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Abstract. In this paper we attempt, for the first time, to simulate the magnetic activity of an accretion disc
using a probabilistic cellular automaton model. Our model is based on three free parameters, the probabilities
of spontaneous and stimulated generation of magnetic flux above the surface of the disc (S0, and, respectively,
P ), and the probability of diffusive disappearance of flux below the surface (D). The model describes a changing
collection of flux tubes which stick out of the disc and are anchored inside the disc at their foot-points. Magnetic
flux tubes transfer angular momentum outwards at a rate which is analytically estimated for each single loop. Our
model monitors the dynamic evolution of both the distribution of magnetic loops and the mass transfer which
results from angular momentum transport due to this distribution. The energy release due to magnetic flaring
is also recorded as a function of time and exhibits temporal fluctuations with power spectra that depend on the
assumed emission-profile of single flaring loops: (i) for instantaneous emission, the power-spectra are flat at low
frequencies and turn over at high frequencies to a power-law with index −0.3; (ii) for emission-profiles in the form
of one-sided exponentials, the power-spectra exhibit clear power-law behaviour with index −1.7. Fluctuations
with a power law index between −1 and −1.7 are observed in many systems undergoing accretion. We found that
our approach allows steady accretion in a disc by the action of coronal magnetic flux tubes alone. If we express
the effective viscosity caused by coronal loops in the usual Shakura-Sunyaev α parameter of viscosity, we find
values which are in good agreement with observed values.
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1. Introduction

An accretion disc is a depot of angular momentum,
formed around central objects undergoing mass accretion.
Whenever the accreting material has a sufficient amount of
angular momentum, this must be disposed of before mat-
ter can collapse onto the central compact object. Outward
transport of angular momentum by viscous forces takes
place on a time-scale which is typically much longer than
both the time-scale of radiative cooling and the orbital
time-scale. As a result, matter resides at the orbits of
lowest energy for given angular momentum and the fluid
motion is organized in a series of nearly circular orbits,
spiraling slowly inwards (Pringle 1981). Observations sug-
gest that the effective viscosity required to account for
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the inferred inward radial velocity exceeds the “molec-
ular” viscosity by a factor of ∼106 (Frank et al. 1992).
The nature of this anomalous viscosity has not yet been
clarified, although a number of mechanisms have been
suggested which, in principle, could provide the required
magnitude for the viscosity coefficient ν (Papaloizou &
Lin 1995; Lin & Papaloizou 1996). Proposed mechanisms
are shocks (Michel 1984; Rozyczka & Spruit 1993) and
waves (Papaloizou & Pringle 1977; Tagger et al. 1990;
Lubow & Pringle 1993; Stehle & Spruit 1999), magn-
etized winds (Blandford & Payne 1982; Contopoulos &
Lovelace 1994; Mestel 1999), fluid turbulence (Shakura
& Sunyaev 1973), 2-D eddies (Abramowicz et al. 1992;
Bracco et al. 2000; Nauta et al. 2000), magnetic tur-
bulence (Lynden-Bell 1969; Shakura & Sunyaev 1973;
Schramkowski & Torkelsson 1996; Hawley & Balbus 1999),
and coronal magnetic loops (Burm & Kuperus 1988;
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Heyvaerts & Priest 1989; Aly & Kuijpers 1990; Kuijpers
1995). Here we investigate the action of coronal magnetic
loops anchored in a disc and its potential significance in
providing both the required anomalous viscosity and the
observed X-ray variability.

Various observations of accretion discs, both in Active
Galactic Nuclei (AGN) and in galactic binary systems,
suggest the existence of magnetic flaring phenomena sim-
ilar to solar flares (Galeev et al. 1979; Pozdnyakov et al.
1983; Nelson & Spencer 1988; Field & Rogers 1993; Horne
1994; Fender & Hendry 2000). A magnetic flare is the vio-
lent release of magnetic energy stored in coronal flux tubes
by reconnection of magnetic fields. As in the solar case,
accretion disc flares are assumed to occur in a magnet-
ically dominated corona, extending on both sides of the
disc, as soon as continued energy transfer from the disc
into the corona leads to thin magnetic structures along
which magnetic reconnection occurs.

The existence of coronae hosting magnetic loops in ac-
cretion discs is supported theoretically, on one hand by
the Balbus-Hawley instability in Keplerian discs in which
seed magnetic fields become amplified (Balbus & Hawley
1991), and on the other hand by the process of buoyancy
of magnetic fields inside discs (Coroniti 1981; Miller &
Stone 1999).

When a coronal magnetic loop anchored in the disc
has its foot-points located at different radial distances, it
transfers angular momentum from the fast revolving inner
gas to the slower outer gas, and either reconnects in a flare
event, or else reaches corotation, depending on the size of
the loop. It has been suggested that a radially overlapping
distribution of magnetic loops could be the origin of the
anomalous viscosity appearing in accretion discs (Kuijpers
1995).

Magnetic flaring could also account for the observed
variability in X-ray observations of accretion discs. This
variability often appears in the form of 1/f fluctuations, a
term used to refer to fluctuations having a power spectrum
in frequency f , exhibiting power law behaviour. In the case
of X-ray variability in stellar accretion discs, the power
law index has values in the range −1 to −1.7 (Makishima
1988).

Though the extent to which magnetic coronal loops
can explain the observed properties of accretion discs is
an intriguing question, the global and statistical features
cannot be studied by large-scale MHD simulations of in-
teracting magnetic loops. The problem is simply far too
complex. It has, however, been shown that a simple ana-
lytical model for the power release in magnetic flares in ac-
cretion disc coronae in AGN does reproduce the observed
temporal properties (de Vries & Kuijpers 1992; Pounds &
McHardy 1988).

A suggestion for the interpretation of 1/f fluctuations
in AGN using an alternative method of study has been
made in the work by Mineshige et al. (1994), where a cel-
lular automaton (CA) model generating 1/f fluctuations
is presented. In that model, mass is injected in a random
fashion into an accretion disc surrounding a black hole.

For each radius from the center of the disc, there is a crit-
ical value of the mass density. When the injected mass
accumulates and this critical value is exceeded, an un-
known instability is invoked and material begins to drift
inwards in an avalanche, thereby emitting X-rays. The sys-
tem evolves towards a self-organized critical state (SOC),
with the mass density barely below the critical value in
every point of the disc. The authors speculated that the
required instability is caused by reconnection of disc mag-
netic fields.

In our study, we have also made use of a 2-D CA
model but not (yet) of a SOC. We study the evolution
of a random collection of coronal magnetic loops of finite
lengths, assuming only local interactions between neigh-
bouring loops. In this way we are able to simulate the
phenomena of magnetic flux emergence, disappearance,
flaring and energy release in a magnetized accretion disc
corona as well as the angular momentum and mass trans-
port occurring in the disc around a compact object. An
important element of our treatment is that we correctly
take into account the essentially non-local transport of an-
gular momentum by finite coronal loops correctly.

2. The model

2.1. Physical background

2.1.1. The standard model

Assuming a thin disc (H(r) � r where H is the half-
thickness of the disc, and r the distance to the central
object), in which the pressure is dominated by gas pres-
sure, Shakura & Sunyaev (1973) have presented a steady,
analytical disc solution. The uncertainty in the viscosity
mechanism is bypassed by using the “alpha prescription”
for the coefficient of kinematic viscosity:

ν = αcsH, (1)

where cs is the sound speed. Isotropic fluid turbulence
is assumed to be the principle source of viscosity in their
model, and the “Ansatz” is equivalent to scaling the prod-
uct of turbulent velocity and eddy size to the local sound
speed times the disc half-thickness at a constant ratio, in-
dependent of distance. Of course, such a prescription only
models the viscosity and leaves open the question of its
physical nature, which could well be dominated by mag-
netic effects, e.g. such as arising from coronal magnetic
loops in the present approach.

The thin disc equations are solved in this Shakura-
Sunyaev approximation for Σ (surface density), H (half-
thickness), ρ (mass density), Tc (temperature at the
central plane of the disc), τ (optical depth), ν (viscosity
coefficient) and vr (radial drift velocity) as functions of
M (mass of the central compact object), Ṁ (mass trans-
fer rate), r (distance from the center of the disc) and the
Shakura-Sunyaev parameter α.
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In the thin disc approximation, the circular fluid ve-
locity vφ is very close to the Keplerian value. A thin ring
of material with radius r is rotating at an angular velocity

ΩK(r) =

√
GM

r3
· (2)

2.1.2. Magnetic activity

Based on the Balbus-Hawley instability (Balbus & Hawley
1991) Tout & Pringle (1992) have constructed a disc dy-
namo. Starting with an initially vertical seed magnetic
field, the instability creates a radial field component,
which in turn is sheared by differential rotation, and gives
rise to an azimuthal component. Buoyancy then acts on
this azimuthal component and recreates a vertical compo-
nent, after which the cycle is repeated.

In our model, we adopt the view that the magnetic field
appears in the form of intermittent flux tubes inside the
disc dynamo rather than in the form of spatially smooth
fields. These flux tubes, while anchored inside the disc,
emerge in the disc corona where they form the dominant
pressure contribution, and, therefore, are space filling.

Though the details of the interactions between these
discrete flux tubes are highly complex, we can sketch a
general picture guided by two of the best-studied cases of
magnetized objects: the solar magnetic field and the galac-
tic magnetic field. In both cases, observations support the
existence of discrete flux tubes.

The life-cycle of flux tubes on the solar surface has
been well-studied, using a CA model, by Wentzel & Seiden
(1992) and Seiden & Wentzel (1996), and we model the
main processes of the appearance, disappearance and in-
teraction of magnetic flux tubes in an accretion disc
corona in a similar fashion:

Spontaneous generation: Flux tubes embedded in the
disc experience a buoyancy force which tends to raise the
tubes towards the surface. Provided that the flux tubes
have been amplified by the disc dynamo enough to sur-
vive multiple fragmentation during their up-welling, they
emerge from the disc into the corona in a stochastic fash-
ion. Such a stochastic emergence of flux tubes in regions
where a magnetic field is absent (or very weak) has been
observed for the Sun (Howard 1996).

Stimulated generation: As is the case on the Sun (Weiss
1997) the emergence of a flux tube from the main body of
the disc may lead either to fragmentation of the emerging
loop, or to disturbing other submerged flux tubes, or both.
In the first case, the fragments of the original loops emerge
sequentially and close to each other. In the second case,
other submerged flux tubes may be triggered to emerge.
In either case, there is an increased probability for the
emergence of new loops in the spatial “neighbourhood” of
existing loops. The time-scale in which this “stimulated”
appearance occurs will be of the order of the rise time of
a loop from the center of the disc to its surface. The rise
velocity vrise of the flux tube will be of the order of an
effective Alfven speed vA which is approximately equal to

the local sound speed cs if one requires the magnetic field
pressure inside a flux tube to be equal to the ambient gas
pressure inside the disc pmagnetic = pgas. Then

trise(r) =
H(r)
vrise(r)

' H(r)
cs(r)

' 1
ΩK(r)

· (3)

Flaring: Solar flares are thought to occur when the –
largely force-free – electric current system in coronal loops
has increased to such an extent that reconnection of the
magnetic field sets in impulsively, and releases stored mag-
netic energy in a violent manner. The increase in electric
currents is caused by kinematic distortion of coronal flux
tubes due to subphotospheric flows. In the case of accre-
tion discs, shearing and twisting caused by differential ro-
tation of the disc has a similar effect as subphotospheric
flows in the Sun, and is expected to cause distortion, sub-
sequent reconnection, and energy release of magnetic fields
in the corona of an accretion disc. As it is the Keplerian
shear which distorts the magnetic field, its effect varies
with the initial orientation of the flux tubes upon emer-
gence. When, at the time of emergence, the loop is oriented
along the radial direction, the Keplerian flow will induce
an azimuthal field component and, at the same time, a
twist inside the tube. Also, the length of the tube will in-
crease. When, initially, the loop is oriented at a large an-
gle with respect to the radial direction, the change in the
azimuthal field component will be relatively small, while
the main effect of the flow on the tube is to increase its
length. The loop becomes merely elongated without much
increase in the internal coronal current density. Further,
the effect of twisting is determined by the differential ro-
tation frequency of both foot-points, and occurs on a long
time scale, as compared to the Keplerian time. Therefore,
we neglect the effect of twisting, and assume that an, ini-
tially, radial loop is more susceptible to flaring than when
it emerges at a non-zero angle. In the extreme case of a
loop which emerges at right angles to the radial direction,
the loop is not affected in any way by differential rotation.

Diffusive disappearance: On the Sun, coronal flux is
known to disappear due to diffusive destruction. In the so-
lar corona, active regions are observed to “fray”. First, the
magnetic field at the circumference falls below an observ-
able level, and later, the inner parts of the active region
follow. Although the details of the disappearance process
are unclear, it is believed that the flux constituting the ac-
tive region undergoes lateral fragmentation and the frag-
ments spread out so that the magnetic field strength is
reduced to a non-observable level. Loop fragments subse-
quently submerge due to forces caused by subphotospheric
flows (Howard 1996). In the accretion disc case we shall
assume that coronal flux tubes exhibit similar behaviour,
with flux concentrations tending to diffuse away towards
areas with weak or no magnetic field.

2.1.3. Angular momentum transfer

Coronal loops with footpoints lying at different distances
from the center of the disc connect areas with different
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specific angular momentum. The loops transport angular
momentum effectively from the fast revolving inner re-
gions of the disc to its outer parts (Aly & Kuijpers 1990).
This raises the question of whether a radially overlapping
distribution of coronal loops could provide an effective vis-
cosity mechanism which can account (at least partly) for
the high accretion rates observed in accretion discs.

Here, we follow the estimates of the rate of transport
of angular momentum in an individual coronal loop, as
summarized in the Appendix. We distinguish between the
cases of a large, flaring loop and a small loop which does
not flare. A flaring loop transfers angular momentum ef-
fectively during a time

τf = 2/(3ΩK) (4)

(after which it flares), and at a rate

J̇f = 2A2ρc
2
sr2f

2
c = 2A2,photρc

2
sr2fc, (5)

where r2 is the distance of the outer foot-point of the loop
from the central object, A2 is the area covered by the
outer foot-point at coronal levels, A2,phot the same area
at the photospheric level, ρ = ρ(r2) is the mass density in
the disc, cs(r2) is the sound speed in the disc, and fc is
a correction factor which expresses the coronal magnetic
field value – which is relevant for the torque – in term
of the magnetic field value at the (photospheric) surface
Bcor = fcB (implying fcA = Aphot). We define the lo-
cal surface filling factor Fff at distance r as the relative
area of the ring at distance r covered by magnetic flux.
As the magnetic field in the corona dominates over the lo-
cal gas, it fills the entire corona (“space-filling”), and flux
conservation then implies that typically fc = Fff . To take
account, however, of a disc with a few isolated loops (the
case of a very small filling factor) we use

fc = max{Fff ,H
2/L2} (6)

on geometrical grounds. Here L is the linear separation of
the foot-points of the isolated loop.

A small loop (radial separation r2−r1 ≤ 8H/9) trans-
fers angular momentum effectively during a time

τs =
1

ΩK
·
√
r2 − r1

2H
, (7)

after which its foot-points reach corotation, and at a rate

J̇s = 3
√
r2 − r1

21.5
√
H
J̇f . (8)

2.2. The cellular automata approach

Based on the above processes for the formation and evolu-
tion of loops, a CA model is proposed here, which focuses
on the global evolution of the magnetic activity of an ac-
cretion disc. The main elements of the CA approach are a)
Discretization in space and time: interacting elements are
positioned on a discrete, usually periodic, lattice and all

interactions and events occur at discrete steps; b) “trans-
lation” of the complex physical laws which govern the sys-
tem to a set of simple rules describing the interactions be-
tween elements; c) localized interactions: all interactions
between elements are assumed to be local and the “sphere
of influence” of any single element is constrained within
its immediate spatial neighbourhood.

A CA model reproduces global features of the be-
haviour of a system that cannot be predicted in advance
as a direct conclusion of the rules controlling the local
interactions but are the result rather of their non-linear
synthesis. Such a study allows us to isolate specific sets of
microscopic properties which are responsible for specific
observed global properties. Conversely, if the CA model
reproduces the observed global features successfully, this
indicates that the “microscopic” physics, as embedded in
the selected rules, characterize the system.

2.2.1. The Shakura-Sunyaev disc solution

In our approach, the Shakura-Sunyaev disc solution ini-
tializes our computations. Further, it is used to determine
the geometric features of our model. It serves as a plau-
sible assumption for the geometry of our automaton and
the central temperature and density of the disc.

We restrict ourselves to the region of the disc which
is dominated by gas pressure over radiation pressure.
The Shakura-Sunyaev solution determines the initial half
thickness H(r), central temperature Tc(r), and mass den-
sity ρ(r) as a function of the distance r from the center of
the disc:

H(r) = 1.7× 108 α−1/10Ṁ3/20M−3/8r9/8f3/5
r cm, (9)

ρ(r)=3.1×10−8α−7/10Ṁ11/20M5/8r−15/8f11/5
r g/cm3

,(10)

Tc(r) = 1.4× 104 α−1/5Ṁ3/10M1/4r−3/4f6/5
r K, (11)

where r is given in 1010 cm, M in solar masses, Ṁ in
1016 g/s and fr = [1− (R∗r )1/2]1/4 where R∗ is the radius
of the compact object (Frank et al. 1992).

Despite the fact that for the initialization of our au-
tomaton and for evaluating temperatures we have used,
for simplicity, α = const, there is no physical reason why
α should be independent of r. If, however, α did depend
on r, the functional dependence of H, ρ and Tc on r would
change accordingly.

2.2.2. Geometry

We model one side of the disc only, and assume that the
events occur symmetrically on both sides of the disc at
the same time. We model the disc as a 2-D circular grid
consisting of ∼300 rings.

1. Each ring rotates at a Keplerian angular velocity
ΩK(r) given by Eq. (2);

2. The width of each ring is equal to 8H(r)/9 (see
Appendix), where H(r) is the half-thickness of the disc
(as given by the Shakura-Sunyaev disc solution), and
r the radius of the ring;
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Fig. 1. The nearest neighbours of a cell in our grid. The neigh-
bouring cells are the only grid elements with which a cell is
interacting.

3. Each ring is divided into a number of cells, each of
which may host a loop foot-point at any time. A cell
has one of two possible states: either it hosts a loop
foot-point and is completely covered with flux, or it
does not host a foot-point and it contains no flux at all;

4. The magnetic field strength at each ring is calculated
by putting the magnetic pressure equal to the gas pres-
sure in the disc pgas = B2/8π and using the Shakura-
Sunyaev value for the gas pressure: pgas = ρkTc

µmp
with

ρ and Tc given by the relations (10) and, respectively,
(11). The magnetic field strength calculated this way
corresponds to the interior of the disc and is therefore
an upper limit to the magnetic field strength at the
surface (which is of interest in our case) rather than
its actual value. Still, to retain simplicity in our cal-
culations, we use this value of B for the magnetic flux
tubes at the surface;

5. The number of cells in each ring is now adjusted in such
a way that each cell corresponds to the same amount
of flux, independent of distance from the center. In this
way, loops with foot-points lying at different r satisfy
conservation of magnetic flux. Thus, we find for the
number of cells in each ring

N(r) = Cr13/16, (12)

where C is a constant depending on the amount of flux
that each individual cell can host, and is a parameter
controlling the spatial resolution of the model;

6. Each cell is in physical contact with a number of cells:
in the same ring, in the adjacent outer ring, and in the
adjacent inner ring (Fig. 1) Since the number of cells
increases as we move outwards, the exact number of
adjacent cells depends on the relative orientation of the
rings. These cells are the “neighbours” of the cell con-
sidered and constitute its “sphere of influence”. A loop
only interacts with cells neighbouring its foot-points.
Since the disc rotates differentially, the neighbours of
a cell differ in time in general;

7. Initially, each ring contains an amount of mass which
is calculated from the Shakura-Sunyaev value for ρ at
the corresponding r.

In order to use the Shakura-Sunyaev equations to com-
pute the various geometric features of the model, we need
to chose initial, fixed values for M , Ṁ and α. M charac-
terizes the central compact object and in our calculations
is equal to 1.4 M�, a typical value for the mass of a neu-
tron star. For Ṁ and α we use initial values close to the
ones observed in actual accreting systems.

The modeled region of the disc extends from approxi-
mately 2 to 10 stellar radii.

2.2.3. Magnetic activity and angular momentum
transfer rules

In line with the previous constraints and physical assump-
tions, we model our CA as follows:

Initial loading: We initialize the automaton by ran-
domly distributing bipolar loops of various sizes and orien-
tations so that approximately 1% of the surface is covered
by magnetic flux. We then let the loops evolve dynamically
according to the following rules:

Spontaneous generation: The stochastic emergence of
loops is simulated by ascribing a probability S of sponta-
neous generation to each cell hosting no magnetic flux. S is
the probability for an empty cell to host a loop foot-point
in the next time step. The other foot-point of the newly
generated loop appears at the same time step at a random
position (and, therefore, with various orientations of the
loop) within a band of rings of maximum radial separation
∆rmax ≈ 50H from the ring hosting the first foot-point.

This probability S is a parameter directly associated
with the amount of flux present in a certain region of the
disc. We require S to depend on the actual (instead of
the steady Shakura-Sunyaev) mass density of each ring.
The reason is as follows. As the model evolves, ρ deviates
from the value given by the Shakura-Sunyaev disc solution
because the mass transfer is governed not by the initially
chosen α, but by the presence of coronal loops. As mass
accumulates at a given radius, new magnetic field, once it
appears, is expected to be relatively strong (B ∝ √pgas ∝√
ρ). In reality, therefore, the magnetic field at a given

radius varies in time, while in our model, for simplicity, we
calculate the local magnetic field value from the Shakura-
Sunyaev solutions for ρ and T . In order to take the time-
dependence of ρ and, consequently, of B into account, we
introduce a ρ-dependence in S instead, and demand

S = min[S0

√
ρ/ρ0, 1], (13)

where ρ0 is the Shakura-Sunyaev value of ρ for the ring
considered, and S0 is the spontaneous generation proba-
bility corresponding to a disc having a Shakura-Sunyaev
mass distribution. S0 is a free parameter of the model and
is taken to be space-independent.

Stimulated generation: This process is simulated by al-
lowing existing loops to stimulate the emergence of new
loops: cells which, in a certain time step, have no magnetic
flux, have an increased probability of hosting a loop foot-
point in the next time step if they are neighbouring an



V. Pavlidou et al.: Magnetic activity in accretion discs 331

already existing loop. Both foot-points of the stimulated
loop are taken to emerge near the respective foot-points
of the stimulating loop.

In general this probability is a second free parameter
related to the internal dynamics of the interaction of flux
tubes. In this article we assume that it is related to the
rise time of the flux tube, and keep its value constant.
Since the estimated rise time of a loop (Eq. (3)) is

trise(r) =
1

ΩK(r)
=

√
r3

GM
(14)

we take for the probability of stimulated generation P per
time step

P =
t0
trise

=

√
GM

r3
t0, (15)

where t0 is arbitrary in general, but, in the present calcu-
lations, set equal to our time-step tts, which we take to be
0.1 times the rotation period of the innermost ring.

Flaring: Loops which, at the time of their birth are too
oblique with respect to the radial direction, are expected
to be elongated rather than sheared by differential rota-
tion and do not undergo flaring. Of course, they would
be twisted on a much longer time scale. To simulate this
phenomenon while retaining simplicity, we have adopted
a “crude” distinction between loops deviating less than
45◦ from the radial direction, which flare, and loops devi-
ating more than 45◦ from the radial direction, which do
not flare. The latter kind does not transfer angular mo-
mentum. To a first approximation, we consider such loops
unimportant, and disregard them in the present study.

We now consider loops which, at the time of birth,
do not deviate more than 45◦ from the radial direction.
A loop with a radial foot-point separation greater than
8H/9 (that is to say, greater than the width of one ring)
is taken to undergo flaring, after a lifetime equal to τf . In
our model, after flaring, magnetic field remnants disappear
from the grid. Loops with a radial separation less than
8H/9 are assumed not to flare, since they reach corota-
tion before shearing can distort them sufficiently (Kuijpers
1995). After reaching corotation, such “small” loops do
not transfer angular momentum and, for simplicity, dis-
appear from the grid.

Diffusive disappearance: For every neighbour free of
magnetic flux an existing loop has a probability D of dis-
appearing in the next time step. Thus, the total probabil-
ity of a loop of diffusing increases with the number of free
cells adjacent to its foot-points and is equal to

Dtotal = 1− (1−D)n, (16)

where n is the number of free neighbours. D is a free pa-
rameter of the model.

Energy release: In our model we can monitor the en-
ergy released by coronal flaring activity, and in particular
its temporal fluctuations. Of course, with the present as-
sumptions, the magnetic energy release must remain much

smaller than the thermal emission for reason of consis-
tency. The energy released in each flare is at least equal
to the free energy stored in the magnetic field of the flar-
ing loop. In our model of a force-free corona, the magnetic
virial theorem places an upper limit on the free magnetic
energy (Aly 1985), which is estimated to be of magnitude
(Kuijpers 1992)

f2
c

B2
zLA

8π
= fc

B2
zLAphot

8π
,

whereBz is the vertical component of the magnetic field at
the surface (photosphere) of the disc (fcBz is the vertical
component in the force free corona just above the disc), A
is the foot-point area at coronal levels, and Aphot that at
the photosphere, and L is the linear separation between
footpoints (LA is an estimate of the volume of the loop).

Angular momentum and mass transfer: To study the
angular momentum transfer by an evolving distribution
of coronal loops, we have adopted the following rules to
simulate the transport of angular momentum and the ac-
companying mass flow:

1. A flaring loop transfers angular momentum from the
inner to the outer foot-point during a number of time
steps given by the integer part of τf/tts, where τf is the
flare time and tts is the time interval corresponding to
one time step. The rate of angular momentum transfer
equals J̇f , given by (5);

2. A small loop (a loop whose radial separation does not
exceed 8H/9) transfers angular momentum during a
number of time steps equal to the integer part of τs/tts
at a rate J̇s given by (8);

3. After a number of time steps equal to their lifetime,
flaring loops release energy and then disappear while
small loops do not release energy and are then taken
out. The actual lifetime of a loop can, however, be
smaller than its calculated lifetime due to diffusive de-
struction. In this case, of course, the angular momen-
tum transfer ceases at the same time;

4. When a loop transfers angular momentum of the
amount ∆J = J̇tts per time step from the inner to
the outer cell, the fluid at the outer foot-point gains
this amount ∆J of angular momentum and thus tends
to move outwards. On the other hand, the fluid at the
inner foot-point loses the same amount ∆J of angu-
lar momentum and tends to move inwards. We assume
that a mass mf(r2) (mf(r1)) is transferred outwards
(inwards) to the next outer (inner) ring, and stops in-
teracting with the loop. The amount of mass mf that
leaves a cell and goes outwards (inwards), due to an
increase (a decrease) of its angular momentum equal
to ∆J , can be calculated from the difference between
specific angular momenta between adjacent rings:

∆J =
mf

√
GM

2
∆r√
r
, (17)
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Fig. 2. The flux filling factor Fff as a function of time (D = 0.1,
S0 = 0.05). Stabilization occurs around the value 0.158.

where ∆r = 8H/9 is the width of a ring. Therefore, we
have

mf =
2∆J√
GM

√
r

∆r
, (18)

where ∆J is the angular momentum transfer in one
time step. Since ∆r = H(r)8/9 ∝ r9/8 and ∆J ∝ J̇ ∝
(ρ(r)Tc(r))0.5r, the transferred mass varies with radius
asmf ∝ r−15/16. This implies that the angular momen-
tum transfer in an individual loop causes more mass to
slide inwards than to be ejected outwards. This results
in a net inward transport of mass, and is a means of
verifying the physical validity of our model.

These rules complete our CA model which is now fixed
by three physical quantities (mass of central compact ob-
ject M , mass input rate Ṁ , coefficient of viscosity α)
and three free parameters (the probabilities of spontaneous
generation S0, of stimulated generation (the constant t0
in Eq. (15)), and of diffusive disappearance D). In this ar-
ticle we have only investigated the dependence on S0 and
D and keep t0 constant.

3. Results

3.1. Distribution of coronal magnetic loops

For each set of S0 and D the local flux filling factor of
the disc (the fraction of the disc ring that is covered by
flux) reaches a stable mean distribution (as a function of
radius), about which it exhibits small fluctuations. Time
evolution and stabilization of the flux filling factor Fff for
characteristic values of S0 and D are shown in Fig. 2.

For all values of S0 and D the time evolution is very
similar, while the flux filling factor Fff stabilizes around
different mean values.

Coronal flux tubes tend to form organised “active re-
gions”, a result of the stimulated generation process. This
tendency can be observed in Fig. 3, where a face-on snap-
shot of a disc with filling factor fc = 0.158 is presented.

Fig. 3. Top: a face-on snapshot of the modeled region of the
disc, where the spatial distribution of the coronal magnetic
loops can be seen. The central compact object is also drawn to
scale at the center of the accretion disc. Bottom: a magnified
section of the picture above, where the active regions can be
easily discerned. Again, the compact object is drawn at the
center of the disc (D = 0.1, S0 = 0.05, leading to a steady-
state filling factor fc = 0.158).

3.2. Mass transfer and mass distribution

For a given combination {S0, D} we can determine the
value of the mass input rate Ṁ and the effective viscos-
ity parameter α around which the system stabilizes. In a
stabilized disc the total mass fluctuates around a steady
mean value. The stable rate of mass transfer is achieved by
angular momentum transport solely due to coronal mag-
netic loops!

We start our computation (at a fixed M equal to
1.4 M�) for an initial Ṁinitial and an arbitrarily cho-
sen αinitial. We estimate the geometrical features of the
model with the corresponding Shakura-Sunyaev disc so-
lution. We then let the model evolve until it reaches a
steady-state (one in which the surface density of the disc
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as a function of r does not change in time) and compute
Ṁimproved from the stabilized model, which turns out to
be different from the Ṁinitial. With this improved value for
the mass transfer rate, we can now compute a new value
for the α-parameter αimproved as follows:

From conservation of mass we have in a steady-state
Ṁ = 2πrΣvr (Σ = ρH is the surface density in the disc,
and vr the inward component of the fluid velocity). Since
νeff ∼ rvr2/3 we get νeff ∼ Ṁ/2πΣ. Also α = νeff/csH,
which finally gives the proportionality

α ∼ Ṁ

2πΣ
· 1
csH
· (19)

If we consider the values of cs, H and Σ to be fixed, we
can find an improved α from the model expressed in the
steady-state value of Ṁ :

αimproved = αinitial
Ṁimproved

Ṁinitial

· (20)

The improved values of α and Ṁ can be used to construct
a new disc geometry (based on a a new Shakura-Sunyaev
solution) on which the simulation is repeated with the
same values for the probabilities S0 and D. Subsequent
iterations give values of α which converge rapidly to
a final value. For a set of free parameters S0 = 0.05
and D = 0.1, and for an initial arbitrary αinitial = 0.1
and Ṁinitial = 1016 g/s, the subsequent improved values
αimproved converge to a final value of αfinal = 0.5, while the
mass accretion rate settles at a value of 2.5 × 1016 g/s.
This value corresponds to an accretion luminosity Lacc

equal to 1.7 × 10−3LEdd, where LEdd is the Eddington
luminosity.

The simulation produces a final mass distribution in
the disc (mass as a function of r) which exhibits fluc-
tuations around a distribution which is steady in time
and gives a total disc mass equal to a Shakura-Sunyaev
mass distribution for α = αfinal and mass input rate equal
to Ṁfinal. However, not surprisingly, the r-dependence
of this distribution deviates significantly from the corre-
sponding Shakura-Sunyaev distribution for r-independent
α (Fig. 4). This fact indicates that a completely self-
consistent representation of this disc would be one in
which the α parameter would be r-dependent.

3.3. Magnetic energy release

For each time step of the simulation we keep a record of
the total energy that is released due to reconnection of
coronal magnetic loops (on one side of the disc). In this
way, we construct a time series of the magnetic energy re-
leased in the part of the disc that is being modeled. For
the emitted X-rays we consider two alternative cases: (1)
The energy El that is released at the time-step ti by a
flaring loop l is radiated in X-rays instantaneously, i.e.
the emission-profile of every flaring loop is a δ-function:
El(t) = El · δ(t − ti). (2) The emission of a flaring loop
increases instantaneously, but it is followed by an expo-
nential decay (emission profile as a one-sided exponential):
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Fig. 4. Top: the mass of each ring after 350 000 time steps
(D = 0.1, S0 = 0.05), plotted together with the Shakura-
Sunyaev mass distribution at the beginning of the final itera-
tion. Bottom: the total disc mass as a function of time, plotted
for the last 200 000 time steps of our calculation.

El(t) = E · e
(
− t−tiτl

)
(for t ≥ ti), where E = El/τl, and

the decay time τl is estimated as τl = 0.1L/cs, where
we have approximated the length of the loop by its foot-
points distance L, and cs is the sound-speed at the outer
foot-point of the loop. In both cases, we keep track of the
X-ray emission as a time-series by counting the emissions
from all flaring loops.

The corresponding time series are shown in Figs. 5
and 6, respectively. Clearly, an exponential emission
profile causes temporally-extended structures to appear,
whereas the time-series for instantaneous emission ex-
hibits a more noise-like behaviour with, however, a more
extended energy range. The amount of energy released per
time step depends on the amount of flux present in the disc
corona at any time step, that is to say on the flux filling
factor and, consequently, on the probabilities S0 and D.

In the case of the δ-function emission-profile, the power
spectrum of the time series is flat at low frequencies
(white noise behaviour) and exhibits a turn-over to (weak)
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Fig. 5. Top: part of an energy release time series, using a δ-
function emission-profile for the flaring loops (instantaneous
emission). Bottom: power spectrum of a time series of length
16 384 time-steps, a part of which is shown in the top panel
(D = 0.09, S0 = 0.009). One time-step corresponds to
1.82 × 10−3 s.

power-law behaviour with slope of about −0.3 for large
frequencies (above 100 Hz; Fig. 5). For the exponential
emission-profile, there is a clear power-law behaviour of
the power-spectrum at frequencies already above roughly
5 Hz, with slope −1.7 (Fig. 6). This is to be compared to
the power-spectra of X-ray fluctuations of X-ray binaries,
which exhibit power-law behaviour with indices between
−1 and −1.7 (Makishima 1988). Our model with assumed
exponential emission-profile thus reproduces a power-law
with an index compatible with the observations.

Of course, for consistency with the Shakura-Sunyaev
disc model which we simulate magnetically, most of the
liberated energy must still be in blackbody radiation from
the disc. For the case presented in Figs. 5 and 6 (D = 0.09,
S0 = 0.009) the “magnetic” or X-ray luminosity fluctu-
ates around Lmag = 3.8× 1033 erg/s (note that one time-
step corresponds to 1.82 × 10−3 s). This should be com-
pared to the disc accretion luminosity 0.5GMṀ/R∗ =
1.6 × 1036 erg/s for this case, or more precisely to the
part released gravitationally between the outer and inner
edge of the disk Lacc = 6× 1035 erg/s. The fraction of the
accretion luminosity emitted via the magnetic channel is
then only Lmag/Lacc ∼ 6.2 × 10−3, which is consistent
with the model assumptions.

Fig. 6. Top: the energy release time series, using a one-sided
exponential for the emission profiles of flaring loops. Bottom:
power spectrum of a time series of length 16 384 time-steps, a
part of which is shown in the top-panel (D = 0.09, S0 = 0.009).
One time-step corresponds to 1.82× 10−3 s.

4. Summary and discussion

We have presented a Cellular Automaton model to study
the global features of accretion in a disc by the action of
coronal magnetic loops, of the associated coronal magnetic
activity, and of the magnetic energy release. The physical
processes of spontaneous and stimulated appearance, and
of diffusive disappearance of magnetic loops on the disc,
are described in a probabilistic way, controlled by three
free parameters (probabilities of diffusive disappearance,
D, of spontaneous generation, S0, and of stimulated gener-
ation P ). We have investigated the role of two of these pa-
rameters: D and S0. The transfer of angular momentum,
of mass, and the release of energy is based on straightfor-
ward approximations of the evolution of a single coronal
loop, as specified by the initial locations of its foot-points
and its magnetic flux. We simulate only one side of the
disc and assume that the magnetic corona on both sides
of the disc is, at any instant, symmetric with respect to the
disc mid-plane. We have included the effect of the mirror
corona in the rate of transport in our calculations.

In our simulations, we find that the action of mag-
netic loops does indeed take over the transport of angu-
lar momentum and mass Ṁ as forced initially by the
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α−prescription in a Shakura-Sunyaev disk, and at a new
steady-state characterized by αfinal, Ṁfinal.

Our main result is that the distribution of coronal mag-
netic loops computed in the model is capable of sustaining
an inward mass transfer at rates in the range of the values
observed in accreting systems. Expressing the viscous ac-
tion of the loops in the usual α-parameter, we can model
α ∼ 0.5 without any problem.

The model is well-behaved and stable for a range of
combinations of the probabilities S0 and D controlling the
magnetic activity. Our results suggest that the combina-
tion of probabilities {S0, D}, for which the system stabi-
lizes at specific Ṁ is not unique, but can be chosen from
a certain range of values. We now discuss the qualitative
and quantitative features of the magnetic energy release
in our simulations, and how these can be understood from
simple physical considerations.

4.1. Energy and angular momentum budget

The energy release due to magnetic reconnection of the
loops results in a variability of the energy release time se-
ries with a power-spectrum which depends strongly on the
assumed emission-profile of single flaring loops. Assuming
instantaneous emission, a white noise power spectrum re-
sults below a relatively high turnover frequency, above
which it becomes a power-law with exponent −0.3. For
exponential emission-profiles, there is a clear power-law
behaviour of the power-spectrum with index −1.7. The ob-
served variations in X-ray luminosity have characteristics
similar to the model with exponential emission profiles,
namely power-spectra exhibiting power-laws with indices
in the range from −1 to −1.7. The magnitude of the mag-
netic luminosity in our model is small compared to the
observed X-ray luminosities. Here we discuss how these
results depend on the assumptions and parameter values
in the present simulations.

The power-spectrum: CA as complexity models are
able to show power-spectra for a number of different rea-
sons: on the one hand, they may be in a self-organized
critical (SOC) state, where a threshold-dependent process
may cause chain-reactions (avalanches) which eventually
spread over the whole grid, thereby introducing tempo-
ral correlations which are reflected in a non-flat power-
spectrum. In these SOC models, the evolution rules are
such that a certain global stress is always maintained over
the grid, i.e. they restrict the freedom of choosing just
any, though physically motivated, evolution rules for the
CA. On the other hand, any kind of (strong enough) tem-
poral correlations which are introduced into the energy
release process may lead to non-flat power-spectra, for
instance in the form of temporally extended energy re-
lease. Finally, some kind of communication or triggering
between individual loops is probably able to lead to non-
flat power-spectra. Such triggering may be less restrictive
than SOC-type evolution rules and allow more freedom in
choosing the rules than in the SOC case.

The second possibility, extended emission-profiles, has
been applied in this paper. It should be noted, however,
that different emission profiles would yield different power
spectra (see e.g. Isliker 1996, on the relation of emission
profiles – power spectra). The power spectra are only
weakly dependent on the elements of the model other than
the emission profile.

The “non-thermal” energy release: We have already
noted that consistency of our model with a Shakura-
Sunyaev disc requires the “non-thermal” (magnetic) lu-
minosity to remain small in comparison to the accretion
luminosity. While the magnitude of our magnetic lumi-
nosity does indeed satisfy this criterion, we also like to
understand its magnitude, and, moreover, how it depends
on the chosen parameter values.

The amount of energy that can be stored and, sub-
sequently, released via the magnetic “channel” depends
sensitively on the typical loop length. This follows from
elementary considerations of energy and angular momen-
tum conservation, and can be seen as follows.

Energy budget and optimizing the magnetic energy re-
lease: we check whether our prescription for the energy
released in a magnetic flare in Sect. 2.2.3 satisfies conser-
vation of energy.

When an element of mass mf moves inward from
one Keplerian orbit to another over a radial distance ∆r
(which is the jump during one time step) the liberated en-
ergy – which can be stored in the magnetic field – follows
from the virial theorem

∆W = ∆(0.5Wgrav) =
GmfM∆r

2r2
= ∆JΩK(r), (21)

where Wgrav = −GMmf/r is the gravitational energy of
the mass element, ∆r is the absolute value of the radial
step, ∆J the loss in angular momentum (in absolute value)
per time step as before, and we have have used Eq. (18).
The end result of Eq. (21) could, of course, have been
written directly from conservation of energy, and it really
is just a confirmation that our prescription is physically
consistent. In the case of a loop, the inner foot-point is
displaced inward and the outer foot-point outward. The
energy liberated in this process then follows from Eq. (21)
to be

∆Wloop = ∆JΩK(r1)−∆JΩK(r2) = ∆JΩB

= 1.5∆JΩK(r0)
r2 − r1
r0

, (22)

where, as before, r0 = (r1 + r2)/2. The energy which be-
comes available as stored free magnetic energy when an,
initially radial, flux tube gets distorted during the build-
up time of a flare, τf , is just τf/tts times the above value
(tts is the time step). This energy should be equal to the
released magnetic energy. Using Eqs. (A.3) and (A.4) we
can write this result as

1.5ΩKτf
∆J
tts

r2 − r1
r0

= J̇f
r2 − r1
r0

= 2A2,phot
B2
z

8π
r2
r0
fc(r2 − r1), (23)
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which, indeed, becomes identical to our estimate of the
magnetic energy release in Sect. 2.2.3 once we put r2/r0 =
1 and r2 − r1 = L.

Finally, it follows directly from Eq. (22) that – for a
fixed amount of angular momentum transferred – the re-
lease of energy increases proportionally to δr = r2−r1, the
radial foot-point separation of the loop. Physically, this
is obvious, as for a large loop a relatively small amount
of the energy released at foot-point 1 is absorbed as or-
bital energy by matter at foot-point 2 when it receives the
transferred amount of angular momentum.

Approximations: The model described here is only a
first step in the study of the magnetic activity in accretion
discs using Cellular Automata. It contains several simpli-
fying assumptions:

– α is a constant: The geometry of our model is based
on a Shakura-Sunyaev disc solution with α = const.
However, our results indicate that this assumption is
not valid if the dominant angular momentum trans-
port mechanism is a distribution of coronal magnetic
loops. This can be understood physically if we con-
sider the fact that in a differentially rotating disc the
time-scale of the action of the disc dynamo depends on
the angular velocity and thus on the distance from the
center. Since it is the magnetic loops produced by this
dynamo that produce the viscosity described by α, an
r-dependence of α follows as a natural consequence. A
refinement of the model using a geometry based on a
Shakura-Sunyaev disc with r-dependent α is required
to achieve a completely self-consistent final state;

– The absence of non-active loops;
– The foot-points of a loop remain fixed;
– The instantaneous versus exponential release of the

flare energy in X-rays: when the flaring processes are
known better, the energy release can be described more
adequately;

– Steady-state: a refinement of the present model is re-
quired to explore modeling of strongly time-dependent
accretion;

– Gas pressure dominated disc: for simplicity we have
considered discs which are dominated by gas pressure
and not by radiation pressure;

– Similarly, we have addressed discs around non-
magnetized objects only.

Further study is also required in order to determine the
limits of the region on the {S0, P,D} plane outside of
which the configuration of the model becomes unstable
(the grid fills up or empties completely) with respect to
magnetic activity and mass density. From an analysis of
the connection of the CA with the MHD equations (see
Isliker et al. 1998) we plan to gain more insight into the
meaning of the free parameters of our model.
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Appendix A: Torque from magnetic loops

Here we summarize the physics behind the estimates
(4)–(8) for the torque exerted by a magnetic loop ex-
tending from an accretion disc into the ambient force-
free corona. A more extensive discussion can be found in
Kuijpers (1995).

Angular momentum transport: Consider an individual
coronal magnetic flux tube, anchored in the accretion disc
at distances r1 and r2 (r1 < r2), and, initially, oriented
in the radial direction. We assume that the coronal part
of the flux tube is force-free and remains so during its
evolution (except during the short period of reconnection),
and that force balance between Lorentz force and pressure
force is established in a relatively thin layer just above
the disc photosphere. Over this thin layer the flux tube
expands and the “vertical” component of the magnetic
field decreases from its photospheric value Bz,phot to its
coronal value Bz,cor = fcBz,phot, where fc is the effective
local surface filling factor defined before.

We make a distinction between flux tubes which are
distorted appreciably by the flow at their foot-points and,
consequently, reconnect in a magnetic flare, and flux tubes
which are sufficiently compact to ultimately withstand the
flow at the foot-points.

In a long flux tube with finite cross-section, Keplerian
motion at the foot-points of the individual field lines
within the tube shears and twists the internal magnetic
field distribution. Both shear and twist change the cur-
rent distribution in the coronal part of the tube. The fluid
shear builds up an azimuthal (toroidal) magnetic field
component out of an initially meridional (poloidal) field
according to

Bφ =
BzΩBrt

δr
, (A.1)

where δr ≡ r2−r1 � r1 is the radial foot-point separation
of the loop, and

ΩB ≡ |ΩK(r1)− ΩK(r2)| (A.2)

is the Keplerian beat frequency. Equation (A.1) is an ap-
proximation of the evolution of a linear force-free arcade
to within 30% (Burm & Kuperus 1988). The free mag-
netic energy of the flux tube increases, and, therefore, it
expands upward into the corona. We assume that the flux
tube reconnects with the overlying coronal field structure
and produces a magnetic flare explosion as soon as the
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coronal values satisfy Bφ = Bz (Aly 1985; Kuijpers 1992).
This occurs after a period

τf =
δr

ΩBr
=

2
3ΩK(r)

, (A.3)

which reproduces our Eq. (4). Of course, the tube also
becomes twisted, at the same time as it is sheared, but
much less. In our simple treatment we neglect the effects of
twisting. The average rate of transport of angular momen-
tum through a flaring loop can now be calculated from a
straightforward integration of the Maxwell stresses across
the (coronal) foot-point area A2

J̇f ≈
2A2Bz2r2

4πτf

∫ τf

0

Bz2ΩBr2t

r2 − r1
dt =

A2B
2
z2r2

4π
= 2A2ρc

2
s r2f

2
c , (A.4)

where the integration is over foot-point 2 and we have as-
sumed that the loop is a closed flux tube which extends
on both the upper and lower side of the disc in an anti-
symmetric fashion. The result (A.4) is our earlier Eq. (5).

In a sufficiently small flux tube the difference in an-
gular momentum of the gas at both foot-points is so
small that the loop magnetic field can transport the ex-
cess within a flaring time τf . Building up of an azimuthal
field component satisfying (A.1) will then be halted when
the loop reaches rigid rotation: Ω(r1) = Ω(r2) = ΩK(r0)
where r0 = (r1 + r2)/2. An estimate for the transfer time
τs is obtained from equating the deficit angular momen-
tum at foot-point 2 with respect to that at a rotation rate
ΩK(r0) to the amount transported into foot-point 2 during
a time τs (use the first part of (A.4)):

1.5Ap2H2ρ2r2(r2−r1)ΩK2 = 3A2r2B
2
z2ΩK2τ

2
s (8π)−1,(A.5)

where the cross-section of the flux tube at the level of
the photosphere A2,phot relates to that at the corona as
A2,phot = fcA2. For small loops, fc will not be too different
from unity, and it follows that

τs =
(
r2 − r1
2csΩK

)0.5

=
1

ΩK

(
r2 − r1

2H

)0.5

, (A.6)

which reproduces (7). Finally, the average rate of trans-
port of angular momentum into footpoint 2 for a small
loop during a time τs is

J̇s ≈ A23ρc2sr2

(
r2 − r1

2H

)0.5

=
(

9(r2 − r1)s

8H

)0.5

J̇f , (A.7)

which reproduces (8).
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