free field, in which α is constant through-
out the extrapolated volume, but when the extrapolated mag-
netic field lines are compared to structures from EUV images
(Wiegelmann & Sakurai 2012), the linear solution is often found
to fail in recovering the overall magnetic field topology. For our
investigations we used an optimization technique (Wiegelmann
2004) for computing the 3D NLFF field in the corona. Using ap-
propriate boundary conditions, this numerical method yields a
NLFF field solution by minimizing a penalty function, L, in the
computational volume, V , as

L =

∫
V

w(x, y, z)[B−2|(∇ × B) × B|2 + |∇ · B|2] dV, (2)

where w(x, y, z) is a scalar function with a value of 1 in the phys-
ical domain of the volume that drops smoothly to zero when ap-
proaching the top and lateral boundaries. When L = 0, both the
Lorentz force is zero and the solenoidal condition is satisfied in
the entire computational volume, which then contains a perfect
NLFF field for a force-free photospheric boundary. As we will
see below, numerical imperfections are inevitable in practice.

We chose to create models of the 3D coronal field in two res-
olutions for each time-frame. Starting from the original 600 ×
600 images we trimmed quiet-Sun regions to reduce the size to
500 × 400 pixels, still containing the entire AR. We then re-
binned these by factors of 2 and 4 to reach grid sizes equal to
250 × 200 × 128 and 125 × 100 × 64 pixels, respectively. In the
following we will refer to these resolutions as “1′′” and “2′′”
respectively. In all cases the vector data were pre-processed ac-
cording to Wiegelmann et al. (2006) so that they are consistent
with the assumption of a force-free magnetic field. An example
of the resulting 3D NLFF field is shown in Fig. 1.

2.2. Statistics of current fragmentation

The overall AR magnetic field configuration shown in Fig. 1
was used to further study the coronal volumes above the ARs,
in terms of their energetic content and certain statistical proper-
ties (pertinent to our particle model). As discussed in the Intro-
duction, this structure is comprised of current-carrying unstable
volumes, formed as an excess of magnetic energy accumulates
near regions where magnetic gradients build-up, just before its
release via reconnection. The identification of these regions was

based on the currents associated with the tangential magnetic
discontinuities built in the reconstructed NLFF field.

The free energy, which powers solar dissipative events, is the
excess energy of a magnetic field B that occupies a volume V
relative to that of the current-free (known as potential) magnetic
field Bp in the same volume. Free energy can be given by either
of the expressions

Ef1 =
1

8π

∫
V

dV B2 −
1

8π

∫
V

dV B2
p (3)

Ef2 =
1

8π

∫
V

dV (B − Bp)2, (4)

which are equivalent for exactly solenoidal field, and for poten-
tial field that has the same normal components with the given
one on the volume’s boundaries (Moraitis et al. 2014). Any dis-
crepancy between Eqs. (3) and (4) thus provides means to per-
form a validation check on the extrapolated magnetic field or, in
other words, how solenoidal the three-dimensional field solution
actualy is. To quantify this, we define the free-energy accuracy
factor r similarly to a quantity used in Su et al. (2014) for the
same purpose, namely as

r =
|Ef1 − Ef2|

|Ef1| + |Ef2|
· (5)

This quantity provides a dimensionless relative error in free en-
ergy due to non-solenoidality in the field. By construction, it is
0 ≤ r ≤ 1 with r = 0 denoting perfect solenoidality (except in
the unlikely case where

∫
dV Bp · (B − Bp) = 0, for B , Bp),

while r = 1 denotes an unphysical, negative E f 1. Apart from an
average value for r in the extrapolated volume, we also define
the local value for this accuracy factor at each cubic voxel which
we denote as ri. This local factor ri has no physical meaning
since its nominator depends on the non-local divergence of the
field. However, it can be used to discriminate regions where the
extrapolated field is of low-quality, as we show in the following.

The global value of this free-energy accuracy factor for the
whole extrapolated field was also the reason for choosing the
specific snapshots of AR 11158’s evolution from the set of NLFF
fields that were used in Moraitis et al. (2014). The first snap-
shot (February 13, 2011 03:58 UT) corresponds to the absolute
minimum of r during the evolution of the AR with a value of
r = 0.13, while the second (February 14, 2011 21:58 UT) ranks
third with r = 0.22. Although these values may not seem low,
the quality of the fields at these instances is adequately high as
other, more common metrics indicate. For example, the average
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Fig. 2. Logarithmic histogram of the electric current density for differ-
ent threshold values of the free-energy accuracy factor a), and zoom
of the ri < 0.3 curve and power law fit to it b) for the snapshot of
February 13, 2011 at 03:58 UT. Also shown are histograms of the
current density for different values of the absolute fractional flux in-
crease, | fi|.

absolute fractional flux increase (Wheatland et al. 2000) for the
high-resolution Feb. 13 and 14 snapshots are 〈| fi|〉 = 8.6 × 10−4

and 〈| fi|〉 = 7.6 × 10−4, respectively. Additionally, the force-
free metric of the average Lorentz force relative to its compo-
nents (Malanushenko et al. 2014) is quite low, ξ ' 0.06, for both
snapshots.

Albeit not precisely solenoidal, our magnetic field solution
shows solenoidality that is comparable to the one of extrapo-
lations used in previous studies (e.g., DeRosa et al. 2015). We
therefore use these extrapolation results, adding that we are in-
terested particularly in the UCS distribution and not in the field-
line connectivity, that would be impacted by imperfections in the
divergence-free condition. A more thorough extrapolation inves-
tigation that might produce more accurate solenoidal and force-
free fields exceeds the scope of this work.

In anticipation of the X-class flare on February 15, 2011
01:44 UT, both snapshots refer to the preflare phase in
AR 11158. The first one follows a 20 h period of fast flux emer-
gence and the formation of a filament along the main active-
region PIL. During the 30 h elapsing between the first and the
second snapshot, magnetic flux keeps emerging, albeit at a de-
creased rate, but the current density build-up in the lower layers
of the coronal volume continues, as the filament is stretched and
smaller-scale eruptions take place (Sun et al. 2012). Both snap-
shots were therefore also selected so as to not coincide with any
of the major flares or CMEs, with the major X-class flare occur-
ring 3 h after the second snapshot.

Before proceeding with the current fragmentation analysis,
we perform a simple check on the electrical currents present in
the volume. Starting from Ampère’s law

j =
c

4π
∇ × B, (6)

we calculate the electric current density j, using the appropriate
(forward, backward or centered) second-order difference opera-
tors for the field’s rotation. In Fig. 1 we show the 3D structure
of the currents and notice that the AR corona is nearly filled by
accumulated electric currents that (1) stay relatively close to the
photospheric boundary (up to ∼10 Mm) and (2) are mostly con-
centrated along the AR’s PIL.

We then construct a histogram of the magnitude of the cur-
rent, j, that is shown in Fig. 2. The higher-current part of the dis-
tribution exhibits a power-law that does not change even if we
exclude points where the 3D extrapolated field is of poor quality
(as indicated by the free-energy factor ri). In the following we
consider only the highest-quality points with ri < 0.3. This is

further justified by noting that the ri < 0.3 curve in Fig. 2b is
very close to the one for | fi| < 10−2.5.

The next step is to determine the threshold, jth, above which
the distribution is a power law and the corresponding index q.
This is done by fitting a finite power-law with a lower-values
departure to the current distribution and identifying the location
of the power-law breakdown with the threshold and the power-
law index above it with q. The results of the fitting procedure,
and also the maximum value of the current jmax, are reported in
Table 1 for the two snapshots and the two grid sizes considered.

For the distribution of the high-resolution snapshot of Febru-
ary 13, 2011 at 03:58 UT that is shown in Fig. 2 we esti-
mate a power-law index of 1.83 ± 0.21 above the threshold
jth = 1.38 × 103 stA cm−2. A general trend seen in Table 1 is
that the (absolute) power-law index is an increasing function of
resolution, a result valid for both snapshots. The same is true
for the threshold and maximum values of the current, their ra-
tio however, that is, the span of the power law, is less affected
by the spatial resolution, since jth/ jmax = (0.030−0.065) in all
cases. Another finding is that a power law fit is more suitable for
the first snapshot than for the second (judging from the values
of χ2 and the form of the distributions), and also for each high-
resolution snapshot than for the low-resolution ones, and thus a
different function could describe these distributions better. How-
ever we limit our analysis to the general, single power-law case.

In the remainder of this work we use only the highest-
resolution data of the snapshots of February 13, 2011 at
03:58 UT and February 14, 2011 at 21:58 UT, and comment on
the effect of resolution on our results in Sect. 4.

In order to locate the adjacent regions forming spatially dis-
joint groups (clusters) which we associate with UCS, we im-
plement a partitional, hard clustering algorithm that uses the
Manhattan distance as a dissimilarity measure (Gan 2011) to
group 3D voxels into clusters. Under the Manhattan distance, a
cluster is defined as a group of points, each connected to at least
one other group member, called its immediate neighbor, via a
single edge of the rectangular lattice underlying the 3D volume
or, as a limiting case, a single point isolated in the sense just
described.

The group of 3D pixels on which clustering was applied ex-
hibits current densities exceeding a threshold jth, determined in
Table 1. It is worthwhile noting that the number of clusters iden-
tified was near ∼7700 for the February 13 snapshot and ∼8600
for the February 14 one, all gathered within lower altitudes in
the AR (below z ∼ 12−13 pixels, up to ∼9 Mm above the pho-
tosphere, for both frames, Fig. 1). The clustering scheme recov-
ered for the February 14 snapshot is shown in Fig. 3, where the
cluster sizes range between 1 and 600 voxels. The fragmenta-
tion observed in most of the areas contrasts a couple of large
clusters, warning about a possible bias introduced in the form of
these outliers, to the statistical analysis following. Nevertheless,
we include all clusters in the subsequent analysis.

From this point on, all subsequent analysis is performed on
a cluster-based level. It is, therefore, convenient to define a point
representing each cluster. This point was chosen to be the cen-
troid of a cluster, defined here as the point located at the weighted
(by the current density magnitude per pixel) average position of
all the points comprising the cluster. Specifically, if a cluster con-
sists of NC points with position vectors Pm, m = 1, . . . ,NC, then
the position vector of its centroid PC is defined as

PC =

∑NC
m=1 jm Pm∑NC

m=1 jm
, (7)
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Table 1. Power-law fitting parameters for the high-current tail.

Snapshot Pixel size (′′) q jth (stA cm−2) jmax (stA cm−2) χ2 (d.o.f.∗ )

Feb. 13 2 1.37 ± 0.18 4.50E2 6.97E3 2.04 (22)
1 1.83 ± 0.21 1.38E3 4.34E4 0.45 (28)

Feb. 14 2 0.76 ± 0.13 3.20E2 1.22E4 3.36 (30)
1 1.59 ± 0.14 1.58E3 2.48E4 0.93 (20)

Notes. (∗) Degrees of freedom.

Fig. 3. Clustering scheme recovered for the
February 14 snapshot.
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Fig. 4. Histograms of the free magnetic energy of UCS based on
the clustering identification process performed on both high-resolution
snapshots. Notice the decrease in the absolute power law index from the
February 13 (blue), to the February 14 (red) snapshot. The correspond-
ing fits use the respective colors while legends provide the power-law
(pl) index for each snapshot.

where jm is the current density magnitude of an individual voxel.
We refer to clusters of contiguous voxels as UCS. In the fol-

lowing, we will study probability distribution functions (PDFs)
of the UCS free energy, volume, and average current density.

Energy distribution. As a second step of the analysis on the
current fragmentation exhibited by NOAA AR 11 158, the free
magnetic energy per UCS is calculated as the sum of the free
magnetic energy of the points comprising the cluster and its dis-
tribution is computed using the approach known as logarithmic
binning (see e.g., Newman 2005; Clauset et al. 2009). In Fig. 4
the results for both snapshots are presented, overlaid by their
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Fig. 5. Distributions of UCS volumes for the two snapshots on February
13 and 14, 2011, using the same color notation with Fig. 4. As all ob-
servations related to the high-resolution snapshots, the power-law fitted
distribution of the volumes flattens from February 13 to February 14.

respective power law fits seen to span at least four orders of mag-
nitude before their scaling breakes down below ∼5 × 1024 erg,
that is, while approaching the known limit imposed by resolution
constraints. The absolute power law index flattens from 1.45 on
February 13 to 1.29 on the February 14 snapshot, in accordance
to the observation already made for the 1′′ cutouts regarding the
current distribution of the individual 3D pixels (see Table 1). The
same behavior will be recovered later for the other quantities.

Volumes distribution. Extracting information regarding the
spatial extent of the dissipation regions regions after clustering is
also a straightforward process. One can simply log-bin the num-
ber of points NC comprising each of the clusters recovered into a
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logarithmic histogram or, equivalently, denote the volume of any
of these clusters as V and bin these volumes instead. Adopting
the latter approach, the distribution functions of values for the
two high-resolution snapshots are shown in Fig. 5. Respective
power-law fits are superposed.

Fractal dimension. As a further basic characteristic of the clus-
ter distribution, we determine its fractal dimension, which will
be also needed in the study of the particle dynamics. We employ
the method based on the correlation sum using the algorithm in-
troduced by Grassberger & Procaccia (1983a,b). The correlation
sum Ĉ(r) is given by

Ĉ(r) =
1
N

N∑
i=1

ni(r)
N − 1

, (8)

where

ni(r) =

N∑
j=1, j,i

Θ
(
r − |Pi − P j|

)
. (9)

In the equations above, ni(r) is the number of points P j other
than Pi, contained in a sphere of radius r centered at point
Pi, i = 1, 2, . . . ,N, where N is the total number of points, and
Θ is the Heaviside function with | · | denoting the Euclidean dis-
tance between points Pi and P j. In this particular application,
by point we mean the centroid (Eq. (7)) of the cluster identified
as an unstable volume, and all distances are measured in pixel
units.

Given the above relations (Eqs. (8) and (9)), a measure of the
structure of a fractal known as the correlation dimension DF (see
also Grassberger 1983) is defined as

DF = lim
r→0

ln Ĉ(r)
ln r

· (10)

Quantifying the complexity of the structures under consideration
with this particular definition of the fractal dimension allows for
fast and more efficient computations (as compared to, for exam-
ple, the box-counting method, Grassberger & Procaccia 1983a).

In Fig. 6, the logarithmic plot of the correlation sum Ĉ(r)
is shown as a function of the radius of the sphere r. Employing
the original and most straightforward approach to compute the
correlation dimension, a linear fit to the plots in Fig. 6 gives DF
according to Eq. (10), yielding values close to 1.8 in both cases
of data sets. Even though the power law scaling (bounded from
above due to the finite size of the sets) breaks down at around the
minimum inter-point distance, the correlation dimension suit-
ably probes the intermediate-to-small r-regime.

Average current density distribution. The energy content of
the UCS can be examined by either the free magnetic energy Ef
per UCS already seen previously or, as it will actually be uti-
lized in the next section, the average current density magnitude
〈 j〉 per UCS. The logarithmic histograms of 〈 j〉 are shown for
both snapshots in Fig. 7. We again notice that the power-law dis-
tribution flattens from the first to the second frame, as all power
laws presented in Figs. 4 and 5. The results of the analysis for all
quantities and for both snapshots are shown in Table 2.

To adress the effect of resolution on these results we ex-
amine, in addition to the 1′′ and 2′′ resolutions of HMI data,
data from the Spectro Polarimeter of the Solar Optical Telescope
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Fig. 6. Correlation dimension DF as estimated by a linear fit to the cor-
relation sum Ĉ(r) vs. r. For the two snapshots on February 13 and 14,
2011 the fractal dimension of the structure formed by the magnetic dis-
continuities identified and systematically recorded, is found to remain
constant in time, around the value of 1.8.
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Fig. 7. Logarithmic histogram of the average current density per cluster,
for the high-resolution frames on February 13 and 14, 2011.

(SOT-SP) of the Hinode mission (Lites et al. 2008), exhibiting
a resolution of ∼0′′.3, for the February 13 snapshot. Since the
analysis of the entire AR under such a resolution is beyond our
computational resources, we restrict it to the 180 × 180 pixels
area depicted by a red box in Fig. 8. Indeed, a factor-of-three
difference between the HMI and the SOT-SP magnetographs
would imply a factor of ∼33 additional computing nodes in the
three-dimensional extrapolation volume. Given that optimiza-
tion methods in NLFF field extrapolation scale by ∼N5, where N
is the number of computing nodes (e.g., Schrijver et al. 2006), an
increase in resolution by a factor of 3 would imply an increase
in computations by a factor of ∼315 ' 1.4 × 107. We have not
performed a rigorous testing of this effect but we maintain that it
would be impractical to use the SOT-SP resolution for the entire
AR with our resources.

The box in Fig. 8 is chosen so as to be flux-balanced for the
extrapolation and to contain the main part of the AR’s PIL. Ob-
viously, the box does not contain the entire AR, so the magnetic-
field connectivity will not be identical to the one inferred by
extrapolating the entire AR. This said, we are interested in the

A56, page 6 of 12

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201527890&pdf_id=6
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201527890&pdf_id=7


K. Moraitis et al.: Observationally-driven kinetic approach to coronal heating

Table 2. Synoptic results of the statistical analysis performed on the clustered data, for the two snapshots on February 13 and 14.

Snapshot Feb. 13 Feb. 14 Feb. 13 – 150 Feb. 13 – Hinode
Ef 1.45 ± 0.003 1.29 ± 0.003 1.27 ± 0.012 1.54 ± 0.004
V 2.42 ± 0.02 2.31 ± 0.02 2.32 ± 0.02 2.18 ± 0.02
DF 1.80 ± 0.01 1.80 ± 0.02 1.80 ± 0.03 1.83 ± 0.07
〈 j〉 4.19 ± 0.07 3.96 ± 0.05 3.65 ± 0.07 3.63 ± 0.05

Notes. With the exception of the fractal dimension DF, the rest of the numbers given are the absolute power law indices (with their standard errors)
of the performed fits. A reference column with very high-resolution data from the Hinode mission for the first snapshot is also provided.

Fig. 8. Hinode magnetogram of February 13, 2011 at 04:00 UT, after
transforming the original 512 × 512 pixels image (with center at cen-
tral meridian distance and latitude of −12.96◦ and −19.94◦ respectively)
into heliographic coordinates, and area selected for analysis (red box).

statistical properties of the extrapolated field, namely the UCS
spatial distribution – not their actual locations – that should be
fairly insensitive to the spatial resolution for a fractal system
such as the one studied here. Moreover, we focus on the AR’s
PIL because it is in this area that we expect the most signifi-
cant UCS to be present. Upon selecting the box, we perform a
NLFF field extrapolation of the magnetic field up to a height of
∼27 Mm above the photosphere. After verifying that the extrap-
olated field is sufficiently divergence- and force-free we follow
the same analysis. That is, we calculate the electric current, se-
lect only the highest-quality points that show ri < 0.3, and then
determine the clusters formed by these points and their statistical
properties. We find that the fractal dimension is practically un-
affected by resolution and remains around 1.8, within uncertain-
ties. The volumes, average current, and free energy distributions
show small variations in their power-law indices, in the ranges
2.2–2.4, 3.6–4.2, and 1.3–1.5, respectively.

Since the two snapshots exhibit similar statistical charac-
teristics, we choose to continue treating particle dynamics in
the next section using the distributions estimated for the second
snapshot, on February 14, 2011.

3. Particle dynamics in a fractal distribution
of fragmented currents

The motion of charged particles inside an environment of ran-
domly distributed UCS can be analyzed with the use of the two

PDFs, namely P(V) and P(〈 j〉), determined in the previous sec-
tion and the fractal dimension DF, following methods developed
by Vlahos et al. (2004). The charged particle (electron or ion)
starts at a random point inside the AR with a random velocity ui
along the magnetic field lines. The initial velocity distribution of
the particles is a Maxwellian with initial temperature T ≈ 105 K
(10 eV). The ambient density of the particles in the low corona
is approximately 109 cm−3. The charged particle moves freely
along a distance s estimated from the fractal dimension DF (see
details below) until it reaches a current sheet where it is en-
ergized by the electric field. This is estimated by Ohm’s law
E = η 〈 j〉, where η is the local resistivity and 〈 j〉 is estimated
from the probability distribution P(〈 j〉) shown in Fig. 7. Since
the free travel of particles is longer than the collisional mean
free path we include collisional losses in our analysis. We fol-
low the evolution of the initial particle distribution in successive
time intervals. Let us discuss briefly below the way we recon-
struct the dynamic evolution of a distribution of particles inside
a fractal distribution of UCS.

Free travel distance. As it was pointed out by Isliker & Vlahos
(2003), the probability of a particle, starting at an UCS in the AR,
to travel freely a distance s before meeting again an UCS is

P(s) =
DF − 2

sDF−2
max − sDF−2

min

sDF−3 smin < s < smax, (11)

if the UCSs are fractally distributed (with smin and smax the min-
imum and maximum free travel distance, respectively). This for-
mula is an approximation that applies if DF is strictly smaller
than 2, as for the case examined here (the corresponding expres-
sions for the cases DF = 2 and DF > 2 are different and not
cited here). From Fig. 6, we estimate the fractal dimension as
DF = 1.8 (see Table 2), and we assume that smin = 108 cm,
which is close to the resolution of the extrapolations’ grid, and
smax = 1010 cm. Using the distribution P(s), we generate se-
quences of random free travel distances si.

Collisional losses. The electron and ion Coulomb collision fre-
quency is given by

νe =
4πne4 ln Λ

m2
jU

3
j

, (12)

where e is the elementary charge, j = e, i corresponds to elec-
trons (e) and ions (i), m j is the particle mass, Λ is the Coulomb
logarithm (see e.g., Karney 1986), n is the number density and
U j is the thermal velocity. For the typical values of number
density n = 109 cm−3 and a temperature of Te = 10 eV, the
thermal velocity is Ue ≈ 108 cm s−1, so the mean free path is
λmfp ≈ 104−105 cm. The particles thus lose or gain energy as
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they travel between current sheets located at distances 108 cm <
si < 1010 cm that are much larger than the mean free path.

Acceleration length. Assuming that the particles interact with
a current sheet with volume V j = `2

j × d, where d is the width
of the UCS (∼105 cm), we estimate easily the length ` j of the
current sheet,

` j =

√
V j

d
, (13)

where the volume V j follows the probability distribution esti-
mated from Fig. 5

P(V j) = AV−a
j , Vmin

j < V j < Vmax
j , (14)

where A is the normalization constant, and a = 2.31, Vmin
j =

0.4 (Mm)3,Vmax
j = 130 (Mm)3 (the extremes of the distribution –

see Fig. 5). Combining Eqs. (13) and (14) we can estimate the
UCSs’ random length ` j.

Electric field strength. The electric field along the magnetic
field, as we mentioned already, inside the UCS is

E = η 〈 j〉 , (15)

where 〈 j〉 is the current given by the probability distribution
P(〈 j〉) shown in Fig. 7. The resistivity is assumed close to zero
when 〈 j〉 < jth ≈ 1580 stA cm−2 and η ≈ η̄ ηS when 〈 j〉 > jth
(see Table 2), where ηS is the Spitzer resistivity

ηS =
meνe

ne2 , (16)

and η̄ is a free parameter. By including η̄, we implicitly assume
that due to the relatively strong current ( j > jth) low-frequency
electrostatic waves are excited and the particles interact with
the waves much more efficiently than via Coulomb collisions,
so the resistivity is enhanced by several orders of magnitude
and is called anomalous (Sagdeev 1967; Papadopoulos 1977;
Galeev & Sagdeev 1984; Labelle & Treumann 1988; Ugai 1992;
Petkaki & Freeman 2008). According to the literature stated
above, η̄ is proportional to ( j − jth). Since in our study, how-
ever, the driven current exhibits a steep gradient with a variation
spanning less than one order of magnitude (see Fig. 7), we may
assume a constant value for η̄. The snapshot we have chosen
represents a quiescent phase of the AR, and our aim is to inves-
tigate particle heating, so we will consider the resistivity to be
only moderately increased above the Spitzer resistivity, choos-
ing η̄ around 75–100 (for the case where no collisions are taken
into account). We note that these relatively low values are in con-
trast to the much higher values usually adopted (Archontis et al.
2013) in the study of phenomena such as explosive events.

Equations of Motion. We assume that the motion is one di-
mensional along the magnetic field lines and the velocity of the
particles is non relativistic. The motion of the particle is divided
into two parts:

(a) Free travel along a distance si, suffering only colli-
sional losses, where we apply the simplified model of
Lenard & Bernstein (1958) for the Coulomb collisions of

charged particles with a background plasma population of
temperature Tb,

ds
dt

= u (17)

du
dt

= −νeu +

(√
2νekBTb/m j

)
Wt, (18)

where kB is the Boltzmann constant, m j the particle (ion
or electron) mass, and Wt is an independent Gaussian ran-
dom variable with mean value zero and variance equal to
the integration time-step ∆t. Equations (17) and (18) are
solved by directly using the analytical solution sa(τ; s0, u0)
and ua(τ; u0) (with s0 and u0 the values of the position and
velocity at τ = 0) given in Gillespie (1996): for a pre-
scribed free travel distance si, we first calculate the total free
travel time τi by solving the nonlinear equation sa(τi; s0 =
0, u0 = u(t)) = si, and then determine the new velocity as
u(t + τi) = ua(τi; u0 = u(t)) in one step. This method allows
the collision model to be more realistic in that the collision
frequency can be made proportional to 1/u3, with the char-
acteristic reduced collisionality at high velocities.

(b) The particle is energized by the UCS of length ` j (Eq. (13))

ds
dt

= u (19)

du
dt

= (e/m j) cos(α)E, (20)

with α the angle between the magnetic and the electric field,
which is assumed to be random.

We release 105 ions or electrons inside the AR with initial ve-
locity that obeys a Maxwellian distribution with temperature
T ≈ 10 eV, and follow the evolution of their velocity distribution
in time, using the parameters determined earlier.

In Fig. 9a we show the kinetic energy distribution of elec-
trons at 50 s, for η = 75ηS, in case of no collisions. The par-
ticles can escape in the vertical direction (z-) (the box size is
1010 cm) but usually the number of escaping particles is small,
so they are not shown here. All intermediate and final distribu-
tions are of clear Maxwellian shape, with particles heated to a
temperature of 150 eV. As Fig. 9b shows, the electron temper-
ature continuously increases with time, there is no feedback or
saturation mechanism since we have not considered collisions.
Figure 9c shows the kinetic energy distribution for ions at 3000 s,
for η = 75ηS, without collisional effects. The distribution again
is of Maxwellian shape, and the particles are heated to a temper-
ature of 200 eV. Ions thus show a behavior similar to that of the
electrons, but on a much slower time-scale, so they need longer
times for the heating mechanism to act effectively. More specif-
ically, the ions reach a temperature of 150 eV, which electrons
have acquired after 50 s, at a time roughly 2100 s. This implies a
scale factor for the energization time that is close to the square
root of the proton-to-electron mass ratio. Also, as for electrons,
there is no saturation effect for ions, with temperature monoton-
ically increasing.

In order for the electric field to be competitive against col-
lisions, the convective loss term in Eq. (18) should be smaller
than the electric force term in Eq. (20). Equating the two terms
we find that, if the electric force is to dominate over collisonal
losses, η should be larger than 106ηS. We thus consider here the
low-resistivity regime, and collisions must be considered impor-
tant for the case of the quiescent snapshot we study.
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Fig. 9. For η = 75ηS: a) distribution of the kinetic energy of electrons after 50 s in the absence of collisions, together with a Maxwellian fit;
b) electron temperature as a function of time in the absence of collisions, as estimated by Maxwellian fits; c) distribution of the kinetic energy of
ions after 3000 s in the absence of collisions, together with a Maxwellian fit; d) ion temperature as a function of time in the absence of collisions,
as estimated by Maxwellian fits.

We now apply the collisional losses (Eq. (18)) during the
free travel times. Figure 10a shows the kinetic energy distribu-
tion of electrons at 50 s for η = 750ηS, with collisions included,
and Fig. 10c shows the respective distribution for ions at 3000 s
and for η = 750ηS. The bulk of the particles lose all the energy
they gain to the background, and a small fraction of the particles
forms a power-law tail, though not much extended, for both elec-
trons and ions. We also find that a higher value of η (we here used
already the value of η = 750ηS which is then times higher than
the value of η = 75ηS used otherwise in this article) does not al-
ter the behavior of the bulk population, it leading only to a more
extended tail. So we do not find any heating of the test particle
population when collisions are included, which can though read-
ily be explained by the fact that even the minimum free travel
distance smin = 108 cm is much larger than the collisional mean
free path (104−105 cm), so the majority of the particles undergo
a very large number of collisions. That the test-particles are not
heated implies that there is a transfer of energy to the background
population, that is, the bulk population would be heated, which
is though not taken into account in our modeling approach. The

tail of both particle species can be explained by the fact that the
collision frequency depends on the third power of the inverse in-
stantaneous velocity, and with that fast particles are much less
affected by collisions. The total energy carried by the tails re-
mains roughly stable over time (see Fig. 10b, d).

The value of smin was so far chosen to be close to the grid-
resolution of the extrapolated field, and with that it is more a
technical than a physical limit. In the following, we make one
single change to the parameters as obtained from the data analy-
sis, by setting smin = 104 cm, that is, we let it be on the order of
the mean free path. The aim of this change is to explore whether,
depending on the scales of the current fragmentation, a kinetic
description may become appropriate. The resulting kinetic en-
ergy distribution of electrons is shown in Fig. 11a, and obvi-
ously it is close to, but not exactly of, Maxwellian shape, with
temperature roughly 110 eV for η = 75ηS. As Fig. 11b shows, a
saturation occurs at this enhanced temperature. We also find that
for the larger resistivity η = 150ηS there is again heating with
saturation at a temperature twice as much as for η = 75ηS (not
shown here).
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Fig. 10. Distribution of the kinetic energy with collisions included, for η = 750ηS, a) for the electrons at t = 50 s, and b) the mean value of the
kinetic energy of the electrons that form the power law tail (i.e., with energies larger than 100 eV) as a function of time, c) for the ions at t = 3000 s,
and d) the mean value of the kinetic energy of the ions that form the power law tail (i.e., with energies larger than 100 eV) as a function of time.

In Fig. 11c, the kinetic energy distribution of ions is shown
at 3000 s for η = 75ηS, again close to, but not perfectly, of
Maxwellian shape, and from Fig. 11d it follows that there is
again saturation of the heating process at roughly 140 eV, nearly
the same temperature as the one of the electrons.

4. Summary

This work discusses an observationally driven study of magnetic
configuration, particle acceleration and plasma heating pertain-
ing to NOAA AR 11158. The analysis consists of the following
steps:

Using nonlinear force-free extrapolation techniques we re-
constructed the magnetic field of the active-region corona us-
ing several choices for the spatial-resolution. We searched for
magnetic discontinuities and UCS built into the reconstructed
magnetic field, at the same time performing a validation of the
extrapolated fields aiming to discard structures with poor field
solenoidality.

The next step was the statistical analysis of UCS and
the search for the characteristics of the spatial clustering and

strength of their electric currents. We found that the clustering
shows stable power-law behavior for (a) the electric current den-
sity distribution above a certain threshold; (b) the magnetic en-
ergy distribution of the UCS; and (c) their volume distribution.
In addition, UCSs were found to be fractal, with a well-defined
fractal dimension, ∼1.8. Notice that the power-law distributions
for UCS free energies and volumes align with those of previous
estimations using linear force-free results (Vlahos & Georgoulis
2004).

The statistical results, most notably the power-law indices,
were found to be fairly insensitive to the spatial resolution. This
conclusion was reached by testing much higher-resolution data
from Hinode.

Based on the above statistical characteristics and using a
small enhancement for the resistivity above the Spitzer resistiv-
ity, we reconstructed the fractal distribution of the electric field
inside the active region.

We followed 105 plasma particles inside the fractal electric
fields and monitored the temporal evolution of their kinetic en-
ergy distribution for both electrons and ions.
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Fig. 11. Same as Fig. 9, but including the effect of collisions, and with a modified (smaller) value of smin.

We found that, due to collisions, both electrons and ions are
energized only at the tail of their final distribution, that is not
necessarily identical to their initial Maxwellian. This tail typi-
cally obeys an energetically stable power-law whose dynamical
range depends on the value of the resistivity.

We conclude that the bulk of the plasma is heated either di-
rectly or collisionally:

(a) If we assume that the smallest distances between UCS are
given by the resolution of the magnetogram and its extrap-
olation, then collisions dominate such that the heating can
only be modeled by using a standard fluid transport ap-
proach.

(b) If the smallest distances between the UCS are on the order of
the collisional mean free path, then heating is manifested on
the kinetic level adopted in this article. Therefore, the appro-
priate approach to the question of coronal heating, namely
fluid or kinetic level, depends on the scales to which the cur-
rent fragmentation extends.

Assuming that the same power-law distribution of UCS distances
extends below the spatial resolution of the extrapolated magnetic
fields we found that, close to the collisional mean free path, both

electrons and ions reach temperatures in excess of 100–150 eV
in a few tens of seconds for electrons and a few thousands of
seconds for ions. Therefore, our kinetic analysis shows that if
nanoflares with these properties exist in the active-region corona,
they should be able to easily heat the plasma to millions of K.
This may conceivably hold for the quiet-Sun corona, as well,
even with fewer or weaker UCS, given the lower energy-loss
demands away from active regions.

Making the conjecture that the statistical properties of the
UCS in quiescent ARs generally remain unchanged from what
we found here, the plasma in the solar corona can be heated ei-
ther through the interaction of the plasma particles with UCS
(following the kinetic approach, see Fig. 11), or through a com-
bination of collisional local heating (current dissipation, η j2)
and heat transport (Klimchuk 2006, 2015). In the latter case,
the statistical properties of the UCS can be used in order to
distribute the dissipation regions inside the active region. Our
model is a first attempt to investigate the role of kinetic pro-
cesses in coronal heating. To fully address the problem, one
would need to include the full behavior of the plasma, most no-
tably the role of cooling processes. Put simply, the cooling rate
of the plasma should balance the rate of energy (heat) deposition
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at quasi-steady temperatures compatible to those of the ambient
solar corona. The inclusion of plasma, either via a fully kinetic
code or via a hybrid one, comprising a hydrodynamical treat-
ment of the low-energy particles and a kinetic treatment for the
high-energy ones, is a viable extension to this work.

On the statistical aspect, if UCS are to be associated with
coronal heating, then the sub-resolution scales and the evolution
(fragmentation and coalesence) of the large scale UCS, analyzed
in this study holds the secret. Our power-law distribution of the
UCS energetics (Fig. 4) will dynamicaly evolve and the satistics
of the sporadic heating may be very different, especially on small
scales. Aimining to as high spatial resolution as feasible will lead
us to the kinetic analysis of the coronal heating problem and this
will be another meanigful extention of this study.

Concluding, we have shown that the obesrvationally-driven
reconstruction of the coronal magnetic field is a meaningful
approach for studies of active-region coronal heating by frag-
mented currents. Our analysis has two drawbacks, namely (1)
the low spatial resolution of the reconstructed magnetic field
(≈700 km), which is much coarser than the collisional mean free
path (≈1 km) and (2) the cursory use of the anomalous resistiv-
ity, whose role should be investigated comprehensively for weak
currents. We plan to expand on these two research avenues and
combine our analysis with currently available one-dimensional
techniques such as hydrodynamic-fluid codes for coronal heat-
ing (see Klimchuk 2006, 2015; Cargill et al. 2015) and UCS in
more realistic, MHD rather than force-free, magnetic configura-
tions (e.g., Archontis & Hansteen 2014).
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