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An analytical description of magnetic islands is presented for the typical case of a single

perturbation mode introduced to tokamak plasma equilibrium in the large aspect ratio

approximation. Following the Hamiltonian structure directly in terms of toroidal coordinates, the

well known integrability of this system is exploited, laying out a precise and practical way for

determining the island topology features, as required in various applications, through an analytical

and exact flux surface label. [http://dx.doi.org/10.1063/1.4885082]

One important topic of fusion research is the appearance

of magnetic islands, e.g., in the form of neoclassical tearing

modes (NTMs), and in particular, their role in plasma confine-

ment. Their theoretical investigation, besides direct numerical

integration of magnetic field lines, sometimes requires an ana-

lytical description, as well. The latter can be provided by a

magnetic surface quantity, which may be quite useful in vari-

ous modelling approaches, such as test-particle simulations,

ray tracing, and wave propagation. For magnetic perturba-

tions consisting of an infinite series of modes, such quantities

can only exist locally, though. Therefore, the general method

considered1–3 follows a Taylor expansion in the neighborhood

of the resonant surface, in order to approximate the island

chain corresponding to a specific mode, leading to an expres-

sion very similar to the well known pendulum Hamiltonian.

However, when testing the previously described flux

surface label against field line tracing, certain discrepancies

are apparent, depending on the problem. Thus, the topology

of the actual magnetic field under investigation and the mag-

netic surface labeling used to investigate it would be incon-

sistent. On the other hand, in electron-cyclotron resonance

methods, for example, often one particular mode is consid-

ered right from the start. However, simplified these perturba-

tions are, they are typically used, when studying magnetic

island effects on wave propagation, absorption, current drive,

etc., for NTM integration.4,5 In this case, the above general

method is no longer necessary, since the perturbed magnetic

field is still integrable.

In particular, when one perturbation mode is taken into

account in the field line Hamiltonian, no series expansion is

required, but only analyzing the perturbed magnetic surfaces.

Nonetheless, the latter are characterized by an effective

Hamiltonian, which is not separable and may, in general, be

quite complicated, far from typical mechanical systems.

Thus, we present how to determine the perturbed topology

and all its characteristics for these cases in a straightforward

and simple manner. In doing so, we take on a geometric

approach, utilizing the flux surface label obtained to recover

Poincare surfaces of section for the magnetic field lines by

projecting the magnetic surfaces in a poloidal cross section.

The technique is not bound to the particular form of the

Hamiltonian system, and could be applied in similar cases.

In addition—and although we use the large aspect ratio

approximation for the equilibrium magnetic field—for the

purpose of higher precision, the actual toroidal geometry is

adopted instead of the approximate cylindrical one generally

used.6–9 Within the Hamiltonian formulation, emphasis is

given on the noncanonical nature of the toroidal coordinates

as well as the use of action-angle variables for expressing the

induced mode. The latter is essential for truly providing the

magnetic field with helical symmetry without the appearance

of satellite islands,10,11 and thus focusing on the effects of

one single island structure.

The magnetic fields under consideration are the ones

applied in toroidal configurations of plasma confinement

devices, such as tokamaks. Therefore, we introduce a (right-

handed) toroidal coordinate system x ¼ ðr; h;uÞ, where r is

the minor radius of the torus, h is the poloidal angle measured

counterclockwise from the outer edge, and u is the toroidal

angle measured clockwise from the y-axis. The transforma-

tion to Cartesian coordinates is x ¼ R sin u; y ¼ R cos u, and

z ¼ r sin h, where R ¼ R0 þ r cos h, R0 being the major ra-

dius of the torus. We denote the unit base as ðêr; êh; êuÞ and

the covariant one with ðer; eh; euÞ.
The background equilibrium of a tokamak plasma is

very often approximated by an axisymmetric magnetic field

B(r, h). Thus, we can equivalently start off with a vector

potential A(r, h), being, too, independent of u,12 meaning

B ¼ 1ffiffiffi
g
p

@Au

@h
er �

@Au

@r
eh þ

@Ah

@r
� @Ar

@h

� �
eu

� �
; (1)

where g¼ (rR)2 is the determinant of the metric tensor

defined by the toroidal coordinates, and Ar;Ah;Au are the co-

variant components of A.

The dynamics of a general magnetic field B in three-

dimensional Euclidean space, is described by the set of equa-

tions x0ðsÞ ¼ BðxÞ, where s is related to the line element of

the magnetic field lines and B ¼ ðBr;Bh;BuÞ is expressed

using contravariant components. The Hamiltonian structure

of B13–18 can be obtained by the usual technique of treating

one of the coordinates, say u, as the new independent vari-

able, arriving at
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dh
du
¼ Bh

Bu
;

dr

du
¼ Br

Bu
; (2)

as long as Bu 6¼ 0. In the case of axisymmetry, i.e., in light of

(1), the above system can be easily casted into Hamiltonian

form, by choosing the Hamiltonian function as H0ðr; hÞ
¼ �Auðr; hÞ, while the symplectic structure as x ¼ ffiffiffi

g
p

Bu

dr � dh. In other words, system (2) can be written as a two-

dimensional Hamiltonian system in non-canonical variables3

dh
du
¼ 1ffiffiffi

g
p

Bu

@H0

@r
;

dr

du
¼ � 1ffiffiffi

g
p

Bu

@H0

@h
: (3)

Due to the axisymmetry of B, i.e., the independence of

the toroidal angle, carried over to the Hamiltonian, this sys-

tem is autonomous and therefore integrable. Thus, action-

angle variables, w and #, can be constructed, in terms of

which the above system takes the form19

d#

du
¼ H00ðwÞ;

dw
du
¼ 0: (4)

Its solutions, lying on surfaces that are topologically equivalent

to a torus, are then simply w¼ const. and # ¼ wðwÞu þ#0,

where wðwÞ ¼ H00ðwÞ and #0 some constant. In fusion litera-

ture, # is commonly known as the intrinsic poloidal angle,

while the function w(w) as the winding number. Its inverse,

denoted by q(w), is the safety factor, expressing the number of

turns of magnetic field lines around u per one turn along #.

The above system gives a simplified picture of actual

experiments, for, in real tokamak plasmas, ubiquitous MHD

instabilities introduce small perturbations to the equilibrium

magnetic field. These can be modelled by considering a per-

turbed Hamiltonian function20

Hðw; #;uÞ ¼ H0ðwÞ þ �H1ðw; #;uÞ; (5)

in terms of the action-angle variables w; # and the “time” u,

where � is the perturbation strength. In order for H1 to be

single-valued, it has to be a 2p-periodic function of # and u.

Thus, it can always be represented as a Fourier series,

H1ðw; #;uÞ ¼
P

m

P
n hmnðwÞcosðm#� nuÞ.

Here, we consider the case of simply one perturbation

mode, i.e., one particular term in the above sum, denoted as

(m0, n0)

H1 ¼ hm0n0
ðwÞcosðm0#� n0uÞ: (6)

These types of perturbations lead to systems that are also

integrable,2 owing now to a helical symmetry in terms of #
and u. The integrability in this case can be shown in many

ways, the easiest of which is probably by replacing # with

the new variable n ¼ m0#� n0u, for which the equations for

the magnetic field lines

dn
du
¼ m0

d#

du
� n0 ¼ m0

@H

@w
� n0 ¼

@ ~H

@w

dw
du
¼ � @H

@#
¼ �m0

@H

@n
¼ � @

~H

@n

(7)

are casted again in Hamiltonian form,21 using ~Hðw; nÞ
¼ m0Hðw; nÞ � n0w as the new, effective Hamiltonian. The

latter is independent of u, and therefore system (7) is inte-

grable, meaning the magnetic field lines lie on the surfaces
~H ¼ const:

So, the invariant surfaces w¼ const. of the unperturbed

system are now replaced by ~Hðw; nÞ ¼ const: A small pertur-

bation, however, affects mostly the so-called resonant surfa-

ces located at ws. These are the rational surfaces of the

unperturbed system, for which q(ws)¼m0/n0.

As previously shown, the function ~H characterizes the

magnetic surfaces and, thus, can serve as a flux surface label.

The latter can be useful in many ways, one of which is the

analytical construction of Poincare plots.

In the case of magnetic field lines, where the role of

“time” is played by the toroidal angle, Poincare surfaces are

simply obtained by poloidal cross sections of the torus, that

is, u ¼ const: Since magnetic field lines lie on the surface
~Hðw; nÞ ¼ const:, their intersection with a poloidal cross sec-

tion u ¼ up is the projection of the magnetic surfaces on the

w#-plane, accordingly described by the equation Xðw; #Þ
¼ ~Hðw; #;upÞ ¼ const: Therefore, a contour plot of the

function X would simply yield the desired Poincare surface

of section. The critical points of X correspond then to the

equilibrium points of the Poincare map, representing peri-

odic orbits of the system. The maxima or minima give rise to

centers, the o-points, while the saddle points accordingly to

saddles, the x-points.

In conclusion, when only one particular resonance

(m0, n0) is under investigation, Poincare section at any given

u ¼ up can be constructed by the contour plot of the function

Xðw; #Þ ¼ m0Hðw; #;upÞ � n0w: (8)

Both o- and x-points can be determined from the condition

rX¼ 0, which, for hm0n0
ðwÞ 6¼ 0 at least in a neighborhood

around ws, trivially results in

m0#� n0up ¼ kp; (9)

wðwÞ þ ð�1Þk�h0m0n0
ðwÞ ¼ n0

m0

; (10)

where k is any integer. From the first equation, we can find

the 2m0 angles #i in the interval [0, 2p) for different values

of k, while from the second one the two actions wi depending

on whether k is even or odd. To determine which case corre-

sponds to the o- or x-point, we turn to the Hessian matrix of

X, calculated at (wi, #i). The eigenvalues of this matrix,

whenever (9)–(10) hold, are

k1 ¼ ð�1Þkþ1�m3
0hm0n0

ðwiÞ;

k2 ¼ m0 w0ðwiÞ þ ð�1Þk�h00m0n0
ðwiÞ

h i
: (11)

If k1k2> 0, we have an o-point, while in the opposite case,

k1k2< 0, we have an x-point. Finally, the equation for the sep-

aratrix is Xðw; #Þ ¼ Xx, where Xx ¼ Xðwx; #xÞ for (wx, #x)

any x-point.
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In many cases, e.g., for a strictly monotonous profile of

the safety factor and, consequently, of the winding number,

k2 is defined mostly by the first term, since � is relatively

small. Therefore, the product k1k2 has the same sign as

ð�1Þkþ1hm0n0
ðwiÞw0ðwiÞ has. The changing sign of the latter

for successive values of k, causes the interchange of o- and

x-points, resulting in the island chain formation we typically

see. In light of (9), the number of islands is then equal to the

poloidal mode number m0. From Eq. (10), on the other hand,

it is evident that o- and x-points are �-close to the unper-

turbed resonant surface. Taylor expansion around ws sug-

gests that the deviation d¼wi�ws to a first order

approximation is d ¼ ð�1Þkþ1�hm0n0
ðwsÞ=w0ðwsÞ, also found

in Ref. 7.

Before proceeding with a concrete and detailed exam-

ple, a special class of axisymmetric systems to begin with is

considered, which is widely used in applications. These are

unperturbed magnetic fields with the simplified assumption

of vanishing radial component, Br¼ 0. The latter reflects an

equilibrium for large aspect ratio, meaning we do not take

into account the poloidal current density, nor the Shafranov

shift, though we retain the toroidal geometry, opposite to the

cylindrical often used.

First of all, we have dr/ds¼ 0. Therefore, the invariant

surfaces of the unperturbed system are simply defined by

r¼ const., meaning the magnetic field lines lie on the surface

of a torus of radius r. In terms of the Hamiltonian description

(3), this also implies that H0 is a function of r alone, and,

consequently, in combination with (2) that it represents the

normalized poloidal magnetic flux

H0ðrÞ ¼
ðr
0

ffiffiffi
g
p

Bh dr ¼ 1

2p

ð2p

0

ðr
0

B̂hðr; hÞRdrdu: (12)

On the other hand, the construction of action-angle vari-

ables in the general case of an axisymmetric system would

first require finding canonical coordinates for system (3).

When Br¼ 0, we may skip this step. Actually, the transfor-

mation from (r, h) to (w, #) can be made via the relationffiffiffi
g
p

Bu dr � dh ¼ dw � d#. Since r is an integral of motion, w
has to be a function of r alone. Consequently, the previous

condition can be simplified, yielding

dw
dr

@#

@h
¼ rB̂u: (13)

Thus, we can begin with a given function w(r) and then con-

struct #(r, h) or vice versa. A typical choice, widely used in

the literature, is expressing the action w through the normal-

ized toroidal magnetic flux

wðrÞ ¼ 1

2p

ð2p

0

ðr
0

B̂uðr; hÞrdrdh; (14)

while considering # to be a 2p-periodic function of h.

Another consequence of the zero radial magnetic com-

ponent is an alternative expression of the winding number

directly in terms of r instead of w. For when Br¼ 0, then

wðrÞ ¼ d#

du
¼ @#
@h

dh
du
¼ RB̂h

rB̂u

@#

@h
: (15)

Inverting this relation and taking into account that

#(r, hþ 2p)¼#(r, h)þ 2p, we recover the formula

qðrÞ ¼ 1

2p

ð2p

0

rB̂u

RB̂h
dh; (16)

in Refs. 20 and 22. Equivalently, once w is fixed, w and con-

sequently q can be calculated more simply using

wðrÞ ¼ dH0

dw
¼ 1

w0ðrÞ
dH0

dr
¼ RB̂h

w0ðrÞ : (17)

At this point, we should comment that although action-

angle variables have been used in the analysis so far, this is

by no means a restriction. Yet in the general case of an axi-

symmetric system the transformation back to the original

coordinates r and h would be quite complicated. In the case

of vanishing radial magnetic component, however, the latter

task would be a simple one. Actually, the unperturbed

Hamiltonian and the safety factor have already been

expressed naturally in terms of r. The determination of the

o- and x-points for the perturbed system could also follow.

Equation (10) can be solved with respect to r still independ-

ently from (9), and then replace its solutions ri in (9) to find

hi. From Eq. (15), we also deduce that when @#/@h ! 1,

then the number of turns around u per one turn along either

# or h is the same.

So, in fact, all the above conclusions allow us to draw

one more. Since r is an integral of motion (for the unper-

turbed system) just like the action w, as long as the intrinsic

poloidal angle behaves like the geometrical one, the island

topology, realised in the abstract w�# space, is carried over

to the geometric r� h plane intact. On this ground, Br¼ 0

allows us to switch easily from the action-angle variables,

appealing in theory, to the actual toroidal coordinates, as

desired in practice, and study the dynamics of the magnetic

field lines therefrom.

A typical axisymmetric model for the background equi-

librium that falls into the previous category is the so-called

standard magnetic field, introduced by Balescu23

B0ðr; hÞ ¼
B0

R
rwcðrÞ êh þ R0 êu
� �

; (18)

where B0 is a constant, expressing the toroidal field on the

magnetic axis, while wc is the winding number in the approx-

imation of cylindrical geometry, i.e., for r/R0 ! 0. The

Hamiltonian equations (3) for the standard magnetic field are

dh
du
¼ R0 þ r cos h

B0R0 r

dH0

dr
;

dr

du
¼ 0; (19)

where the Hamiltonian function can be deduced directly

from the poloidal flux (12), yielding
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H0ðrÞ ¼ B0

ð
rwcðrÞ dr: (20)

Choosing w as the toroidal flux (14) and then using (13), we

end up with the following action-angle variables:20

w ¼ B0R0 R0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

0 � r2

q� �
; (21)

# ¼ 2 arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffi
R0 � r

R0 þ r

r
tan

h
2

 !
: (22)

So, proceeding in terms of the toroidal coordinates, from Eq.

(17) the actual winding number w with respect to the approx-

imate one wc is

wðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

0 � r2
p

R0

wcðrÞ: (23)

From (10), the radial position ri of o- and x-points, for any

mode (m0, n0) we choose to perturb the system with, can be

found through

wðriÞ þ ð�1Þk�h0m0n0
ðriÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

0 � r2
i

p
B0R0ri

¼ n0

m0

; (24)

and then the corresponding poloidal angle at any given cross

section u ¼ up would be

hi ¼ 2 arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R0 þ ri

R0 � ri

r
tan

#i

2

 !
; (25)

where #i ¼ ðn0up þ kpÞ=m0 from (9).

Finally, it is also worth noting that the value #0 of the

intrinsic poloidal angle at u ¼ 0, introduced just after

Eqs. (4) of the unperturbed system, may serve as a rotation

parameter for the islands, without affecting whatsoever the

unperturbed system. Actually, it should reappear as an

integration constant, meaning # could be defined as in (22)

minus #0. The resulting replacement #! #�#0 enters only

in (9) and, consequently, (25), changing the poloidal posi-

tion hi of the o- and x-points to some other angle hiþ h0,

leaving, in general, any other dependence on h unchanged.

Thus, we can rotate the island topology exactly where we

want to, without rotating the whole system. This is a common

requirement in experiments, such as NTM integration with

electron cyclotron current drive, where electromagnetic

waves are launched, targeting the o-points. This way of rotat-

ing the islands is independent of the specific Hamiltonian or

action-angle variables.

Let us demonstrate the previous methods for construct-

ing Poincare plots with an example of a (3,2) resonance

mode for the standard magnetic field with ITER-like parame-

ters, B0¼ 5.51 T and R0¼ 6.2 m. Following Ref. 24, with

some assumptions on the density and temperature profiles,

we consider

wcðrÞ ¼
1

4
2� r2

a2

� �
2� 2

r2

a2
þ r4

a4

� �
; (26)

where a¼ 1.9 m is the maximum value of r. Thus, from (20),

the Hamiltonian of the unperturbed system is

H0ðrÞ ¼
B0r2

2
1� 3r2

4a2
þ r4

3a4
� r6

16a6

� �
; (27)

while the (3,2) resonant surface is located at rs¼ 96.5743 cm.

We assume a perturbation of the form9

h32ðwðrÞÞ ¼
r

3
1þ r � rs

b

� �
; (28)

expressed directly in terms of r instead of w, where b¼ 12.

The associated Hamiltonian system describes the field lines

of the magnetic field Bðr; h;uÞ ¼ B0ðr; hÞ þ �B1ðr; h;uÞ,
where

B1 ¼
3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

0 � r2
p

rR2
h32ðrÞsinð3#� 2uÞêr þ

1

R
h032ðrÞcosð3#� 2uÞ þ 3R0 sin h

R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

0 � r2
p h32ðrÞsinð3#� 2uÞ

" #
êh; (29)

for h32 given in (28) and # in (22). Notice that for r/R0 ! 0

the last term of the poloidal component would be neglected.

The flux surface label (8) for this magnetic field is

Xðr; hÞ ¼ 3H0ðrÞ � 2wðrÞ � 3�h32ðrÞcos 3#ðr; hÞð Þ; (30)

at the poloidal cross section up ¼ p=2, that is, y¼ 0, where

H0, h32 are replaced from (27) and (28) and w, # from (21)

and (22), respectively.

The contour plot of (30) is shown in Figure 1 for

�¼ 0.005. The same Poincare section was drawn using nu-

merical integration of the magnetic field lines, expressed in

Cartesian coordinates, with a 4th-order adaptive step-size

Runge-Kutta scheme. Comparison of the two plots reveals

actually no difference, they look identical. Figure 2 shows

that the points from the numerical Poincare map lie exactly

on the contour lines of the analytical flux surface label X.

For the calculation of the o- and x-points, we notice first

that for 0� r� a the perturbation h32 is positive, the winding

number w is decreasing monotonously and the toroidal flux w
is increasing instead. Thus, from the relations (11), assuming

k2 � 3w0ðrÞ=w0ðrÞ, we immediately deduce that when k is

odd, the critical point of the function X would be a saddle

point, indicating an x-point, while when k is even it would be

a maximum, indicating an o-point. So (24) and (25) yield six

(real) solutions altogether, three o-points at ro¼ 96.6336 cm,
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ho¼ 68.0854�, 180�, and 291.915� and three x-points at

rx¼ 96.5149 cm, hx¼ 0�, 127.468�, and 232.532�, respec-

tively. These values, also visualised in Figure 1, are in abso-

lute agreement with the ones from the field line tracing.

Finally, it is also worth noting that in the cylindrical

approximation, often adopted in the large aspect ratio limit,

we recover the usual considerations w�B0r2/2, #� h (as

previously requested), w�wc and accordingly B1ðr; h;uÞ
� 3h32ðrÞsinð3h � 2uÞ=ðrRÞêr þ h032ðrÞcosð3h � 2uÞ=Rêh,

reflecting a (3,2) mode in terms of h and u instead of # and

u. The deviations, however, from the above treatment are

not negligible, as, for example, the corresponding intrinsic

poloidal angle values #o¼ 60�, 180�, and 300� and #x¼ 0�,
120�, and 240� indicate.

In this work, we have presented a simple analytical way

for determining the island topology of the magnetic field,

when a single perturbation mode is introduced to the plasma

equilibrium. Poincare sections of field lines have been con-

structed by contour plotting a flux surface label that is con-

sistent with the magnetic field, and the positions of o- and

x-points, as well as the separatrix, have been given analyti-

cally. The method addressed follows the nontrivial

Hamiltonian nature of the magnetic field lines in terms of

their toroidal structure.

The integrability of this kind of systems is widely

known in the context of Hamiltonian mechanics, yet, at

times, neglected in applications such as these. And though

quite often employed in the cylindrical approximation, to the

authors’ knowledge, it has not been fully utilized in the

actual toroidal geometry of tokamaks. The technique

described here, requiring no assumptions on the particular

form of the integrable Hamiltonian, is quite general and

could be applied elsewhere.
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FIG. 1. Contour plot of flux surface label X (30).

FIG. 2. Comparison of the analytical flux surface label (red lines) and the

numerically determined Poincare plot (blue points), zoomed in the island

region.
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