FTI99BARA T Z310- 76721

Astron. Astrophys. 310, 672-680 (1996)

ASTRONOMY
AND
ASTROPHYSICS

Are solar flares random processes?

H. Isliker!:2
! Institute of Astronomy, ETH-Zentrum, CH-8092 Ziirich, Switzerland

2 Dept. of Mathematics, University of Patras, GR-261 10 Patras, Greece

Received 22 June 1995 / Accepted 6 November 1995

Abstract. We show that the current high time-resolution ob-
servations are compatible with considering the flare process
stochastic. To establish this proposition we analytically investi-
gate a particular class of stochastic processes. These marked and
filtered point processes (a generalization of shot noise) describe
the radio-emission occurring during a flare in a realistic way,
namely as a trigger signal causing observable pulses, where the
trigger and the plasma response are treated as separated pro-
cesses. The existing empirical inquiries, with which we con-
front our model, are based on radio observations (type III and
narrow-band spikes events), and they refer to the shape of the
power-spectrum, the possible existence of a low-dimensional
attractor (correlation dimension estimate), and the statistics of
the time intervals between subsequent peaks. It turns out that the
stochastic model can describe the properties as they are found
in these empirical investigations. Particularly, what has been
found in the observations and termed ’periodic’ or ’almost pe-
riodic’ can as well be the signature of temporal correlations in
a stochastic model. Such correlations arise for instance from
the pulse shape, but also from a blocking time, if such a one is
inherent to the peak-detection algorithm.
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1. Introduction

The question we address in this paper is whether stochastic
models for the solar flare process are compatible with today’s
observational results with high temporal resolution. The existing
empirical investigations are controversial, mainly concerning
the point whether flares essentially are a periodic process or not.
After all, the topical question still is whether the nature of the
flare process is stochastic or deterministic, and, within the latter,
whether it is periodic (also multiply periodic) or chaotic (i.e.
deterministic, with sensitive dependence on initial conditions,
such that the system appears random-like). Agreement exists on
the assertion that flares are fragmented: Hard X-ray and radio
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emissions (in the form of type III, microwave, and possibly
narrowband-spikes events) are the electromagnetic emissions
which are most directly linked to the energy release process in
flares, and they reveal very rich spatial as well as temporal fine
structures (see e.g. the review of Benz and Aschwanden 1991).

Several investigations exist which are dedicated to the un-
derstanding of the temporal properties of flares (the flare dynam-
ics). Since radio measurements are less contaminated by noise
than present-day hard X-ray observations, and since they show
to be at least as rich in details as the hard X-rays emissions, most
inquiries on temporal fine structures deal with observations of
type III and narrowband spike events. They consequently are
the subject of our investigations.

Mangeney and Pick (1989), continued by Zhao et al. (1991),
searched for periodic behaviour in type III events by estimating
the power-spectrum (using Fourier transformation). Aschwan-
den et al. (1994) have investigated the statistics of the spread
of the times between subsequent peaks in type III events. All
these authors conclude that the flare process is basically peri-
odic. Contrary to these investigations, Isliker and Benz (1994)
did not find any hint to periodic behaviour, analyzing type III
as well as narrowband spikes events. They had estimated corre-
lation dimensions (with the extended dimension estimate algo-
rithm) and power-spectra to search for possible periodicities or
low-dimensional chaos. Neither of the two was detected, which
infers that the flare process is high-dimensional, or, as can be
concluded from the typical duration of the events, the trajectory
of the system variables moves in state space on a set which is
characterized by a dimension of at least about 4 or 5. This in-
cludes infinity, i.e. the stochastic case, and it excludes periodic
behaviour with just one or a few active modes.

We introduce and analyze a particular stochastic flare model.
The aim is to see whether such a model can explain the described
observational results. If it can, then a counter-example is found
against the conclusion of the above authors who claim that the
observed time series must be due to a periodic process (to show
that the chosen model is the true one would be a different prob-
lem). The analyzed model belongs to the class of the marked
and filtered point processes, a generalization of shot noise (it is
also termed real-valued point process). It is an adequate way of
describing the radio emissions during flares, assuming basically

© European Southern Observatory ¢ Provided by the NASA Astrophysics Data System


http://cdsads.u-strasbg.fr/cgi-bin/nph-bib_query?1996A%26A...310..672I&amp;db_key=AST

FTI99BARA T Z310- 76721

H. Isliker: Are solar flares random processes?

that a trigger signal causes radio pulses. The nature of the trigger
and of the pulse process (including the pulse shape) are inde-
pendent free parameters, though observations give hints how
they roughly should be chosen. We just note that the recently
proposed model of Vlahos (1994) and Vlahos and Raoult (1995)
is of this type, as well as the model presented in Aschwanden
et al. (1994), whose suggestion for an empirically reasonable
pulse shape we take over.

After introducing the model (Sect. 2), we analytically de-
duce the properties of interest, namely power spectrum (Sect.
3), and statistics of the times between subsequent peaks (Sect.
4); correlation dimension estimate needs no further treatment,
it will be discussed in the conclusion (Sect. 5). In each section,
the respective empirical investigations are discussed and com-
pared, and the influence particularly of the shortness of the data
is treated. The considerations on the times between subsequent
peaks (Sect. 4) include also an analytical treatment of the peak-
identification problem in measured time series, and results are
also derived for the case of a periodic trigger process.

2. A stochastic flare model

The flare model we investigate belongs to the very general class
of stochastic processes called marked and filtered point pro-
cesses (see e.g. Cox & Miller 1965, p. 366ff., where they are
termed real-valued point processes; Papoulis 1991, p. 361f.,,
where they are termed generalized shot noise; the terminology
we use is taken from Gardner 1986, p. 118ff.). They apply to the
situations where pulses of possibly random shape occur at pos-
sibly random times: The onset time t; of the ith pulse is taken as
the outcome of a random process T; (capital letters denote ran-
dom variables, and small letters concrete realizations; a set {7} }
of random points on the time axis is termed a point process, see
e.g. Papoulis 1991, p. 297). The pulse-shape is described by a
deterministic function f(t; a), which depends on time ¢ and on
an ensemble of parameters a, ..., a'™) =: a, written in vector-
form, for conciseness. To account for randomness of these pulse
shapes, the parameter a;, which determines the shape of the ith
pulse, is considered as the outcome of a vector-valued random
variable A;, the parameter process. The ith pulse is then de-
scribed as f(t — T;, A;), and the observed signal X(t) is the
superposition of the individual pulses:

N,

X(t)=) ft—T,A). ©)

=1

The total number of pulses [V, is finite in a finite time interval
(say A). If the pulses occur uncorrelated in time, an average
number of pulses per unit time n; can be defined: n; := N, /A,
the pulse rate. The process in Eq. (1) is a generalization of the
so-called shot noise model, where the pulse shape is constant,
and the observed time series is X (t) = Zﬁ\i’l f—=15).
Important examples for point processes {1} are the so-
called Poisson point processes. In their case, the points {7} } are
completely random, i.e. uncorrelated and even independent.
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2.1. The context of flares

The translation of the model Eq. (1) into the context of flares is
as follows: at some time ¢;, an energy-release event is triggered
(most likely localized reconnection). Among others, particles
are accelerated, leading in turn to a plasma instability, which
possibly is converted into electromagnetic waves (a type III or
narrowband spikes event). The latter are finally radiated off the
corona and detected by some terrestrial instrument. The plasma
response will depend on local parameters, say ag), gL) =a;
(e.g. local magnetic field, local particle densities, local tempera-
ture), which yield the burst time-profile of the form f(t—t;, a;):
the a;-dependent pulse shape f(t, a;) is shifted in time to ¢;. To
take causality into account, f(¢, a;) = 0 for t < 0 must hold.

The assumptions which allow to write a radio measurement
in the form of Eq. (1) do not decide whether the energy re-
lease process in flares is stochastic or deterministic (periodic or
chaotic). This decision is hidden in the choice of the trigger pro-
cess T;. The same holds for the parameter-process A;, which
can be adjusted to different assumptions on the flare-scenario:
one possibility is that the local parameters appear as completely
random elements in the process (corresponding for instance to
some assumptions on the inhomogeneity of the flaring plasma),
another possibility is that the parameters are constant through-
out (so that the model reduces to shot noise).

2.2. The analytical treatment of marked and filtered point
processes

To derive properties of the time series X(t), it is conve-
nient to separate clearly the deterministic from the stochastic
part in Eq. (1). Thereto, we introduce the counting process
AE(t, a), the random variable denoting the number of pulses in
[t,t + At], associated with a value of the parameter-vector A
in [a,a® + Aa®] x ... x [aB),aP) + AaD)]. The count-
ing process AZ(t, a) takes the values 0, 1,2, . . .. This allows to
write Eq. (1) in the equivalent form

X®=Y Y ft-t,a) A%, a), @)

a t'=—oo

i.e. as temporal convolutions of a deterministic function f with
random processes AZ(t', a), summed over the parameter a.
The sums range now over all times on one hand, and over all
possible parameter values @, which we assume here to be a
discrete set. The generalization to continuous time and param-
eters is straightforward. Since Eq. (2) is linear, the statistical
properties of X (t) can be expressed in terms of the ones of the
AZ(t', a). The latter up to the second moments are presented
in the following.

Properties of the counting processes AE(t, a)

To arrive at a concise and lucid presentation we introduce the
counting process

> AE(t,a) = AE(®), 3)
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which obviously is the total number of pulses generated in the
time interval [¢, £ + At]. The benefit of introducing this process
is that — under quite general conditions — the properties of the
AE(t, a) in Eq. (2) can be reduced to the ones of AZE(t).
Throughout the following we assume

(a) stationarity (independence of absolute time),

(b) and At to be small, so that we can expand the quantities of
interest and keep only the terms of first order in At.

These assumptions allow the expectation and variance of AZ(t)

to be written as

E[AE®)] = pn AL, C)]

Var[AZ(®)] = 0% At 5)
and the covariance as
Cov[AE(), AE(E")]
= B[(AS() - E (AZ()) ) (A" - E(AZ¢) )] ©)
= O — YA AL + 6, ()AL c2 AL

introducing the covariance density 79 (¢ —t') — for more clar-
ity we have written the covariance in a form such that the lag 0
appears separated, defining 7?(0) = 0, and using that the co-
variance for ¢’ =t is the variance. The absence of correlations
can now be referred to as the case 7 (h) = 0. Note that 1, 2,
and 7O (t"” — t') are densities, they are the respective quantities
per unit time. p.,, for instance is the pulse rate. The definition
of &4 (t") in Eq. (6) is so that 8y (t")At” = 1if ¢ = t/, and
zero else. This facilitates greatly translating the given formulae
to the continuous time case (3_ At — [ dt).

Let w(a) Aa denote the probability distribution of A; (in-
dependent of 4, due to stationarity). With the further assumption
that

(c) the amplitude process A; is independent of the trigger pro-
cess (and of the counting process AZ(t))

we have
E[AZ(t, a)] = w(a) Aa E[AZE®)], @)

since AZ(t) as well as AZ(t, a) are counting processes.

The variance and covariance of AZ(¢, a) can in general not
be reduced to the properties of AZ(t). However, we can make
further assumptions which are still general enough for our pur-
poses, and which allow to express the wanted properties in terms
of AE(t). These not very restrictive assumptions are that for
small time intervals At (according to assumption (b), so that
Egs. (4), (5), and (6) hold)

(d) either pulses are rare events (i.e. it is much more probable
that there is no pulse at all), or, equivalently, the occurring
of several pulses at a time is highly unlikely (at best a higher
order effect);

(e) mutual independence of the processes AZ(t,a’) and
AE(t, a) if the parameters a’ and a’ are different (so that
Cov [ AE(t,a’), AE(t',a”) | =0fora” # a)).
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The assumptions imply that generally
Var[AE] =E[AZ] (3)

where AE stands for AZ(t) or AZ(t, a) (with a arbitrary), and
furthermore

Cov [ AE(',a’), AE({",a") ]

9
= w(a)Aa’ w(a")Aa" Cov [ AE(®), AZ(t")] . ®
Inserting Eq. (6) into the previous expression yields that
Cov [ AE(t',a’), AE(",a") ]
= w(a)Aa’ wa")Aad" YO —t"At' At” (10)

+6u(t"AL" 64/(a")Ad” w(a')Aa' d2AL

where again, analogously to &y (t")At”, we define 64:(a’) x
Aa" tobe 1if a” = a’, and O else, in order to facilitate the
transition to continuous parameters.

Egs. (7), (8), and (10) are the second order properties of
AE(t, a). Via Eq. (2), they allow to derive the respective prop-
erties of X (¢). This will be shown for the covariance in the next
section.

3. Power spectra

For analytical calculations it is convenient to use the definition
of the power spectrum as the Fourier transform of the auto-
covariance:

P(w) = (F Cov(h))(w)

=/dhei‘”h COV[X(t),X(Hh)] ) (b

where .7 denotes Fourier transformation (a definition of covari-
ance is given on the occasion of Eq. 6). This definition is equiva-
lent under quite general conditions to the definition as the square
Fourier amplitude per unit time (~ (1/T) - | (% X) (w)|2), ac-
cording to the Wiener-Khinchin theorem.

To derive the covariance of the process X (¢), Eq. (2) has to be
inserted into the definition of covariance. After some algebraic
calculations, the covariance of the processes AZ(t, @) can be
recovered. Inserting Eq. (10) for the latter yields the general
formula

Cov [X(t), X(t+ h)]

=> DD > fa)fE" +ha”)

a’ a't'=—00t''=—00

x w(a)Ad' wia")Aa" YO —t"y At' At

12)

tun D> fH,a) f(t' +h,a") wa)Ad' At

a’t'=—o0

We recall that behind this formula are hidden the assumptions
(a) to (e) in Sect. 2.2, which are sensible in the context of flares,
as noted, and therewith they are hardly restrictive.
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In case where the point process AE(t) is uncorrelated in
time (i.e. YO(t' — t”") = 0), Eq. (12) obviously reduces to the
second term, and the power spectrum (Eq. 11) may be written
as

PW)=pn Y (Ff)w,a") (Ff) w,a) w@)Ad

“ , (13)
=tin ) w(a)Aa’

a’

(7 f)w,a)

as can be derived e.g. with the convolution theorem (the asterisk
denotes complex conjugation, p,, is defined in Eq. 4). After all,
the power spectrum is determined by the shape of the pulses
and its parameter dependence, the (uncorrelated) point process
has only a minor influence on it. To discuss Eq. (13), it is worth-
while treating the case of shot noise first, i.e. the case where the
pulse shape is independent of the parameters a, and thereafter
to turn to the more general case.

3.1. Shot noise

If the pulse shape f(¢,a) is independent of the parameter a
(shot noise), and if the point process is uncorrelated, then, ac-
cording to Eq. (13), the power spectrum is directly given by
the squared absolute value of the Fourier transform of the pulse
shape. Consequently, the power spectrum can have very differ-
ent forms, depending solely on the particular pulse shape. In
Fig. 1, the power spectra for three different pulse shapes are
shown, a Gaussian (f(t) = e~@%"), a cosine (f(t) = cos(rt), for
—0.5 <t <0.5), and a single-sided exponential (f(t) = e~ %,
for ¢t > 0). The location of these pulses on the time axis has no
influence on the power spectrum.

We note that the general slope of the power spectra in Fig.
1 varies strongly with the different burst shapes.

3.2. Generalized shot noise

More generally, we consider a point process which is uncorre-
lated in time, and which is marked and filtered (generalized shot
noise). The pulse shape f(¢, @) depends now explicitly on the
parameter a, and the a-summation (integration) in Eq. (13) has
to be performed. To evaluate the formula one has to choose a
concrete pulse shape and a concrete point process:

The example of a pulse shape we use is the one proposed
by Aschwanden et al. (1994). These authors consider the burst

time profile to be basically sine-shaped, a - sin (ﬂﬁ), with
the amplitude a, and the burst duration D(a) a function of the
amplitude (;i\;l(t) is understood as half a period of the sine, the
rest set to zero: ;iTl(t) = sin(t) for 0 < ¢t < 7, and O else).

This profile is assumed to be instantaneously damped, so that
the final burst shape is the convolution

t . ’ _(+ _
ft,a)= /_Oo asin <7r Dt(a)) exp( (tT ! )/T) dt’,

with the damping constant 7. The involved parameter values and
parameter distributions are all taken from empirical estimates

(14)
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Fig. 1. Power spectra of shot noise for three different pulse shapes
(depicted in the inlet): Gaussian (solid), half a period of a cosine (dot-
ted), and a single-sided exponential (dashed), all three of similar length
(about 1 sec). The pulse rate n; is assumed as 1.

for type III events at 310MHz (references in Aschwanden et
al. 1994): 7 = 0.44 sec, the amplitude distribution w(a) Aa =
a~!8 Aa, with the amplitudes restricted to the range @i, =
5SFU < a < 2000SFU = a,44- The duration depends on
the amplitude and is given by D(a) = 0.1421 - In(a) (so that
D, pin =0.23sec < D(a) < 1.08sec = Dypaz).

The point process is assumed to be a Poisson process (see
Sect. 2), which implies that it is uncorrelated in time. Poisson
point processes can explicitly be defined by the following two
properties (see e.g. Papoulis 1991, p. 59):

(i) the probability for a certain number of points to fall into a
time interval At has Poisson distribution,

—niAt (nl At)k

prob[k points in At] = e T

15)
where the constant n; is the average number of points per
unit time interval.

(ii) The events “[k’ points in At']” and “[k” points in A¢"']” are
independent if the two intervals At’ and At” do not overlap.

The parameter n; is set to the empirically estimated value n; =

1/1.47 sec (with the help of Eq. (20) below, which is not quite

correct, as shown in Remark 2 of Sect. 4, but this has no deciding

influence on the power spectrum).

Inserting Eq. (14) into Eq. (13), a lengthy calculation yields
asum of several exponential integrals and a few oscillating terms
which are due to the cutoffs in the amplitude range. The formula
is difficult to survey unless presented graphically: In Fig. 2a,
P(w) is plotted against w/2, the frequency. This spectrum is
qualitatively similar to the shot noise spectra shown in Fig. 1:
a (steep) power-law fall-off at high frequencies (modulated by
the mentioned oscillations), and a turn-over to a constant value
for smaller frequencies (which accounts for the integrability of
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Fig. 2a. The analytically derived power spectrum P(w) of the marked
and filtered Poisson point process described in Sect. 3.2.
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Fig. 2b. The power spectrum of Fig. 2a in a different representation:
w?P(w) is plotted, i.e. the power spectrum of the differentiated time
series (solid line). The dashed line is the numerically evaluated power-
spectrum for a simulation of a time series with 15 pulses (after differ-
entiation).

the power spectrum, i.e. the second order stationarity of the
process).

3.3. Comparison with empirical data

The power spectra of the shot noises (Fig. 1) and of the marked
and filtered point process (Fig. 2a) are in qualitative accordance
with the results of Isliker and Benz (1994): they report power
spectra of different shapes, without finding any pronounced
peaks in them, for type III bursts as well as for narrowband
spikes events.

In order to compare the above marked and filtered point
process to the power spectrum estimates of Mangeney and Pick
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(1989) and Zhao et al. (1991), we first have to note that they have
analyzed not the data themselves, but the derivative of the time
series. To differentiate a time series X (t) means to multiply the
corresponding Fourier transform (,7 X ) (w) by —iw, and there-
with the power spectrum @(w) of the derivative can be expressed
as Q(w) = W P(w) (where P(w) = (1/T) - |(yX)(w)f, the
power spectrum of the original time series). In Fig. 2b, w* P(w)
vs. w/2m is plotted for the power spectrum P(w) shown in Fig.
2a. This plot can directly be compared to the results of Man-
geney and Pick (1989) and Zhao et al. (1991). Obviously, our
Fig. 2b is in qualitative accordance with the Fig. 1 in Mangeney
and Pick (1989; the only plot of a power spectrum they give, and
which they denote to be typical): There is a range of enhanced
power for small frequencies, i.e. in therange roughly from 0.1Hz
to 1Hz, peaked somewhere in this range. Of course, their figure
is not so smooth, since they have estimated the spectrum from
a finite amount of data, so the statistical error is considerable:

Using standard techniques, a power spectrum estimate for
white noise has an error of about 100%, no matter how long
the original time series is (see e.g. Scargle 1982). To illustrate
this behaviour, we have made a numerical experiment: we have
generated a realization of a time series of our marked and fil-
tered point process with 15 pulses (which is a typical value,
according to Aschwanden et al. 1994), with the parameter val-
ues chosen as above, and we have estimated the power spectrum
of the resulting and differentiated time series by a Fast Fourier
Transform. The result is visualized as the dashed line in Fig.
2b: the smooth curve has decayed into a spiky one. From the
generation of the process it is clear that the high peaks must
not be mistaken for the signature of underlying periods. (That
the power of the simulation is like shifted to higher frequencies
seems also to be a statistical effect: for longer time series, the
curve approximates more and more the theoretical one, as we
verified numerically.)

The location of the local maximum of the theoretically ex-
pected power spectrum for the differentiated time series (solid
line in Fig. 2b) at about 0.45 Hz is of course depending on the
details of how the model is chosen. It fits well into the distribu-
tion of “periods” as reported in Mangeney and Pick (1989) and
Zhao et al. (1991). (That a local maximum does appear at all
reflects only the turnover from a small slope at small frequen-
cies to a large slope at high frequencies in the original power
spectrum, Fig. 2a.)

Our results do of course not prove that the marked and fil-
tered shot noise model with pulse shape Eq. (14), a Poisson
point process as a trigger, and the parameters chosen as men-
tioned is the correct flare model. It is merely shown that the
results of Mangeney and Pick (1989) and Zhao et al. (1991)
can as well be interpreted in the frame of stochastic processes.
Isolated peaks in the power spectrum can be due to statistical
fluctuations, where the actual power-spectrum is continuous,
and therewith the corresponding process is not periodic.
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4. Time intervals between subsequent peaks

What is the statistics of the intervals between subsequent peaks
for marked and filtered point processes (defined by Eq. 1) ?
The details of the pulse shape are not taken into account in
this analysis, and even, by considering only expectation and
variance of the intervals, the information content of a time series
is reduced to two numbers.

Empirical investigations suffer from difficulties to identify
the peaks in a time series: Peaks have to be strong enough (not
hidden in the noise), and they have to be separated enough.
Else, they are not detected. We make an attempt to model these
empirical insufficiencies analytically in our inquiry, assuming
that after a peak has been observed a certain amount of time has
to elapse before a new peak can be identified.

4.1. The general theory: renewal processes

Let t™*® denote the time when the ith local maximum (peak)
in a time series occurs. The corresponding random variables
Ti(m‘w) generating these times form a point process. They are
to be distinguished from the times 7; in Eq. (1), the point pro-
cess which generates the onset time of the ith pulse (the trigger
process). Our interest is in the time intervals 1J; between subse-
quent peaks, 9; := t{™*? — ™% The corresponding sequence
of processes ©; generating these intervals is termed a renewal
process (see e.g. Papoulis 1991, p. 340ff.). It can be considered
as the increment process of a random walk in time for which
negative increments are forbidden.

Guided by the general form of marked and filtered point
processes (Eq. 1), we assume that an observed time interval ¢;
between subsequent peaks consists in three parts, ¢; = b; + w; +
T4, i.e. in terms of random variables we consider the renewal
process

The constituents are (as sketched in Fig. 3):

a) atime interval B;, during which no bursts can be detected,
since the burst identification algorithm needs a certain min-
imal separation in between bursts to recognize them as dif-
ferent events;

b) atime interval W;, which denotes the time elapsing between
the instant when the detection algorithm is able to detect
bursts again and the onset of the next instability. These W;
are related to the point process (see Sect. 2);

¢) atime interval R;, describing the delay between the start of
an instability and the occurrence of the respective maximum
emission. R; describes the inertia of the plasma response,
and it is related to the particular pulse shape f(t, a) in Eq.
.

For the expectation of the time interval ©; between subsequent

peaks we have directly from Eq. (16)

17)
=E[B;]1+E[W;1+E[R;] ,
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(i — 1)th pulse ith pulse
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Ry B W; R;

time
Fig. 3. Schematic drawing of a part of a time series to visualize Eq.
(16): an observed time interval between two subsequent peaks consists

of a blocked time B;, the time W; until the next onset of an instability,
and the time R; elapsed from the start of the pulse to the peak.

and, in case the three processes B;, W;, and R; are independent
or at least uncorrelated, the variance equals

2 2
00; =9(B;+W;+R;) (18)
2 2 2
_UB,- +O'Wi +O'Ri

(in the presence of correlations, the respective covariances
would have to be added to Eq. (18)). We assume the three pro-
cesses B;, W;, and R; to be stationary, so that the above expec-
tation and variance are independent of the temporal index 7. Egs.
(17) and (18) show that the properties of the combined process
are simply given by the respective quantities of the constituent
processes.

4.2. Specification

We have to specify the three processes B;, W;, and R; in Eq.
(16) in order to arrive at concrete results which can be compared
to empirical investigations:

I The blocked time interval B;: We model the insufficiency
of empirical peak-detections by the simplifying assumption
that after the recording of a peak a fixed time 3 has to elapse
before a new peak can be detected. The blocked time process
has probability density, expectation and variance

pB,(t)=6(t—pB), E[B]=8, 05 =0, (19)

with the only free parameter 5. More sophisticated models

are of course possible without causing any mathematical

complication, since in the present context we need only to
specify the expectation and the variance.

11 The time W, until the next instability starts: We consider the
two opposite cases where the onset times of the instabilities
(the trigger) are completely random, and where they are
periodic:

a Completely random onset times (a completely random
trigger): We assume the onset times of the instabilities
to form a Poisson point process (Eq. 15). Therewith, the
time between two subsequent starts of instabilities is ex-
ponentially distributed (see e.g. Papoulis 1991, p. 355).

© European Southern Observatory ¢ Provided by the NASA Astrophysics Data System


http://cdsads.u-strasbg.fr/cgi-bin/nph-bib_query?1996A%26A...310..672I&amp;db_key=AST

FTI99BARA T Z310- 76721

678

Our random variable W; is the waiting time from an ar-
bitrary instant (the previous peak time plus the blocked
time B;) to the next occurring of an instability, in statis-
tical language: the first return time. In case of Poisson
processes, W; is exponentially distributed, too (see e.g.
Cox and Miller 1965, p. 356). The probability density,
expectation and variance are

nit

pwl(t) =n e y

2 20
E[Wi]=ni, g%%=(l> , (20)

1 T

with n; the same constant as in Eq. (15), the expected
number of pulses per unit time interval.

IIb Periodic onset times: Alternatively, we consider a peri-
odic accelerator (trigger), where every P seconds a new
pulse starts. Let W, denote the interval from the end of
the blocked time to the onset of the next pulse. A pe-
riod P is the sum of the time R;_; from the onset of the
(¢ — Dth pulse to its peak , the blocked time B; after
the (¢ — 1)th pulse, and the time Wz until the next pulse
(number i) starts: P = R;_1+B; + ,VIZ (see the sketch in
Fig. 3). Whence W,=P- B; — R;_1,and consequently
(using Eq. (19), and Eq. (22) below)

[Ri-1] ,

E [Wl] -P-E[B]-E on

[

2 2
UW —O.Bi+URi—1

These considerations remain true as long as the blocked
time is small enough compared to the period, more pre-
cisely aslongas B; < P—R;_1 holds, which we assume
to be the case, here.

WX The time R; from the onset to the peak of a pulse (the plasma
response): Assuming the pulse shape of Eq. (14), we find nu-
merically that the peaks occur approximately p, - D(a) sec
after the start of the pulse. The parameter p, is restricted
to the range 0.5 < p, < 1.0, depending on the damping
constant 7. With D(a) = 0.1421 - In(a) and the amplitude
a exponentially distributed (see text after Eq. 14), we have
that R; is exponentially distributed over a finite interval

PR:(t)=Cre ™ for rpnin <t < Timas
E [R] _ l B (e"kﬂrrnazrmaz —_ e—ernzinTmin)
YTk (e—kﬂrmin — e—ermaz) ’ (22)

-k aztTmi 2
e R(Pmaz+Tmin) (rmaz — 'rmi'n)

1 2
= () -

CRr is a normalization constant, and the cutoffs r,,;, and
Tmag are given as p, Dy, and p; Dyyq4, respectively, the
scaled minimum and maximum burst duration.

The typical value 7 = 0.44 sec (see text after Eq. 14) yields
pr = 0.72, and kg ~ 7.82 for the exponent.

(e_errnin — e_kRTma: ) 2
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Fig. 4. Contour plot of ——%5 [ as a function of the expectation E [©;]

and the blocked time 3. The process is the stochastic model with a
random (Poisson distributed) trigger signal, as described in the text.

4.3. Comparison with empirical data

Inserting Eqgs. (19) to (22) into Egs. (17) and (18) we can ana-
lytically calculate the expectation and variance for the times ©;
between subsequent peaks for the described model.

Random acceleration

In case where the onset times of the instabilities are random (a
random accelerator or trigger; Case (Ila), Eq. 20), the essential
parameters are: the number n; of pulses per unit time interval
characterizing the point process, the duration of the blocked time
0, and the pulse shape (including the statistics of the respective
parameters). Fig. 4 is a contour plot of the relative spread of
the times between peaks as a function of E[©;] and 3.

The parameter n; remains hxdden in the presentation — which
makes sense since E [©;] is directly measurable, whereas there
is no direct access to n;. The pulse parameters are kept constant
to the typical values reported above (Eq. (22); 7 = 0.44 sec,
pr = 0.72, and kg =~ 7.82).

Aschwanden et al. (1994) have empirically estimated the
mentioned statistics from a large amount of type III events.
They report that their peak identification algorithm has a blocked
time (8 around 0.5sec (due to a smoothing procedure which
smears out shorter structures, and due to the set-up of the applied
algorithm to detect local maxima). They find that the average
time between subsequent peaks E [©;] is in the range from 1 to
2 sec, and for —=- E[e 7> which they call *degree of periodicity’ or

’mean periodicity’, they find Ecgg 7 =0.37 £0.12. Fig. 4 shows
that this value is well compatible with a stochastic flare model:
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Given that 8 and E [O,] are in the stated ranges, the quantity

E[@ i varies from about 0.2 to 0.7.

Remark 1: The value of [e’] changes with parameters: increas-
ing p, (see Eq. 22) from its minimum 0.5 to its maximum 1.0
causes a change of about 20%, and changing the lower ampli-
tude cut-off a,,,;, (see text after Eq. 14) by a factor of 2 causes a
change of about 10%. The other parameters have substantially
less influence on the results. Analyzing pulse shapes different
from Eq. (14) would not yield principally different results, since
only the expectation E [R;] and variance o}ei enter the present
calculations.

Remark 2: Aschwanden et al. (1994) supplement their inves-
tigations with a numerical study: they generate time series of
the marked and filtered point process with pulse shape Eq. (14)
and a Poisson point process. The pulse parameters are chosen as
described in the text after Eq. (14). They intend to model time
series with E [©;] = 1.47 sec, since this value has turned out to
be the empirically determined average. However, they prescribe
ny = 1/1.47 sec, so that E [W;] = 1.47 sec (Eq. 20) instead of
E[©;], and therewith they generate time series with larger in-
tervals between peaks than intended, namely E [©;] = 2.27 sec
according to our formula. They find ETg] =0. 73 in accordance

22 = (.65 has

with our analytical derivation which yields that E[@) 5

to be expected (see also Fig. 4).

The simulations of Aschwanden et al. (1994) agree with our
analytical calculations. They do not disprove stochastic models
to explain features found in the data, however, since the value
of l;—gi strongly varies with changing parameters, as Fig. 4
illustrates.

Periodic acceleration

What values of E[@ ; can be expected in case of a periodic
accelerator (a periodic trigger; Case (IIb), Eq. 21) ? Note that
the process ©); is still stochastic in this case, only one of the
constituent processes is replaced by a deterministic one. This
causes stronger temporal correlations to be present as they are
in case of a random acceleration process.

Using Eq. (21) instead of Eq. (20) we see that E[O;] = P
and 03, = 0%,  +0%, =20%, . The parameter § of the blocked
time does not appear (at least if we assume that B; < P— R;_;
holds, as mentioned above) The result is visualized in Fig. 5 as
the solid line, where E[(—) 5 is plotted against E [©;], the period
P.Thei 1nterestmg range for E [©;] is again in between 1 sec and
2 sec, where = E[@ i takes values roughly between 0.1 and 0.2.

Remark 3: The results vary of course with the exact pulse shape,
or in terms of renewal processes, they vary with the definition
of the process R; (Eq. 22). To give an impression of this vari-
ability, two more curves of 5[91] are shown in Fig. 5, derived
for different parameter values: they differ by the value of p,,
which describes the peak of a pulse as a linear function of its
duration (see (III) in Sect. 4.2), and implies different average
delays E [ R;] between the onset of pulses and their peaks. Addi-
tionally to the case treated by Aschwanden et al. (1994), where

» = 0.72 (E[R;] = 0.29 sec, solid curve), we also show the
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Fig. 5.

—[—]’ as a function of the expectation E [©;] for the stochastic
model with a periodic trigger of period P (E[©;] = P, see text). The
solid line is for the case p, = 0.72, the dotted curve for p, = 0.5, and
the dashed curve for p, = 1.0 (see text).

case p, = 0.5 (E[R;] = 0.20sec, dotted curve), and the case
pr = 1.0 (E[R;] = 0.40sec, dashed curve). The other pulse
parameters in Eq. (22), the range 7nin, "max and the exponent

kg, have much less influence on the value of =2i_ E[@ 5-

Remark 4: Aschwanden et al. (1994) have made numerical sim-
ulations of this case, too, and they find that —z& E[@ = 0.2, if the
detection efficiency is high enough. This is in accordance with
our Fig. 5, and it confirms again that our analytical description
is reasonable.

What the values of EG[—ST] regards, the cases of periodic acceler-
ation and of a random trigger are not distinctly different. This
parameter therefore cannot be considered as being able to dis-
tinguish the two cases. Particularly, the value empirically found
by Aschwanden et al. (1994) can well be explained by arandom
trigger.

5. Conclusion

The discussed stochastic flare model can explain present-day’s
observational results concerning power-spectra, correlation di-
mensions, and statistics of the times between subsequent radio
peaks:

Isliker and Benz (1994) find o hint for periodic behaviour
and for finite dimensions in power-spectrum and correlation-
dimension estimates for type III and narrowband spikes events.
Their results characterize a complex and maybe even a stochas-
tic process, and they are in accordance with the properties of
the presented stochastic flare model (we verified numerically
the (theoretically obvious) fact that our model yields no finite
correlation dimensions).

Mangeney and Pick (1989) and Zhao et al. (1991) have
analyzed differentiated time series of type III events and re-
port to have detected many isolated peaks in the corresponding
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power spectra, which they consider to be indicative of periodic
processes. We make the conjecture that these observed power
spectra can be interpreted in terms of the introduced stochas-
tic flare model. This has been proved in one case, where it has
been shown that the power spectrum of our model (for differen-
tiated time series) looks qualitatively similar to an empirically
estimated one, the one displayed in Mangeney and Pick (1989).
We generalize this result since the authors refer to the displayed
example as a typical one, and therewith we claim that the iso-
lated peaks they observe in the power spectra of differentiated
time series can as well be the signature of a stochastic process,
which is temporally correlated and whose time series consists in
a sequence of localized and peak-shaped structures. The power
spectrum resulting from such a process (a broadened peak if the
time series is differentiated) decays into isolated peaks in em-
pirical estimates since the available time series are short, and
therewith the fluctuations in the estimated power spectra are
considerable.

The empirical results of Aschwanden et al. (1994) can also
well be reproduced by the discussed stochastic flare model. Tem-
poral correlations in the time series cause the relative spread
E‘T[—(-‘;-h of the times between subsequent peaks to take values in a
broad range, depending on the details of the process (mainly its
correlations). Further variation is added to this parameter by the
uncertainties in peak detection. The sum of these variations is so
considerable that the parameter Ei[g-'—] is not able to discriminate

between periodic and deterministic behaviour.

After all, the reason why we arrive at a conclusion which
is different from the one of Mangeney and Pick (1989), Zhao
et al. (1991), and Aschwanden et al. (1994) is that these au-
thors have mostly considered uncorrelated stochastic processes
(white noise), with the only exception of one example in As-
chwanden et al. (1994), where the sensitive dependence on pa-
rameters has not been realized, however. We, on the other hand,
have inquired a large class of temporally correlated stochastic
processes, and found them to be very rich in possible proper-
ties. Stressing temporal correlations is not a mathematical trick,
since they are an inherent property of the observed time series,
and they consequently have to appear in every realistic flare
model.

A little note: we have mainly discussed the correlations in-
duced by the pulse shape. An extension to a correlated trigger
process is possible (some of the given formulae contain the re-

H. Isliker: Are solar flares random processes?

spective additional terms) and would certainly make sense, de-
pending on the assumed flare scenario. The properties of such
processes must be expected to be even more complex, in the
sense of being even harder to distinguish from deterministic
processes than the discussed models.

We emphasize that our inquiry does not prove that the model
inits introduced form, particularly with the used pulse shape and
the respective parameter values, is the correct flare model. The
properties vary too strongly with the parameters in order that
such a conclusion were possible. We have shown, however, that
the interpretations of the empirical results are not as unique as
some authors seem to believe. Above all, the interpretation in
terms of a (correlated) stochastic process is still possible, and
therewith a strictly periodic process is rather unlikely.
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