FTI992A&A © Z285. 6631

Astron. Astrophys. 285, 663-674 (1994)

ASTRONOMY
AND
ASTROPHYSICS

Non-linear properties of the dynamics of bursts
and flares in the solar and stellar coronae

H. Isliker and A.O. Benz
Institute of Astronomy, ETH-Zentrum, CH-8092 Zurich, Switzerland

Received 19 July 1993 / Accepted 5 October 1993

Abstract. Solar and stellar flares are highly structured in space
and in time, as is indicated for example by their radio signatures:
the narrowband spikes, type III, type II and IV, and pulsation
events. Structured in time are also the not flare related type I
events (noise storms). The nature of this fragmentation is still
not clear. Either, it can be due to stochastic boundary or initial
conditions of the respective processes, such as inhomogeneities
in the coronal plasma. Or else, a deterministic non-linear process
is able to cause complicated patterns of these kinds.

We investigate the nature of the fragmentation in time. The
properties of processes we enquire are stationarity, periodicity,
intermittency, and, with dimension estimating methods, we try
to discriminate between stochasticism and low-dimensional de-
terminism. Since the measured time series are rather short, the
dimension estimate methods have to be used with care: we have
developed an extended dimension estimate procedure consisting
of five steps. Among others, it comprises again the questions of
stationarity and intermittency, but also the more technical prob-
lems of temporal correlations, judging scaling and convergence,
and few data points (statistical limits).

We investigate 3 events of narrowband spikes, 13 type III
groups, 10 type I storms, 3 type II bursts and 1 type IV event of
solar origin, and 3 pulsation-like events of stellar origin. They
have in common that all of them have stationary phases, pe-
riodicities are rather seldom, and intermittency is quite abun-
dant. However, the burst types turn out to have different char-
acteristics. None of the investigated time series reveals a low-
dimensional behaviour. This implies that they originate from
complex processes having dimensions (degrees of freedom)
greater than about 4 to 6, which includes infinity, i.e. stochastic-
ity. The lower limit of the degrees of freedom is inferred from
numerical experiments with known chaotic systems, using time
series of similar lengths, and it depends slightly on the burst
types.
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1. Introduction

Free magnetic energy is released in the solar corona in the form
of several types of flares and in noise storms. Flares on single
K and M stars are several orders of magnitudes more powerful;
they are generally believed to be caused by the same processes.
Some radio emissions of flares and noise storms are produced by
coherent mechanisms. The radiations are characterized by gen-
erally high polarization and relatively narrow bandwidth. They
appear in multiple bursts at different frequencies and are usu-
ally much more structured in time than the hard X-ray emission
(incoherent bremsstrahlung of single electrons). What causes
the fragmentation of the radio emissions? At which stage be-
tween the primary energy release, particle acceleration, particle
propagation, emission process and radiation propagation does
the fragmentation occur?

In this paper we investigate the time evolution of the emis-
sions. We consider general properties of the system dynamics,
observed in time series, namely stationarity, intermittency, pe-
riodicity and low-dimensional chaos. They are related to inter-
preting the time variability by opposite scenarios: (i) The source
may be controlled by a stochastic input. This would be the case,
for example, if stochastic fluctuations in the upstream plasma
of a shock drive the source, or if the emission process spreads
out spatially like a chain-reaction in a stochastically inhomo-
geneous medium. (ii) On the other hand, the source may be an
independent system fully determined by non-linear equations of
several variables and behave (iia) periodic or quasi-periodic, or
(iib) deterministic chaotically. The latter means that it is very
sensitive to initial conditions, making it appear irregular. An
example of such a system may be the population of magneti-
cally trapped electrons in near equilibrium between loss-cone
instability and precipitation. (iii) The source can be in a non-
stationary transient state, having not yet settled down to one of
the other possible states.

The only burst type which has been enquired with respect to
some of the mentioned questions and for which low-dimensional
chaotic behaviour is claimed are decimetric pulsations (Kurths
& Herzel 1987; Kurths et al. 1991). They are the most regular
burst type. Pulsations are not further investigated here.
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We use different tools from dynamic systems theory: (i) In
the reconstructed phase space of a system, we perform a sta-
tionarity test. Only stationary data are suited for any further
investigation. (ii) We calculate power spectra to search for the
presence of modes. (iii) Intermittency is looked for. It often is
obvious, but not easy to quantify in a general way. (iv) In order to
discern between stochastic and deterministic processes, correla-
tion dimensions are estimated in phase space. High dimensional
deterministic behaviour, however, cannot be distinguished from
stochasticity.

Dimension estimate has some intricacies which should not
be underestimated, for they can even yield spurious dimensions.
Two of them are banned by analyzing only stationary sections
and by taking care of possible intermittency. There are three
more dangers of a technical kind: (i) The data can be too short
or too noisy for a dimension estimate. (ii) Temporal instead of
the wanted spatial correlations in phase space may dominate
the estimate algorithms. (iii) Scaling and convergence of the
involved algorithms can be hard to judge. We have taken into
account all these points by developing new tools supplementing
the dimension estimate, and by experimenting with numerically
produced data.

Coherent radio bursts are classified into different types rep-
resenting distinct emission processes and source properties (e.g.
McLean & Labrum 1985; Giidel & Benz 1988). It is therefore
conceivable that the various types (i.e. their sources) exhibit dif-
ferent behaviours. The following burst types are suitable for a
dimensional analysis and have been investigated:

1. Type I bursts of solar noise storms are believed to be a result
of the interaction of newly emerging magnetic flux with the
pre-existing coronal magnetic field (Benz & Wentzel 1981).

2. Radio emission of coronal shock waves (type II bursts) orig-
inates from particles accelerated at the shock front (e.g. Hol-
man & Pesses 1983).

3. Solar flares sometimes produce hundreds of electron beams,
each emitting a type Il radio burst by beam-plasma inter-
actions.

4. Type 1V events are long lasting broadband continua, ev-
idence of a cloud of hot particles behind a shock front.
They can exhibit temporal fine structure, superimposed on
a slowly varying background.

5. Extremely narrowband spikes of a few hundredths of a sec-
ond duration appear in groups of thousands during flares.
The emission may be at a harmonic of the electron gyrofre-
quency, but the origin is not known (review by Benz 1986).

6. We also analyze strongly variable radio emission from stel-
lar flares. The bursts resemble solar decimetric pulsations.

The data are briefly described in Sect. 2. Section 3 introduces the
used tools. Section 3.5. summarizes the whole procedure and the
steps of our extended dimension estimate method. The results
are presented in Sect. 4, their astrophysical impact is discussed
in Sect. 5, the conclusion.
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2. The investigated data

The solar radio data have been recorded by the frequency-agile
radio spectrometer IKARUS at ETH Zurich, between 1980 and
1982. The instrument is described by Perrenoud (1982). It can
be changed in steps from measuring 200 frequencies in the range
100 to 1000 MHz with time resolution 0.1 sec, to measuring 1
frequency channel at 0.5 ms resolution. This allows to measure
any burst type at a time resolution adequate for dimensional
analysis, i.e. every peak or spike is resolved by 10 to 30 data
points.

The data we use are representative for the particular burst
types. We were not able to find any data which are substan-
tially longer or better suitable for the present analysis than the
ones presented in this article, searching in the data stock of the
spectrometers IKARUS and PHOENIX (described in Benz et
al. 1991) which covers the period from 1979 to 1993.

The stellar data are flares of the dMe star AD Leo, observed
in Arecibo in November 1987 by Bookbinder & Bastian. They
are published in Bastian et al. (1990) and Guedel et al. (1989).
Time resolution is 20 ms, and the original 256 channels were
averaged to a single channel of 40 MHz bandwidth, centered at
1415 MHz, for both left and right circular polarization.

3. Phase space and used methods

The theory of dynamical systems is generally formulated in
phase space (state space), whose coordinates are the system
variables. The evolution of a process corresponds to a motion
in this space. Measuring the radio flux of an event, we observe
one coordinate of phase space in the form of data points X (¢;)
at the times ¢; (¢ = 1,..., N). By a theorem of Takens (1981)
the entire phase space can be reconstructed: From a given time
series { X (t;)}LY,, vectors £(t;) are built up in a d-dimensional
space as

£t = [ X(t:), X(ti + Ab), ..., X(t + (d — DAL) ] W

These vectors define the reconstructed phase space. The time de-
lay At is a multiple of the time resolution 7 = ¢;,; —t;. The real
phase space of dimension D is embedded in this reconstructed
space whenever d > 2D + 1.

Takens theorem makes phase space motion accessible. What
does this motion look like? On one hand, a limit set of a process’
motion may exist, the so-called attractor. It is the set covered
by the trajectories after the transient motions have died out and
the system has settled down to a stationary state. This station-
ary process can be quasi-periodic with & modes, then it moves
on a k-dimensional torus; or it can be stochastic and erratically
bounce and fill an entire subset of phase space whose dimen-
sion equals the one of the embedding space, d — if the system
is bounded and recurrent, which is guaranteed by stationarity.
In between lie the chaotic processes. They are deterministic,
however non-linear, which, in their case, leads to a sensitive de-
pendence on initial conditions, an exponentially fast separation
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of nearby trajectories. This stretching of the trajectories in phase
space, combined with the shrinking of the attractor volume in
case of a dissipative system, can produce a highly intricate set,
very often having a power-law scaling of the data point distribu-
tion with a fractal exponent. Therefore, a fractal dimension D
of the limit set smaller than the dimension d of the embedding
space is indicative of a deterministic non-linear chaotic process.
The dimension itself is a measure of complexity of the system.
It corresponds to the minimum number of variables needed to
describe the system since, for geometrical reasons, the dimen-
sion is a lower limit to the degrees of freedom of the motion.
An upper limit cannot be inferred.

These three classes of stationary processes can be intermit-
tent, no matter whether they are deterministic or stochastic.

On the other hand, there may be no stationary limit set. Then
the system is either in a transient phase, and it has not yet settled
down to a new limit set, or it is an inherently non-stationary
process, as for instance fractional Brownian motion.

3.1. A stationarity test

Stationarity in the strong sense is the property that all statistical
moments are independent of time. In other words, a stationary
process does not change in time if only its statistical properties
are considered. It is stable in a global sense and bounded in
phase space. Runaway or transient processes are not stationary.

How to judge stationarity without testing an infinite number
of statistical moments? Power spectrum or variance of a time
series are not efficient to investigate stationarity, they contain
too little information. We use a fest of stationarity proposed by
Isliker & Kurths (1993) formulating a necessary condition for
stationarity. It is based on the invariant measure p, operationally
defined as the average of Dirac d-functions along a trajectory
x(t) in phase space,

T

p:= lim 1 Sty dt, 2)

T—oo T
0

(Eckmann & Ruelle 1985). Equation (2) defines a density mea-
suring how frequently the various parts of phase space are visited
by the system. This p should clearly be independent of time in
a stationary process. To have a better statistics, the projection
p(dxy) of p(dx) onto the flux axis (say x;) is used:

p(dxy) = / p(dxadxs...dxy). ?3)

Empirically p(dzx;) is calculated by dividing the flux into in-
tervals and counting the flux values falling into these intervals.
The measure p is a frequency distribution of the flux values.
For a stationarity test one systematically analyzes sections
out of a time series. In each section, p(dz) is calculated for the
entire section and for the first half of it. The two distributions
are then compared by a x2-test. The significance level of the -
test is the confidence with which the density p has not changed
and is compatible with stationarity. The particular section will
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Fig. 1a. The type II event 80/02/28, 12:06:28, observed by a Zurich
radio spectrometer with a time resolution of 25 ms. The largest station-
ary sections are marked with dotted lines, or with a dashed line where
a dominating period was found. Eventual stationary subsections of a
stationary section are not marked

power [arbitrary units]

-4

1078

L PR M |
1 10

ol
100 1000
frequency [0.018 Hz]

Fig. 1b. Power spectrum of the part of Fig. 1a which is marked by a
dashed line

be considered stationary in the following. The procedure finally
yields a list of parts of a time series which are stationary, as
is visualized for a type II event in Fig. 1a. The three largest
stationary sections are marked with horizontal dashed or dotted
bars. Only stationary data are further analyzed.

3.2. Power spectrum

We use a standard Fast Fourier Transform (FFT) to calculate the
power spectrum. Fig. 1b shows an example of a power spectrum,
calculated from a stationary part of the type II event shown in
Fig. 1a (the part is marked in this figure with a dashed line).
There is a weakly enhanced frequency at 0.34 Hz which can
also be recognized in the autocorrelation function.
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Fig.2a. The part 1650-4400 of the time series of the type III event
81/11/15, 07:54:44, observed by a Zurich radio spectrometer with a
time resolution of 100 ms. The section is stationary, but intermittent.
The quiet phases are marked with a bar
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Fig. 2b. For the time series in Fig. 2a, the variance o(t) is shown, in the
units of Fig. 2a. The variance was averaged over a window of a length
of 100 pixels, corresponding to 5 times the auto-correlation time

3.3. Intermittency

Intermittency is the phenomenon that a time series is interrupted
with one or many quiet phases of arbitrary lengths, or with
phases of smaller amplitudes (intensities). Figure 2a shows as
an example the pixels 1650-4400 of the time series of the type
Il event 81/11/15, 07:54:44. Two quiet phases are marked with
an underlying bar. Intermittent time series can of course be sta-
tionary. The stationarity test (Sect. 3.1.) ignores occasional in-
termittency. In the case of the data in Fig. 2a it has indicated
stationarity.

Intermittency is difficult to quantify, as it can appear in many
forms. One can find it sometimes by calculating the variances
o(t) in a window moving through the time series. An example
is given in Fig.2b. The intermittent phases reveal themselves
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by reduced variances in a certain time range. An upper limit on
o(t), in the units of Fig. 2b about 1.5, may serve to identify quiet
intervals. Since o(t) is calculated from a finite window length,
the duration of the minima of o(t) are shorter than the quiet
intervals. The window’s size has to be chosen carefully, a few
times the auto-correlation time is most adequate. It turned out
that another good way to identify intermittency is by looking
simply at the time series.

3.4. Correlation dimensions
3.4.1. Two algorithms to estimate dimensions

We calculate the correlation dimension D® which is one out
of many definitions of fractal dimension. It is defined as the
exponent of a scaling behaviour:

P(e) ~ P, fore— 0, @)
where
P(e) := prob [|&(t:) — &(t))| < €] Q)

is the distribution of distances. There are two common ways to
find D@ :

(o) —Inthe Grassberger Procaccia method (GP; 1983a, 1983b),
the probability term in Eq. (5) is estimated by counting excess
distances, P(e) is replaced by the correlation integral

) N
CP @ = Jim o D (e—l&-&),  ©

W<

with the Heaviside function ©(.) and any vector norm ’|.|".
Looking for a power-law scaling range, the embedding dimen-
sion d has to be successively increased, until convergence, if any,
is reached. Several time delays At varying around the auto-
correlation time t.o.r have to be tried. The parameter W’ is
discussed in Sect. 3.4.2.C.

(8) — An alternative way to estimate dimensions is the Max-
imum Likelihood Estimate (ML) (Takens 1984; Ellner 1988).
P(e)inEgs. (2) and (3) is interpreted as a probability distribution
with parameter D®. This parameter can therefore be calculated
by the maximum likelihood method: Assume convergence for
1 < € < ;. Then the usual formalism leads to

n—K
EZ‘:I In (pij/m)’

where the n distances p;; := max [|£(t,~) - &)l 71] are cho-
sen at random, with the additional constraint that |t; —t;] > W
(the reason is given in Sect.3.4.2.C). K is the number of p;;’s
that are equal to +y;. Distances p;; > 7, are simply omitted.
Ellner (1988) shows that if n = N/2 the estimate is best, since
the distances then are most likely to be independent (XN is the
length of the original time series).

D@ = — )

Mostly, the error estimate of correlation dimensions is done
in the context of the GP algorithm, using the error of a regres-
sion into the relation log Céz) (e) — log e. This, however, is not
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an intrinsic error. On the other hand, the ML method provides
an intrinsic error estimate, in that it fully uses the probabilistic
point of view (Ellner 1988) : calculating the mean and stan-
dard deviation of the distribution 2 (in Eq. 4), and using the
Gaussian law of error propagation, the error in the estimated
parameter D of the distribution gets

D® 1.96 \/ 142In7P® rP® — 3P

\/"_l D® _D® D@ ?

1+Inry " ry’” — 1y
with ry := 71 /2. The factor 1.96 stems from a 5% confidence
interval used here.

®)

3.4.2. Dangers of dimension estimate

There are serious sources of misinterpretation of the results
of dimension estimates, particularly in astronomy. The criti-
cal points which all have an essential influence on dimension
estimates are:
— Numerical problems:
— The data usually are short and unique.
— The data are noisy. Noise hides the details in the dynamics
of the system.
— Non-stationarity;
— Temporal correlations;
— Intermittency: its influence can mimic a finite dimension;
— Problems with interpretation: are the algorithms really con-
verging?

A. Repetitivity: Length of data; noise level. In order to character-
ize a process globally, a minimum amount of information must
be given, i.e. a minimum number of orbits or cycles in phase
space, which means a minimum number of peaks in the time
series.

It has been claimed from theoretical arguments that the
number of points N in a time series should fulfil the relation
N 2 10P®/2 in order to detect a correlation dimension D®
(Brandstater & Swinney 1987; Ruelle 1990; Eckmann & Ruelle
1992). Practical inquiries by Isliker (1992a) and newer exper-
iments using the Mackey Glass attractor, however, show that
N = 1000 can deliver reliable, though not very precise results
for dimensions smaller than about 4. We found that a lower limit
on the number N of points is not crucial. The important quantity
is ng, the number of peaks or structures, defined as

_ Nt

ns = )
teorr

©)

where t.o.r, the auto-correlation time, is the first minimum of
the auto-correlation function, and 7 denotes the time resolution.
If

ng 2 50, (10)

dimensions up to about 3.5 are reliably estimated, and up to 5
they are detected. A necessary condition is that the number of
data points per structure (cycle) is between about 10 and 30:

10 < teorr /T S 30, (11)
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with 7 being the time resolution.

If the data are around the critical minimum of ng = 50
and the GP algorithm converges, there is a possibility that this
convergence results from the fact that the considered attractor
is not covered with enough points. There may be sparse regions
in which the true scaling of the correlation integral breaks down
due to the lack of data points. We applied in these cases a ’sur-
rogate data’ test: the Fourier transform of the original data is
transformed back with random Fourier phases. The surrogate
data resemble the original data, they have the same power spec-
trum and the same auto-correlation function. If some out of a
set of different realizations of surrogate data behave the same as
the original data in a dimension estimate, then the dimension is
almost surely an effect of poor scaling. For a discussion of the
surrogate data method see Provenzale et al. (1992).

The noise level, i.e. the ratio noise/signal, should be below
about 10% for the evaluation of the correlation dimension (nu-
merical experiments, reported in Isliker 1992a).

B. Stationarity. Stationarity is a prerequisite for determinis-
tic chaos. Non-stationary stochastic processes can yield a fi-
nite correlation dimension, e.g. if they are self-affine like frac-
tional Brownian motion (see e.g. Osborne & Provenzale 1989).
This dimension is not indicative of deterministic behaviour.
Therefore, we only analyze data which pass the stationarity test
(Sect.3.1.).

C. Temporal correlations. The influence of temporal correla-
tions has been studied by Theiler (1986, 1991), who shows that
every correlated stochastic process can have a finite correlation
dimension if only a limited amount of data is accessible. This is
caused by pairs of points §;, £; on the attractor which are close
in phase space only because they are close in time. Dimensions
are then just a measure for temporal correlations, and not for
correlations in phase space, i.e. for the structure of a possible
attractor.

The influence of temporal correlation can effectively be dis-
carded by forbidding pairs of points closer in time than about
the auto-correlation time ¢.,, in the dimension estimate. This
is done by introducing the parameter W’ in the GP procedure
(Eq. 6) and the ML procedure (Eq. 7), and letting W =~ tcorr
(Theiler 1986, 1991).

The parameter W can also be used to test whether a too large
section has been analyzed. For large W, say W 2 N/2, only
pairs of data points from both the ends of the particular section
are considered. The middle part is omitted. If adimension which
is finite for W = t,o disappears with W 2 N/2, it is likely
that the ends of the section do not lie on the attractor, though the
data have passed the stationarity test (which is no contradiction;
stationarity is a more general property than deterministic chaos).
We try then to find a smaller stationary section, lying inside the
previous one.

D. Intermittency. The intermittent time series of Fig.2a has
passed the stationarity test of Sect.3.1. A dimension estimate
is therefore appropriate, and it yields a finite value. Omitting
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vectors from the two marked regions makes the dimension dis-
appear, i.e. beyond detection. The same can be reproduced in the
following numerical experiments: The dimension of a stochastic
time series of red noise is not finite. If a part of this time series,
say 5% or 10%, is replaced by noise of an amplitude about 5 or
10 times smaller, one will find a finite correlation dimension.

Obviously, the finite dimensions of intermittent time series
can be due to correlations between vectors from the two differ-
ent amplitude regimes. Whenever the GP algorithm converges
for an intermittent time series, we tried the algorithm again,
omitting the vectors from the quiet regime. Several cases oc-
curred where this proved to be important. The finite dimensions
disappeared, they were spurious.

E. Test of scaling and convergence. For data produced by a low-
dimensional chaotic system, the two algorithms to evaluate the
correlation dimension should reveal a proper scaling and they
should converge. The latter means that the derived correlation
dimension becomes independent of the embedding dimensions
for high enough embedding dimensions. However, if the length
of the time series is small and the noise level is high, the statistics
deteriorates, and scaling and convergence tend to be washed out.
Such bad scaling and convergence or divergence is difficult to
recognize and judge by eye. We therefore use a test to judge the
quality of scaling and convergence, proposed by Isliker (1992a).

The test is based on the idea that the evaluation of dimen-
sions means to search for a power-law scaling of the distribu-
tion C’fiz) (¢) (Eq. 6), independent of the embedding dimension
d. If scaling in the range v; < € < 7, is assumed, the ML
procedure gives a value D@, and proposes a distribution ¢
in that range. A x2-test shows whether the empirical distribu-
tion Cg) (e) obeys the postulated distribution. This method is
a ’plateau-test’. It checks whether the derivative of the loga-
rithm of the correlation integral C';Z) (e) with respect to log € is
constant in a range of loge.

The test is modified to take into account two theoretical
facts: Badii & Politi (1984) and Smith et al. (1986) have shown
that for a lacunar set, i.e. a non-uniform set with sparse re-
gions, the expected scaling of P(¢) (Eq. 4) has to be modified to
P(e) = eP? (In €/ P) in order to be realistic. 9/ is an unknown
periodic function of period 1, P the actual, but unknown period.
Furthermore Smith (1988) showed that a plateau must be skew,
as a result of the finite size of the attractor.

The test will then check the scaling of the correlation inte-
gral, consistency of the GP method with the ML method, and
convergence (independence of the embedding dimension).

3.5. Summary of the procedure

‘We have ordered the above set of methods to yield a systematic

way of searching for stationarity, intermittency, periodicities,

and dimensions. Figure 3 gives a schematic view of the main

points as a summary. The steps of our proceeding are:

1. A time series is selected which is long enough, i.e. ng 2 50,
and which is not dominated by noise (noise level below about
10%).
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Fig. 3. Schematic view of the main steps of our data analysis, including
the extended method used in this paper to estimate correlation dimen-
sions of time series. The scheme is a summary of Sect. 3.5

2. Stationarity of the time series and of subsections of it is
checked. All sections must be long enough to satisfy point
1.

The following steps are performed in the stationary sections:

3. The auto-correlation time £, is estimated.

4. The power-spectrum is calculated to look for the presence of
modes.

5. The Grassberger Procaccia algorithm is applied, using W 2
tcorr, to test for deterministic chaos (Eq. 6). If the GP algo-
rithm converges, we proceed as follows to ensure that the
dimension is indicative of deterministic chaos:

5.1. The parameter W is made as large as possible (about
N/2). If the algorithm diverges now, there may be long
ranging time correlations, or the data section is too large.
‘We restart at step 2, with a smaller section. In the other
case, if the algorithm still converges, we go on to the
next check.

5.2. The data are inspected for possible intermittency. If
present, the respective pairs of points are omitted in the
evaluation of the correlation integral. If the algorithm
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diverges now, the dimension is spurious. If it still con-
verges or if there is no intermittency at all we go on to
the next check.

5.3. If the length of the enquired section is around the lower
limit, ng ~ 50, the GP algorithm is applied to surrogate
data. If there are surrogate data for which the algorithm
converges to about the same value as for the original
time series, convergence is spurious. Else, we proceed

with the following tests.

Does an ML estimate reproduce the GP result? Only if
it does, we go on to the final check.

5.4.

5.5. The scaling and convergence test is performed. If it con-
firms the results, the ML estimated value with its error

is accepted.

In addition, the dimension analysis is accompanied by:

(a) Two dimensional phase space plots, sometimes three di-
mensional ones, projected onto a plane, have to be in-
spected in cases where there is a plateau present: From the
dlog C’fiz) (€) /dlog € vs. log € plot the radii € can be read at
which the plateau is situated. In the phase-space plot one
can then see whether this radius is characteristic, or whether
itis too large and the plateau is a mere edge effect, reflecting
saturation of the correlation integral.

(b) In case of dimensions below 3: F, . vs. Fitl and d; vs.
d;41 are plotted, where F . is the ith local maximum value
of the time series and d; the time between the ith and the
1+ 1th maximum. Systems which are that low-dimensional

have a good chance to show visible structures.

We furthermore demand consistency of the results with re-
spect to data handling. The effect of standard data modification
procedures may be serious or beyond control. Dimensions that
appear only after an elaborate data modification (such as noise
reduction procedures or background subtracting) are not ac-
cepted, for such dimensions might just reflect a structure in the
modification process, and not in the data.

4. Results and discussion

The results are given in Table 1 with all the necessary details.
After date, time, the length of the enquired data, and the fre-
quency, the stationary sections are listed. We also state whether
we found any periods in the power spectrum, and how the GP
algorithm behaved. If the reason for divergence is intermittency
or lack of points (revealed by the surrogate data test) it is in-
dicated in the table. Occasionally, we also investigated series
of stationary subsections of an entry in the table and do not
list the results separately if they correspond to the ones of the
listed section. Finally, in case of convergence, there is a footnote
which tells whether the ML algorithm reproduced the GP result,
whether the plateau (scaling) and convergence are confirmed by
the scaling and convergence test.
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General remarks holding for the analysis of all the burst types

(a) Often, neighbouring frequency channels were integrated in
order to reduce the noise level. This lowers the frequency
resolution. Therefore we integrate just ranges over which
the features of a burst do not substantially change.

(b) Often, a data set as a whole appears non-stationary, it looks

like elementary bursts (peaks) on a slowly varying back-

ground. We refused, however, to subtract an estimated back-
ground unless the spectrogram indicates a background to
be present, i.e. unless there is increased flux in an interval
without bursts. Very likely, the background-like fluctuations
stem from the mere superposition of elementary bursts. Ex-
ceptions are the type II and the type IV events (see below).

Sometimes, we concatenated data separated by a time gap,

pointed out by listing several time ranges in Table 1. This

was done in order to get longer time series, however only
in cases where the data looked similar, i.e. where the auto-
correlation times and the flux amplitudes were comparable.

©

Results for the different burst types

Type I

Neither periods nor low dimensions were found. Some of the
events are intermittent, not always as nicely separable as in
Fig. 1. Single bursts can be isolated, separated by short quiet
phases. The intermittency test was successful in revealing the
true nature of many convergences of the GP algorithm.

Type I

The measurements are time profiles through the main body of a
type II burst ("backbone’), which are clearly non-stationary. We
therefore subtracted a flexible minimum envelope, to separate
the fine structures from the bulk process. This data modification
may be justified by the assumption that the bulk and its fine
structure have a different physical origin. The type II bursts
show no correlation dimensions, the available ng (Eq. 9) is very
short, however. In the 80/2/28 event, we found a moderate peak
in the power spectrum, indicating a periodicity of 2.9 seconds
(cf. Fig. 1).

Type III

Type III bursts are rather broadband events. A few times it was
possible to analyze different frequencies of similar time ranges
in the same event. No convergence of the GP algorithm and no
periods were found. The stationary sections are relatively short,
compared to the other burst types, so we often had to apply
the surrogate data test which was often successful in explaining
convergence of the GP algorithm. Some type III groups are
intermittent.

Type IV

Again a flexible minimum envelope had to be subtracted, yield-
ing stationary and very homogeneous time series. The GP algo-
rithm did not converge, and no periodicities were observed.
Narrowband spikes

No prominent periods and no low-dimensional chaos were
found. The first two events in Table 1, 82/6/4 and 82/7/17, are
very nicely suited for a dimensional analysis (large data sets,
with large stationary sections, low noise level). We found several
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Table 1. We list date and start time in UT of the events, time resolution 7, the number of available data points (pixels), and the frequency.
Then the stationary sections are given in pixels, as well as the auto-correlation time. Since the latter usually does not vary much during an
event, we do not give its value for each stationary section. Eventual periods within stationary sections are reported, and finally the results of
the Grassberger-Procaccia algorithm (GP) estimating the correlation dimension. In case of convergence (‘conv.’), there is a footnote telling the
result of the maximum likelihood estimate (ML) and of the scaling and convergence test (plateau-test). The reason for divergence (‘div.’) is
given if it is intermittency (‘interm.”) or break-down of scaling (‘satur.’), as it is revealed by the surrogate data test

Table 1a. The type I events

H. Isliker & A.O. Benz: Bursts and flares in solar and stellar coronae

Data: Resol. Duration Frequ. Stationary Section Leorr periods GP

Start Time | r [ms]  [pixels)] [MHz] || from to [pixels] | T [pixels]

82/ 4/11: 100 240 247 1 240 8 div.
05:33:57

82/ 4/11: 100 970 2515 201 972 1) ~5 div. (interm.)
05:34:54 (210)

05:36:14 (270)
05:36:45 (490)

82/ 4/23: 20 3000 262.5 1 750 22 div. (interm.)

09:08:15 750 2500 div.
1250 2500 div. (interm.)
2050 2600 div.

82/5/7: 20 12000 262.5 1 2500 div. (interm.)
12:28:25 (3000) 2000 5000 60 div. (interm.)
12:31:05 (3000) 6500 8500 50 div. (satur.)
12:33:18 (3000) 9000 12000 47 div. (interm.)
12:41:15 (3000) 30

82/ 9/11: 20 3000 262.5 500 1400 30 div.
10:08:19

82/5/5: 60 4000 262.5 250 1500 div.
12:08:56 (1000) 500 1750 11 conv. 2)
16:35:46 (1000) 1750 3000 17 div.
16:55:00 (1000) 2000 3000 ~7 div.
16:58:46 (1000) 13

82/5/1: 60 1000 262.5 200 900 7 interm.
\05:06:20

82/5/17: 60 1000 262.5 1 300 5 div.
08:30:34 350 1000 interm.

82/ 5/ 6: 60 3000 262.5 1 3000 9 div. (interm.)
09:52:59 (1000) 200 1300 div. (interm.)
10:42:42 (1000) 2200 2800 div.
10:45:21 (1000)

82/5/17: 80 2250 262.5 1 1250 11 div.
12:52:52 (750) 250 750 div.
13:08:52 (750) 1000 1500 div. (interm.)
13:11:40 (750) 1250 2250 interm.

and subsections interm.
1) The quiet part 221 — 270 has been omitted.
%) Approximately reproduced by ML, but not confirmed by the scaling and convergence test.
Table 1b. The type II events
Data: Resol. Duration Frequ. Stationary Section teorr periods GP

Start Time | 7 [ms] [pixels] [MHz] || from to [pixels] | T [pixels]

80/ 2/28 : 25 3520 468 1 2200 68 | ~1167) div.
12:06:28 200 1500 div.

1250 2500 div.

82/6/4: 20 3000 262.5 600 2900 100 div.
06:32:56

82/6/4: 20 3000 362.5 1 1000 46 div.
06:33:57 350 2500 div.

subsections div.
1) weak

sections where the GP algorithm converged, it turned out, how-
ever, that it was a subtle effect of intermittency. This corrects the
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Data: Resol. Duration Frequ. Stationary Section teorr periods GP
Start Time | 7 [ms] [pixels] [MHz] || from to [pixels] | T [pixels]
82/ 4/18: 100 1210 119.5 400 1150 20 div. (satur.)
05:45:00 251.5 250 1200 interm.
¢ 500 1000 div. (interm.)
81/2/3: 100 950 452.5 1 950 12 div.
10:44:58 and subsections div.
82/6/6: 20 3000 262.5 1750 2900 65 div.
12:30:01 and subsections div.
82/ 9/17 : 20 3000 262.5 1050 2200 45 div. (satur.)
07:31:53
82/ 9/17: 20 3000 262.5 200 1800 45 div. (satur.)
07:34:02
81/10/07 : 100 2492 3175 200 1850 33 div.
10:33:42 500 1700 div. (interm.)
81/11/15: 100 5760 257.5 800 2250 20 interm.
07:54:44 1650 4400 interm.
and subsections div. (interm.)
81/11/15 : 100 3212 239.5 350 1800 20 div.
13:14:50 «“ many subsections div.
377.5 250 1650 div.
«“ 900 1900 div.
“ 1350 2000 div. (interm.)
80/06/27 : 100 1750 244 750 1750 18 div.
16:14:18 “ subsections div.
277 1 650 interm.
« 750 1700 div.
“ and subsections div.
310 1150 1700 div.
82/4/7: 100 2080 257.5 200 800 15 div.
12:19:34 “ 750 1750 div.
12:20:02 «“ and subsections div.
12:21:04 287.5 1 1350 div.
12:22:06 «“ and subsections div.
12:23:20 “ 500 1950 div.
12:23:57 “ and subsections div.
317.5 1000 1300 div.
«“ 1150 1500 div.
82/ 4/14 : 100 1232 3775 20 640 19 div.
06:04:14 420 940 div.
06:05:11 660 1200 div.
06:06:00
06:06:35
82/ 4/16 : 100 1640 257.5 1 400 div.
13:08:10 (480) “ 500 1300 10 div.
13:10:01 (1160) “ 1100 1600 25 div.
. 287.5 1 400 div.
“ 681 1240 div.
“ 1160 1640 div.
377.5 600 1220 div.
82/ 4/16 : 100 800 257.5 310 660 12 div.
14:15:55 287.5 61 680 div.
317.5 61 680 div.

method. The third event, 82/12/16, has to be treated more cau-
tiously. Though it is very long, the time resolution is lower, and
the noise level is higher. This inhibits experimenting with the
data (varying the time delay or integrating the data). A possible
low dimension might remain hidden due to the non-optimum
state of the data.

Stellar flares

The data have a very high noise level, therefore we had to apply
a noise reduction in order to be able to search for dimensions
at all. We used an iterated Wiener filter, which subtracts noise

in Fourier space. Simpler methods, such as boxcar smoothing,
were also tried. Such methods are known to be able to reduce
the complexity of a process, more concrete, dimensions can be
lowered, if present. It is not clear, whether they can even remove
dimensions completely. Most stationary sections show a slight
peak in the power spectrum. Usually, one expects periods to be
reflected in a dimensional analysis as a dimension 1 (or 2 if
two independent frequencies are present). This was not the case
here, the dimensions seem to be hidden in the noise.
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Table 1d. The type IV event

H. Isliker & A.O. Benz: Bursts and flares in solar and stellar coronae

Data: Resol. Duration Frequ. Stationary Section teorr periods GP
Start Time | r [ms] [pixels] [MHz] || from to [pixels] | T [pixels]
80/4/6: 300 1103 4445 83 1100 27 div.
14:24:30 616 1 833 div.
Table 1e. The narrowband-spike events
Data: Resol. Duration Frequ. Stationary Section teorr periods GP
Start Time | 7 [ms]  [pixels] [Mhz] || from to [pixels] | T [pixels]
82/6/4: 4 8250 363 1500 8250 33
13:38:41 many subsections div. (some interm.)
1500 4000 div.
4000 8250 div.
82/ 7/17 : 2 10000 770 1 1000 20 div.
10:06:26 1000 4000 div.
5000 6000 div.
6000 10500 1) div.
82/12/16 : 10 12000 730 1 12000 9 div.
10:04:22 many subsections div.
10 870 1 12000 4 div.
many subsections div.
10 1010 1000 11000 3 div.
many subsections div.

T) The quiet sections 7000-7200 and 7700-7800 have been omitted.

Statistics of the results

A more condensed summary of the results is given by Table 2.
The first entry is the ratio t(stat.) /t(all), where t(all) is the total
amount of time covered by the measurements, and t(stat.) is the
total amount of time where the systems were in a stationary state.
This ratio is not necessarily a characteristic of the particular burst
types: it mainly reflects the effectiveness of the data selection
from our data base. The data were categorized into "apt for
analysis’ and ’not apt for analysis’, without any mathematical
method.

The next entry, however, nig(stat.), the average length of
stationary sections in units of the respective auto-correlation
time, is a characteristic of the different burst types. The narrow-
band spikes, type I and stellar flares have the longest stationary
sections, where the large value for the narrowband spikes is due
to the 82/12/16 event. Without this exceptional case, fig(stat.)
equals 133 4 79. Only the statistics for type I and type III is
relatively good, as is seen from inspection of Table 1.

Since the GP algorithm was not observed to converge, we
can infer that there is no low-dimensional chaos. The processes
are high dimensional, with the dimensions so high that the length
of the time series does not allow to detect them. The numerical
experiments of Isliker (1992a, see Sect.3.4.2) and similar un-
published experiments with known chaotic systems give a very
rough estimate of the lower limit for the respective dimensions.
This value D, _ is given in Table 2. It should be interpreted in
the sense that the correlation dimension of for instance a type
I event must be expected to be larger than 5. Of course, this
includes infinity, i.e. stochasticity. The type II’s and type IV’s
limits are in brackets, since the statistics is too poor for a definite
answer. The noise in the stellar data prohibits to give a lower
limit.

5. Conclusion

All burst types have been found in stationary states for some
time. How long these states last depends on the individual burst
types. The type I events, narrowband spikes and stellar flares
have the longest stationary states. It is therefore adequate to
search for physical models which are able to bring forth station-
ary solutions, as e.g. electron cyclotron masers, or quasi-steady
reconnection, two models which are in discussion for the latter
two burst types.

The stationary sections of type II, type III and type IV bursts
are so short that the transient states at the beginning and at the
end have to be taken into account. This means that the start phase
and the decay phase of the operating processes are arelevant part
of any available measurement, and they hardly can be neglected
in the models.

The narrowband spikes and type I events have a tendency
to be interrupted in their long stationary phases. These short
intermittencies are short lasting suppressions of the emission
mechanism. Type III’s are less homogeneous, i.e. intermittency
is present not just in the form of stopped emission, but also in
the form of reduced amplitudes. Type II and type IV events are
mixed, some are homogeneous, some are not. The stellar flares
are not intermittent. Concerning models, we note that there are
examples of non-linear stochastic processes (Provenzale et al.
1992), as well as of deterministic equations which show features
of intermittency.

Periodicities are rare, except in the pulsation-like stellar
flares. They are constantly pulsating, resembling very much so-
lar pulsations. The periods are not very prominent, their power
typically is a factor 3 to 10 stronger than the power of the neigh-
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Table 1f. The stellar flares (all AD Leo)
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Data: Resol. Duration Frequ. Stationary Section teorr periods GP

Start Time | 7 [ms] [pixels] [MHz] || from to [pixels] T [pixels]

87/11/ 4: 20 2184 1415 800 2150 13 div.

11:04:56.68 many subsections div.

87/11/ 4: 20 15124 1415 1 3250 ~337) interm.

11:13:01.00 (6984) 2250 3000 16 div.

11:15:40.68 (3500) 3750 4500 12 ~ 331 div.

11:17:00.38 (4640) 6235 6984 18 ~ 331 div.

7985 9234 ~ 25 1) div.

8735 9734 ~ 25 1) div.

9985 10734 ~251) div.

10985 11884 ~ 28 1) div.

12735 13984 ~ 251 div.

13635 14884 ~ 28 1) div.

87/11/ 7: 20 2000 1415 450 1600 14 | ~ 58 and 25 %) div.

10:55:10.90 1 800 ~621) div.

300 1100 ~ 53 and 27 2) div.

800 1600 ~ 331 div.

1601 2000 ~ 44 and 25 2) div.

1) weak period , broad peak
2) weak period

Table 2. Statistics of the results: In some ms-spikes, type III and pul-
sation events we have analyzed different frequencies at equal times.
Therefore, they have two entries in the table. The entries marked by
an asterisk are just the lowest of the accessible frequencies taken into
account, whereas the unmarked entry is summing up the different fre-
quencies as if they were different events. The entries are: %, the
ratio of stationary phases of the measurements, summed over all events,
divided by the total observing time; ig =< “fﬂl >, the average
length of a stationary sections in units of the auto-correlation time,
D@, a rough estimate of the lower limit for the dimensions of the
respective processes

I
type I 92.4% | 94 * 71 5
type IT 93.9% | 28 12 @
type III*) | 69.8% | 47 £29 3-4
type HI 81.7% | 46 + 26 3-4
type IV®) | 923% | 38 0 @
type IV 83.9% | 35 +5 (4)
ms-spikes *) [ 93.3% | 333 495 5
ms-spikes 93.3% | 1041 =+ 1380 5

[ stellar [ 76.9% | 76 +42 [ 7]

bouring frequencies. Because of this and because the power

spectrum is not at all uniform, these modes do not explain the

entire dynamics of a process. It remains unclear whether there is

a hidden chaotic or a stochastic process with a dominant mode.
The enquired data are all high-dimensional; low-dimensional

chaos has not been detected, therefore

(a) either the dimension is infinite and the system is stochastic (a
sum of many uncorrelated processes, or a process governed
by stochastic boundary or initial conditions),

(b) orthedimensionis finite and the system is high-dimensional
deterministic chaotic (D@ 2 4 — 5).

This latter distinction could be done with dimension estimate
methods only if the processes revealed themselves in time series
which were substantially longer than the ones considered in this
article. It seems, however, that it is the very nature of the respec-

tive processes to be restricted to the typical durations reported.
The boundary between detectable low dimensions and unde-
tectable high dimensions has to be estimated from numerical
experiments on known chaotic systems: the dimensions must
be greater than 5 for narrowband spikes and type I events, and
greater than 3 or 4 for type III, type II and type IV events. The
lower limit remains open for the stellar flares, due to their nois-
iness.

We first draw conclusions on the radio bursts occurring in the
impulsive phase of flares, the type III and the narrowband spike
events. They are directly connected to the primary energy re-
lease. Groups of type III bursts and narrowband spikes last sim-
ilar times, typically one minute. Single type III bursts have a
much longer duration than the narrowband spike bursts. It is
quite natural then that the type III groups appear more transient,
whereas the short narrowband-spikes have long phases of sta-
tionary bursting. The narrowband spikes would have a better
chance to reveal a possible low dimension. They do not, so the
relevant process must be complex, i.e. with a dimension higher
than about 5. This calls for high-dimensional deterministic or
stochastic models.

Later in the flare and probably further away from the ac-
celeration site occur the type II and IV events. Type II bursts
are emitted in association with a shock wave emerging from
the flare. The fine structures at a fixed frequency (suggesting
an approximately constant height in the corona) has in one case
a simple structure, namely a weak period. Such an oscillation
may be produced by a wave structure in the upstream medium
modulating the emission at the shock front.

The type I events are not flare related. They appear in the
present analysis similar to the narrowband spikes, with long
stationary sections. The analysis infers that the type I storms
are complex, with dimensions greater than about 5. They have a
stronger tendency to be intermittent than the narrowband spikes.
The results exclude a self-contained source model that operates
as a non-linear system of a few free variables. The results, on
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the contrary, support a scenario for type I storms in which the
variability is caused by a stochastic input or a high-dimensional
mechanism. Possibilities include inhomogeneous plasma flow-
ing into a reconnection region or activity at a shock front mod-
ulated by the upstream medium.

The stellar flares, finally, appear pulsation-like, with long
stationary phases and quite strong ordering, as is indicated by
the frequent presence of quasi-periodicity. We cannot consider
the absence of low-dimensions to be a final result, since the
quality of the data is not adequate. Better data is needed, with a
lower noise level, or an efficient, but conservative noise reduc-
tion method in phase space. ‘

We note that this analysis does not disprove deterministic
chaos in the flare radio emission. It merely shows that if de-
terministic chaos is present in the analyzed data, then it is not
low-dimensional. The results of this work give constraints to
models for all types of investigated bursts. Stationarity, inter-
mittency and dimensionality are new characteristics of radio
bursts which should be taken into account in their interpreta-
tion.
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