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Random walk through fractal environments
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We analyze random walk through fractal environments, embedded in three-dimensional, permeable space.
Particles travel freely and are scattered off into random directions when they hit the fractal. The statistical
distribution of the flight increments~i.e., of the displacements between two consecutive hittings! is analytically
derived from a common, practical definition of fractal dimension, and it turns out to approximate quite well a
power-law in the case where the dimensionDF of the fractal is less than 2, there is though, always a finite rate
of unaffected escape. Random walks through fractal sets withDF<2 can thus be considered as defective Levy
walks. The distribution of jump increments forDF.2 is decaying exponentially. The diffusive behavior of the
random walk is analyzed in the frame of continuous time random walk, which we generalize to include the case
of defective distributions of walk increments. It is shown that the particles undergo anomalous, enhanced
diffusion for DF,2, the diffusion is dominated by the finite escape rate. Diffusion forDF.2 is normal for
large times, enhanced though for small and intermediate times. In particular, it follows that fractals generated
by a particular class of self-organized criticality models give rise to enhanced diffusion. The analytical results
are illustrated by Monte Carlo simulations.

DOI: 10.1103/PhysRevE.67.026413 PACS number~s!: 52.25.Fi, 05.40.Fb, 05.65.1b, 47.53.1n
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I. INTRODUCTION

We study the problem of particles performing a rando
walk through a fractal environment in three-dimension
~3D! embedding space. The particles travel freely in
space not occupied by the fractal and are scattered off
random directions when they hit the fractal. We derive a
lytically the distributionpr of the random walk increments a
a function of the dimensionDF of the fractal set, and we
calculate the diffusivity analytically, using the formalism
continuous time random walk~CTRW; e.g., Ref.@1#!, which
we generalize here in order to include the case of defec
~not normalized to one! distributions of walk increments
The random walk is finally illustrated by Monte Carlo sim
lations.

The physical applications for the theory developed h
are to systems consisting of a large number of spatially
tributed, localized scatterers~accelerators!, whose support
forms a fractal set, suspended in a permeable medium, an
which particles move, with their dynamics being govern
by collisions with the fractal. The particles move freely
the system except when they hit a part of the fractal~a scat-
terer!, where they undergo the respective interaction, a
which they leave the scattering center, possibly hit the fra
again, and hence forth, performing thus a random walk
between subsequent interactions.

One application of the introduced theory is to partic
transport in turbulent plasmas, whenever it can be asse
that the field inhomogeneities are distributed in a fractal w
This is implicitly claimed there where turbulent plasm
have successfully been modeled with self-organized criti
ity ~SOC; about SOC see Ref.@2#!: In Ref. @3#, it has recently
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been shown that the unstable sites at temporal snapshots
ing an avalanche in 3D form a fractal with dimensio
roughly 1.8. This can be expected to hold for all SOC mo
els whose evolution rules are of the type of Ref.@4#. Particles
moving in the model will thus undergo the type of diffusio
we analyze here.

Concrete examples of applications include the followin
~i! Solar flares have been shown to be compatible with S
@5,4#. The unstable sites of the SOC model, which repres
small-scale current-dissipation regions~see Ref.@5#!, cause
the acceleration of particles, which perform thus a rand
walk of the type we analyze here.~ii ! Though the question is
still under debate, there are indications that the Earth’s m
netosphere exhibits structures compatible with SOC~e.g.,
Ref. @6#!. ~iii ! In inquiries on confined plasmas and the r
lated transport phenomena, evidence has been collected
the confined plasma might be in the state of SOC~claimed in
Ref. @7#, doubted though in Ref.@8#!. Moreover, it is known
that particles in confined plasmas undergo anomalous d
sion@9#, a property which we will show also to hold often fo
the particles in the kind of systems we analyze here.~iv! A
nonplasma, non-SOC example, where the theory develo
here potentially can be applied, is the random walk of cosm
particles, which are scattered off the fractally distributed g
axies~e.g., Ref.@10#!.

The investigation we present here is to be contrasted
two related, though characteristically different kinds of stu
ies: ~i! In Ref. @11#, random walks and diffusionalong frac-
tals are investigated, where the particles are forced to m
along a fractal structure. The fractals investigated are c
nected fractals or percolation backbones. These studies
motivated by applications to the transport in porous med
or along percolation networks, and it is established that
diffusion in these systems is often anomalous. Different
these studies, our random walkers cross the permeable s
freely, they are not forced to follow the fractal structure, b
they just occasionally hit the fractal.~ii ! In Ref. @12#, the
random walk of sand grains in sandpile~SOC! models is
©2003 The American Physical Society13-1
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investigated, i.e., the direct transport of the unstable si
which are found to undergo anomalous, enhanced diffus
In contrast to these studies, when applying our theory
SOC models, we do not study the diffusion of the unsta
sites~the transport of sand grains!, but the diffusion of addi-
tional particles, foreign to the system~they are not contained
in pure sandpile models!, which interact with the unstable
sites, i.e., we freeze time in the avalanche model and
particles interact with the spatially distributed unstable sit
This is motivated through applications where the sand
does not model the evolution of real sand or rice piles,
where it models ultimately the evolution of some kind
forces in dilute media~e.g., some kind of stress forces, or t
magnetic or electric field in plasmas!, in which the avalanche
model merely gives the locations of the instabilities whi
affect particles moving otherwise freely in the system.

The fractal sets which constitute the environment we a
lyze arenatural fractals, which exhibit self-similar scaling
behavior only in a finite range, and which are made up
finite, three-dimensional elementary volumes, small in s
compared to the size of the fractal. According to Ref.@13#,
such environments could be termed three-dimensional, f
tal Lorentz gas. Actually, any fractal set encountered in
ture is a natural fractal in the sense introduced here, from
classical examples~the coast line of Britain, cloud surface
etc.; see@14#!, to the localized scattering centers of the abo
mentioned applications mainly to plasma physics, which
yet small regions, with finite volumes.

In Sec. II, we will specify the notion of natural fractal
introduce the way we model the fractal scaling behavior
natural fractals, derive analytically the probability distrib
tion of the random walk increments for random wal
through fractal environments, give the relations for the r
of unaffected escape from the system, and derive appr
mate forms of the distribution of jump increments. In Se
III, the theory of CTRW will be introduced and generalize
to include the case of defective~not normalized to one! dis-
tributions of jump increments. The CTRW formalism w
then be applied to determine analytically the diffusive beh
ior for random walks through fractal environments, and
calculate the expected number of collisions with the frac
~in Sec. IV for fractal dimensionsDF,2, and in Sec. V for
DF.2). In Sec. VI, the analytical results will be compare
to and illustrated by Monte Carlo simulations. The results
summarized and discussed in Sec. VII, and conclusions
drawn in Sec. VIII.

II. PROBABILITY DISTRIBUTION OF THE INCREMENTS
OF A RANDOM WALK THROUGH A FRACTAL

ENVIRONMENT

A. Specification of the problem; natural fractals

We assume a fractalF embedded in three-dimension
space (R3) with a fractal dimensionDF ~e.g., box counting
or correlation dimension!. We furthermore assume that the
are particles~the random walkers! which travel freely in the
empty ~in the sense of not affecting the random walke!
space, but are scattered into random directions off the po
belonging to the fractalF. Figure 1 sketches the situatio
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Our interest in this section is in the statistical distribution
the particles’ traveled distances in between two consecu
collisions with the fractal, i.e., of the random walk incr
ments.

If we pose the problem in this form, then the fractals f
into two distinct classes: Imagine a particle to be situated
a point xW i belonging toF, somewhere in the interior. Th
particle actually sees the projection of the fractal onto a la
imaginary sphereS aroundF and centered atxW i , exactly as
we do see the stars projected onto the celestial sphere.
sphere is two dimensional, so that, ifDF,2, the projection
FP of F onto S has dimensionDP5DF,2 ~see, e.g., Ref.
@15#!. This implies thatFP has zero measure~no volume!.
The possible trajectories for the particle are the straight li
originating fromxW i . The probability of such a trajectory to
hit the fractal F at all is the area occupied byFP on S,
divided by the area ofS; thus, the probability to hit the frac
tal is zero, the particle will almost never hit the fractal, it w
almost surely escape from the system, and it does not m
sense to determine a distribution of random walk increme

On the other hand, ifDF>2, then the projection ofF onto
Shas dimensionDP52, and the area occupied byFP on S is
positive ~see, e.g., Ref.@15#!. The probability of the particle
to hit the fractal, which is again the area ofFP on S, divided
by the area ofS, is finite, and it makes sense to determine
distribution of walk increments~for an isotropic fractal, we
expect the probability to hit the fractal to be 1, but there m
be a finite probability for a particle to escape unaffecte
without hitting the fractal at all, depending on the degree
spatial anisotropy of the concrete fractal under consid
ation!.

This distinction holds for mathematical fractals, which p
definition exhibit a scale-free scaling behavior~self-
similarity or—possibly statistical—self-affinity! from their
usually finite size down to all scales. Our interest here is
what we termnatural fractals: They are characterized by th
following properties:~i! They are sampled only with a finite
number of points.~ii ! Their scaling behavior exhibits a lowe
cutoff, i.e., irrespective of the numerical method used to
termine their fractal dimension, there will be a lower limit o
scaling for the estimator. Correspondingly, there is a fin
minimum separation distanced between the points of the
fractal. This property is partly a consequence of prope

FIG. 1. Sketch. The random walk in three-dimensional space
analyze. A particle trajectory is indicated with an arrow. The sm
shaded regions are the elementary volumesdV the fractal consists
of ~see Sec. II A!.
3-2
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RANDOM WALK THROUGH FRACTAL ENVIRONMENTS PHYSICAL REVIEW E67, 026413 ~2003!
~i!. ~iii ! The elements the natural fractals consists of are
mathematical points, line segments, or surface elements
they represent finite, yet small three-dimensional elemen
volumesdV, at most of radial sized/2.

Properties~i! and ~ii ! characterize what one might call
finite fractal. They imply thatF5$xi% i 51, . . . ,nF

, i.e., F is a

finite collection of nF isolated points, withd the smallest
distance between them. If we assume the setF to be con-
tained in a sphere with radiusl, then F exhibits a fractal
scaling behavior for scalesr in the ranged<r< l . The prop-
erty ~iii ! makes the fractal natural in the sense that the po
xi of F represent actually small three-dimensional volum
dV of radial sizes smaller thand/2, with which a particle can
interact through some forces, depending on the conc
physical application. We assume correspondingly an inte
tion cross sectionr2p with cross-sectional radiusr to be
associated with every point belonging to the fractal.

Since thedV are three-dimensional objects, we must
quire that the volumesdV should be smaller in radial siz
(r) thand/2, i.e.,r<d/2: If r were larger thand/2, then the
fractal scaling of the natural fractal would break down
ready at the scale 2r, the diameter of the elementary vo
umesdV, i.e., before reaching the scaled, which means that
d would have been inadequately determined and would h
to be adjusted. Moreover, if the radiusr of the volumesdV
were in the ranged/2<r<d, then near elementary volume
would overlap, and they would be taken for one element
volume.

In the frame of natural fractals, the random walk proble
we pose takes a different shape: if the fractal were just fin
then all the particles would almost surely escape from
system without colliding with the fractal, since the probab
ity to hit a finite set of isolated points with a straight lin
trajectory is obviously zero@the finite fractal in any case is
set of measure~volume! zero#. Yet, since the fractals we
analyze are natural, the isolated points of the fractal repre
finite three-dimensional volumes with a corresponding fin
cross section, so that there is a finite probability for a part
to collide with these elementary volumes, and it makes se
to determine the corresponding distribution of walk inc
ments.

A clarification is to be made concerning the scatter
process: The scattering of the particles off the points of
fractal ~the elementary volumes! is not scattering off hard
spheres. We consider the elementary volumes as regions
which particles can penetrate, they will though be affected
some forces inside these regions. This is realistic since
main application is to plasma physics, where the elemen
volumes are typically regions where an electric field resid

Last, we note that the radial sizel of the entire fractal is of
course finite in any reasonable physical application. T
derivations we will give in the following are consequent
made for the case of finite fractals (l ,`), it will though turn
out thatl appears just as an arbitrary exterior parameter
therewith is allowed to take arbitrarily large values~Secs.
II C 1 and II C 2!. It will furthermore turn out that severa
characteristics of the problem we analyze assume fi
asymptotic values ifl becomes very large~Secs. II D and
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II E!. We will thus include in our treatment the case of wh
we term asymptotically largesystems, by which we mea
systems wherel is so large that the asymptotic, largel be-
havior is practically reached, and we may letl→` in the
respective relations. In Sec. II D, the notion of asympto
cally large fractals will be given a more precise meanin
Systems smaller than asymptotically large will be term
finite systems. Asymptotically large systems are of interes
applications above all to astrophysical plasma syste
where fractals may indeed be very large.

B. The fractal scaling behavior

Let us choose an arbitrary reference pointxW i of the fractal,
somewhere in the interior~to neglect boundary effects!. Let
ni(r ) denote the number of points belonging to the fractaF

in the three-dimensional sphere aroundxW i with radius r (r
< l , with l the radial size of the fractal!. SinceF is a fractal
with dimensionDF , it is expected that

ni~r !5Air
DF

( i )
, ~1!

with Ai a constant@Eq. ~1! is based on themass-scaling
definition of fractal dimension, which is a common, practic
definition of fractal dimension, see, e.g., Ref.@14##. Equation
~1! holds actually in the limitr→0, but in practice it is
known that the scaling behavior appears often already cle
at finite r, and the limitr→0 is not feasible. It is also worth
while noting that Eq.~1! defines the local fractal dimensio
DF

( i ) , which may fluctuate with different reference pointsxW i ,
the more, the less numerous the points of the fractal are.
average of Eq.~1! over the whole fractalF is yet well de-
fined ~or elseF would in practice not be called a fractal!. In
our applications, we are interested in statistical results, a
aged over the entire fractal, i.e., over all possible refere
points xW i , so that in the following we use a single scalin
behavior:

n~r !5ArDF ~2!

everywhere, which corresponds to the average of the lo
ni(r ) @Eq. ~1!# over i. The constantA is determined as fol-
lows: With every pointxW i of the fractal is associated a sca
d i , the distance to the nearest neighbor, at which the lo
scaling behaviorni(r ) breaks down@ni(d i)51, so that

ni(r )5(r /d i)
DF

( i )
] , which determines the constantAi in Eq.

~1!, Ai5(1/d i)
DF

( i )
. The scaled introduced in Sec. II A,

where the scaling breaks totally down, is understood as
minimum of all thed i , dªmini@di#. For the averagen(r ) of
Eq. ~2!, we have to use an average scaled* at which the
scaling breaks down on the average@i.e., n(d* )51]. In the
examples of fractals we will introduce below, we find th
distributions of thed i to be very asymmetric: they show
clear peak, but exhibit a tail which extends to larged i . Fig-
ure 2 shows a typical example of a histogram of thed i for
the setF3 which will be introduced below in Sec. VI A 1
This particlular shape of the distribution of thed i has as a
consequence that the arithmetic mean value of thed i is not
representative of an average scale, it overestimates it.
3-3
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therefore, defined* asthe most probable valueof the distri-
bution of thed i , determining it by a histogram of thed i .
The fractal scaling behavior thus takes the form

n~r !5S r

d*
D DF

~3!

with d<r< l .
Since the radial size of the the fractal isl, it follows that

n( l ) is the total number of pointsnF of the fractal, or, with
Eq. ~3!,

nF5S l

d*
D DF

. ~4!

This relation is actually analogous to the case of nonfra
sets. If we sample, for instance, a three-dimensional cub
side-lengthl with a resolutiond* , then we would obviously
find (l /d* )3 points. Equation~4! holds of course only for
points in the interior of the fractal, towards the edge it
biased by edge effects.

C. Analytical derivation of the probability distribution pr

of the random walk increments

From Eq.~3!, it follows that the number of pointsm(r )Dr

of the fractal in a spherical shell around an interior pointxW i
with inner radius r and radial thicknessDr is m(r )Dr
5(d/dr)n(r )Dr , or

m~r !Dr 5
DF

d*
S r

d*
D DF21

Dr . ~5!

With every point of the natural fractal is associated a cro
sectionr2p, within which an approaching particle gets in
contact~interacts! with a point ~elementary volume! of the
fractal ~see Sec. II A!. The entire shell thus has a total cro
sections(r )Dr 5m(r )Drr2p, i.e.,

s~r !Dr 5r2p
DF

d*
,S r

d*
D DF21

Dr . ~6!

FIG. 2. Histogram of the nearest neighbor distancesd i for the
setF3 (DF51.8, l 550, d50.5, see Sec. VI A 1 and Table I!.
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In order for this to hold, the different points of the fract
should not overlap or cover each other with their cross s
tions. In the direction perpendicular to the radiusr this is
guaranteed by the fact thatr<d/2, half the smallest separa
tion distance of the points of the fractal, withr the cross-
sectional radius. In the radial direction, it is also guarante
as long as we letDr<d/2, so that also in radial direction w
can be sure that no point is hidden by the cross-sectio
surface of another point in front of it.

Assume now that a particle has started fromxW i and has
traveled freely a distancer into a random direction. The
probability qrDr to hit the fractal in the spherical shell be
tweenr andr 1Dr is the ratio of the total cross section of th
shell ~the occupied area!, divided by the area of the shel
qrDr 5s(r )Dr /4pr 2, or with some rearrangements,

qrDr 5
DFr2

4d
*
3 S r

d*
D DF23

Dr . ~7!

Our scope is to derive the probabilityprDr for a particle
to travel freely a distancer and then to hit the fractal in the
spherical shell betweenr and r 1Dr , starting from an arbi-
trary point of F. To derive this probability, we divide the
interval @d,r #, which the particle travels freely, into a larg
number of small intervals of sizedr : @r 1 ,r 2#, @r 2 ,r 3#, . . . ,
@r n21 ,r n#, with r 15d, r n5r , andr i 112r i5dr for all i ~the
interval @0,d# is free of points ofF, and thus has not to be
taken into account, since there are no points of the fra
closer thand). The probability not to hit the fractal in the
intervals@r i ,r i 11# is 12qr i

dr , so that the probability not to
hit the fractal in all the small intervals up tor, and to hit it
finally in the interval@r ,r 1Dr # is

prDr 5~12qr 1
dr !~12qr 2

dr !•••

3•••~12qr n21
dr !qrDr , ~8!

or

prDr 5H )
i 51

n21

~12qr i
dr !qrDr for n>2

qr 1
Dr for n51.

~9!

By defining

p rª)
i 51

n21

~12qr i
dr !, ~10!

pr can be rewritten as

prDr 5H p r•qrDr for n>2

qr 1
Dr for n51. ~11!

We have to evaluate the productp r in the limit n→`,
where the small intervals get infinitesimal. First, we note t
3-4
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ln~p r !5 lnS )
i 51

n21

~12qr i
dr !D 5 (

i 51

n21

ln~12qr i
dr !. ~12!

qr i
is always positive and bounded by (DFr2/4d

*
3 )(d/

d* )DF23, sinced<r< l , and since the exponent is negati
(DF23,0). The termqr i

dr gets thus arbitrarily small for

n→`, since this implies thatdr→0 @dr is something like
(r 2d)/n, or, independent ofr, (l 2d)/n], and we may thus
use the approximation ln(11x)'x, for x!1. Equation~12!
thus becomes

ln~p r !' (
i 51

n21

2qr i
dr , ~13!

which for dr→0 may be considered as a standard expres
for the Riemann integral of2qr , with limits d and r,

ln~p r !5E
d

r

2qr 8dr8, ~14!

where due to the limit the approximation has become ex

1. The case DFÅ2

Inserting forqr from Eq.~7! into Eq.~14!, and solving for
p r , one finds that in the caseDFÞ2,

p r
(DFÞ2)

5expF2
DFr2

4d
*
DF

~r DF222dDF22!

DF22 G . ~15!

The probabilityprDr 5p rqrDr @Eq. ~11!# for a particle to
start from a point of the fractal, to travel freely a distancer,
and then to hit the fractal in a layer of depthDr is thus, by
inserting Eqs.~7! and ~15!, and by rearranging,

pr
(DFÞ2)

Dr 5expFDFr2
F S r

d*
D DF22

2S d

d*
D DF22G

4~22DF!d
*
2

G
3

DFr2

4d
*
3 S r

d*
D DF23

Dr , ~16!

whered<r< l .
Notably, the radial sizel of the fractal does not appear i

the relation forpr : l determines only the upper cutoff ofpr ,
it does not influence its shape. The sizel is thus an exterior
parameter of the problem we study and can take any v
betweend and infinity, without leading to any contradiction
as shown in Appendix A, the normalization ofpr never ex-
ceeds 1, whatever the value ofl is.

2. The case DFÄ2

In the caseDF52 we find from Eq.~7! and Eq.~14!

p r
(DF52)

5expF2
DFr2

4d
*
DF

ln
r

dG . ~17!
02641
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Equations~11!, ~7!, and~17! yield

pr
(DF52)

Dr 5expF2
DFr2

4d
*
DF

ln
r

dG DFr2

4d
*
3 S r

d*
D DF23

Dr ,

~18!

which can be further rearranged to become

pr
(DF52)

Dr 5
DFr2

4d
*
3 S d*

d D 2(DFr2/4d
*
2 )S r

d*
D DF232(DFr2/4d

*
2 )

Dr

~19!

and is thus a pure power law. Again, as in the caseDFÞ2
@Eq. ~16!#, the radial sizel of the fractal appears just as a
upper limit for the allowed values ofr.

D. The rate for unaffected escape

p r as defined in Eq.~10! is the probability not to hit the
fractal at all in@d,r # @see the explanation before Eq.~8!#, so
that p r ur 5 l is obviously the probabilitynesc not to hit the
fractal at all, but to move unaffected by the fractal to t
edge of the system and to finally escape. From Eq.~15! we
find that forDFÞ2, after slightly rearranging,

nesc~DFÞ2!5expH DFr2F S l

d*
D DF22

2S d

d*
D DF22G

4~22DF!d
*
2

J ,

~20!

and in the caseDF52, from Eq.~17!,

nesc~DF52!5expF2
DFr2

4d
*
DF

lnS l

d D G . ~21!

Equations~20! and ~21! imply that, depending mainly on
the values ofDF , l, d, d* , andr, there possibly is a finite
rate for unaffected escape, i.e., a finite fraction of the p
ticles does not see the fractal and moves through the sys
without collisions until it finally leaves. Actually, forfinite
systems (l ,`), there isin any casea finite rate of unaf-
fected escape, which is the larger, the smaller the system
( l ), the cross-sectional radiusr, and the fractal dimension
DF are. For very large systems though,nesc settles to an
asymptotic value, which corresponds to the lowest poss
escape rate for givenr andDF . As explained in Sec. II A,
we will in the following call systemsasymptotically large~in
contrast tofinite systems!, if they are so large thatnesc has
practically settled to its asymptotic value, and we will det
mine nesc in their case by lettingl→`.

For asymptotically largesystems (l→`), we have the
following cases, depending on the value ofDF :

~i! In the caseDF.2, we find from Eq.~20!

nesc~DF.2,l→`!50, ~22!

so that all particles will collide with the asymptotically larg
fractal.

~ii ! In the caseDF52, Eq. ~21! yields
3-5
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nesc~DF52,l→`!50, ~23!

and again all particles collide with the asymptotically lar
fractal.

~iii ! For DF,2, we have from Eq.~20!

nesc~DF,2,l→`!5expF2
DFr2

4~22DF!d
*
2 S d

d*
D DF22G ,

~24!

which is strictly smaller than 1~note that the argument of th
exponential function is in any case negative and finite!, so
that there is a finite fractionnesc of particles which move
through the system without having any encounter along t
path with the asymptotically large fractal, until they esca

In Fig. 3, the rate of unaffected escapenesc is plotted
againstDF for DF,2, assuming asymptotically large sy
tems (l→`): the escape rate is high, and only whenDF
approaches quite close 2, the escape rate drops to low
ues.

It is to note that the particles which escape unaffected
not leave the system instantaneously, they remain in the
tem and move on a straight line path with their individu
finite velocity, without ever colliding again with the fracta
until they reach the edge of the system and leave. In o
words, the paths the escaping particles follow never and
where intersect the fractal. In the case of asymptotically la
fractals, the time elapsing until an escaping particle reac
the edge of the system may of course be considerable
much larger than the time for which the particles are track

In Appendix A, Eqs.~20! and ~21! will be derived in an
alternative way, and it will be shown that the possibly fin
rate of unaffected escape is related to the fact thatpr is not
necessarily normalized to one, it actually holds that

nesc512m, ~25!

where

FIG. 3. The escape ratenesc vs the fractal dimensionDF , for
0,DF,2 and assuming asymptotically large systems (l→`; see
Sec. II D!.
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is the normalization ofpr . The cases of finite escape ra
~for asymptotically large (l→`) as well for finite system
size! correspond thus to the cases wherem,1, i.e., to the
cases wherepr is defective.

E. Approximate forms of pr

To determine possible approximate or asymptotic for
of pr , we consider the logarithmic derivative ofpr @Eq. ~16!#
for DFÞ2,

d ln pr
(DFÞ2)

d ln r
52

DFr2

4d
*
2 S r

d*
D DF22

1~DF23!. ~27!

The termDF23 stems from the power-law factor, and th
correcting term from the exponential factor in Eq.~16!. For
DF,2, the logarithmic slope asymptotically reachesDF
23 for larger, being slightly distorted for smallr, at most
by the amount (DF r2/4d

*
2 )(d/d* )DF22 ~for the smallestr,

i.e., r 5d). Hence, forDF,2, pr can be considered as a
approximate power-law with indexDF23, whose exact
form is found from Eq.~16! on replacingr in the exponential
by its maximum possible valuel,

pr
(a;DF,2)

Dr 5expFDFr2F S l

d*
D DF22

2S d

d*
D DF22G

4~22DF!d
*
2

G
3

DFr2

4d
*
3 S r

d*
D DF23

Dr . ~28!

It follows that forDF,2 the second moments (*r 2prdr) are
infinite ~the moments are dominated by the asymptotic, la
r regime!, so that the random walks in the casesDF,2 are
approximate realizations ofLevy flights: for large r, the
pr

(a;DF,2) are of the same form as the Levy distribution
namely, power laws with index between23 and21 ~see,
e.g., Ref.@16#!, and it is actually the larger regime which
causes the second moments to diverge and the random
statistics not to obey the central limit theorem. A charact
istic difference to the Levy distributions is though that t
distributionspr

(a;DF,2) are in any case defective, associat
with a finite escape rate~Sec. II D!.

For DF.2, the logarithmic slope in Eq.~27! is dominated
by the first term on the right-hand side~rhs!, which increases
in magnitude with increasingr, so thatpr is decaying expo-
nentially for larger, which implies that the second momen
are finite, and the corresponding random walks are gover
by the central limit theorem.

The caseDF52 is a pure power law without any approx
mation @Eq. ~19!#, the second moment is obviously infinite
and the random walk is an approximate realization of a Le
flight, as are the casesDF,2, defective though in the case o
finite systems~see Sec. II D!.
3-6
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III. CONTINUOUS TIME RANDOM WALK,
GENERALIZED TO THE CASE OF DEFECTIVE

DISTRIBUTIONS: THEORY

In order to determine the diffusive behavior of particl
analytically, we follow the formalism of continuous time ra
dom walk~CTRW; see Ref.@1#! in the version of the velocity
model~see Refs.@17,18#!. In this approach, it is assumed th
each spatial walk incrementrW is performed in finite timet,
wherer ([urWu) andt are related through the velocityv of the
walker, which we assume to be arbitrary and constant. If
would not take into account the time spent in the jumps, th
the mean square displacement we calculate below woul
infinite in the cases whereDF,2, since the second momen
of pr are infinite~Sec. II E!, so that actually only the formal
ism of CTRW makes sense.

The connection between travel timet spent in a jump and
spatial incrementrW is expressed by the joint probability den
sity c(rW,t) to perform an unhindered walk-incrementrW in
time t, which, in its simplest form, is

c~rW,t!5p~rW !d~t2urWu/v !, ~29!

where thed function just expresses the fact that a walk
crement rW takes time t5urWu/v to be performed @d(t
2urWu/v) is actually the conditional probability for the tim
spent in jump to equalt, given that the jump length isurWu].
The spatial partp(rW) of Eq. ~29! is the probability to make a
jump rW, and it is given throughpr @Eqs.~16!, ~19! or ~28!# as

p~rW ![p~ urWu!5
pr

4pr 2 . ~30!

~Note thatpr is the probability to jump a distancer into any
direction, it is thus the marginal probability distribution o
p(rW), integrated over all directions,pr5*p(rW)ds, with ds
5r 2sinudrdudf the usual surface element in spherical co
dinates, so thatpr54pr 2p(urWu) in the case wherep(rW) is
isotropic.!

The formalism to determine the diffusive behavior in t
frame of CTRW for given jump- and flight-time distribution
is presented, e.g., in Refs.@17,18#. We have though to gen
eralize this formalism in order to make it possible to treat
case of possibly defective jump distributions.

A. The propagator

The basic quantity to be derived in order to determine
diffusive behavior is the so-called propagatorP(rW,t), the
probability density for a particle to be at positionrW at timet.
Thereto, we first have to determine the probability distrib
tion Q(rW,t) of the turning points~the points where the ran
dom walker changes direction!, for which holds

Q~rW,t !5E d3r 8E
0

t

dtQ~rW2rW8,t2t!c~rW8,t!1d~ t !d~rW !.

~31!
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This equation states that the probability to be at a turn
point rW at time t equals the probability to be at the turnin
point rW2rW8 at time t2t, and to jumprW8 during time t,
namely onto the turning pointrW exactly at timet. The second
term on the rhs explicitly takes the initial condition into a
count, assuming that all the random walkers start at the p
rW50 at time t50. In between turning points, the rando
walker is moving with constant velocityv on a straight line
segment. The probabilityP(rW,t) to be atrW at time t is deter-
mined as

P~rW,t !5E d3r 8E
0

t

dtQ~rW2rW8,t2t!F~rW8,t!, ~32!

whereF(rW,t) is the probability to travel a distancerW in time
t, while making a jump of any length betweenr[urWu and`,
i.e., while either being on the way to the next turning poi
or while moving unaffected on a path leading to escape,

F~rW,t!5:F (c)~rW,t!1F (e)~rW,t!

5d~t2urWu/v !F 1

4pr 2EurW8u>urWu
dr8pr 81

nesc

4pr 2G ~33!

with pr from Eqs.~16!, ~19! or ~28!, and where on the rhs we
identify the first term as the collisional termF (c)(rW,t) and
the second term as the escape termF (e)(rW,t). The appear-
ance of the escape term is a consequence of the pos
defectiveness ofpr , if pr is normalized to one (m51) then
this term disappears (nesc512m50, see Sec. II D!. It takes
into account the particles which have started from a turn
point and are moving unaffected until they escape, not c
liding anymore with the fractal on their path. Equation~33!
holds in the ranged<r<`. In the range 0<r<d, all the
particles move unhindered, either they are on a unaffec
escape path or they are on the way to their next turning po
since there are no points of the fractal closer thand ~see Sec.
II A !, so that forr<d,

F~rW,t!5:F (0)~rW,t!5d~t2urWu/v !
1

4pr 2
. ~34!

With the description ofF(rW,t), it is now clear that Eq.
~32! expresses the fact that a particle is~i! either at a turning
point (rW850, t50), or ~ii ! has started from a turning poin
~at rW2rW8, t2t) and is now traveling towards its next turnin
point, not yet having reached it, though, (t.0, rW8Þ0) and
passes by the the pointrW at time t, or ~iii ! the particle has
started from a turning point~at rW2rW8, t2t) and moves un-
affected on an escape path (t.0, rW8Þ0), passing by the the
point rW at time t.

Equation ~32! is an integral equation forP(rW,t), with
c(r ,t) given, together with the auxiliary integral equatio
for Q(rW,t) @Eq. ~31!#. As pointed out in Sec. II A, in every
reasonable application the system is finite, i.e., the fracta
3-7
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of finite size (l ,`), and the particles definitely leave th
region occupied by the fractal when they have reache
distance from the origin equal to the radial size of the frac
This implies that the spatial integrals in Eqs.~31! and ~32!
are actually over a finite range~equal to the linear size of th
fractal!, and somewhat involved methods have to be use
solve the integral equations~see, e.g., Ref.@17# for a study of
these combined integral equations for a finite system in o
dimensional space and in the nondefective case!. Here, we
simplify the problem by assuming that the fractal is ve
large, so that assuming an infinite system sizel should give a
good impression of the diffusive behavior. The finite syst
size acts merely as an upper cutoff for the possible rang
values of the distances from the origin that particles trav
Since we again letl→`, as in Sec. II, we can formally
identify the very large systems we have in mind here w
the asymptotically large systems introduced in Sec. II.
asymptotically large systems now (l→`), the combined in-
tegral Eqs.~32! and ~31! are most easily solved by Fourie
transforming in space (rW→kW ) and Laplace transforming in
time (t→s), applying the respective Laplace and Four
convolution theorems~see, e.g., Ref.@19#!, which yields

P~kW ,s!5
F~kW ,s!

12c~kW ,s!
. ~35!

Equation~35! is formally identical to the nondefective cas
~see Ref.@18#!; we note thatF is defined in a different,
generalized way.

B. The diffusive behavior

The mean square displacement

^rW2~ t !&ªE rW2P~rW,t !d3r ~36!

can straightforwardly be shown to be equal to

^rW2~ t !&52
d2

dkW2
P~kW ,t !ukW50 ~37!

~by inserting the definition of Fourier transform!. To calcu-
late ^rW2(t)& through Eqs.~35! and ~37! analytically in the
Secs. IV and V, we will make the following assumptions:~i!
s!1 ~since we are interested in the case oft→`), ~ii ! ukW u
!1 ~corresponding to asymptotically large systems,l→`),
and ~iii ! ukW u!s @since, according to Eq.~37!, we will at the
end setkW50].

C. The expected number of jumps in a given time interval

Since the escape rate can be finite, it will be interesting
know how many times a particle collides on the average w
the fractal before it escapes. We determine thus in this
tion a relation for the expected number of jumps^N(t)& in a
given time interval@0,t#. This relation is in principle given
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e.g., in Ref.@16#; we have to clarify, though, whether th
relation in Ref.@16# is applicable to the cases of defectiv
jump distributions.

We determine first the distribution of travel timesw(t),
i.e., the distribution of the times spent in a single jump,
the marginal distribution ofc(rW,t) @Eq. ~29!#

w~t!ªE c~rW,t!d3r . ~38!

Concerning the normalization ofw(t), we note that

E
d/v

`

w~t!dt5E
d

`

prdr5m ~39!

~see Appendix B 3!, the normalization ofw(t) is thus iden-
tical to the normalization ofpr , which we defined to bem in
Eq. ~26!. The distribution of travel timesw(t) is thus defec-
tive (m,1) in the cases where the distribution of jump i
crementspr is defective.

The probabilitywn(t) for the nth jump to take place a
time t is recursively determined by

wn~ t !5E
0

t

w~t!wn21~ t2t!dt, ~40!

i.e., if the (n21)th jump took place at timet2t and was
followed by a jump of durationt, then thenth jump takes
place at time t. Laplace transforming yieldswn(s)
5w(s)wn21(s) ~through the Laplace convolution theorem!,
and if we iterate, we are led to

wn~s!5w~s!n. ~41!

The probability prob@N(t)5n# that the number of jumps
N(t) made in the time interval@0,t# equals a given numbern
is given as

prob@N~ t !5n#5E
0

t

wn~ t8!J~ t2t8!dt8 ~42!

with J(t2t8) the probability to make a jump of duration a
leastt2t8. Equation~42! states that thenth jump took place
at time t8, and the subsequent jump took longer thant2t8,
so that there was no subsequent jump completed in@ t8,t#.
J(t) is determined as

J~ t !5E
t

`

w~ t̄ !d t̄1nesc, ~43!

where the first term on the rhs is the probability that a p
ticle makes a jump of durationt or longer, and the secon
term is the probability that a particle moves unaffected o
path leading to escape, having thus an infinite travel tim
Usingm5*o

`w(t) dt @see Eq.~39!#, we can write Eq.~43! as

J~ t !5m2E
0

t

w~ t̄ !d t̄1nesc512E
0

t

w~ t̄ !d t̄, ~44!
3-8
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where we have used the fact thatm1nesc51 @Eq. ~25!#. The
Laplace transform of Eq.~44! is

J~s!5
1

s
@12w~s!# ~45!

and Laplace-transforming equation~42! yields

prob@N~s!5n#5wn~s!J~s!5w~s!nJ~s!, ~46!

where we have inserted also Eq.~41!, and on replacingJ(s)
by Eq. ~45!, we find

prob@N~s!5n#5w~s!n
1

s
@12w~s!#. ~47!

The expected number of jumps^N(t)& in the time interval
@0,t# follows from the definition of expectation value:

^N~ t !&5 (
n50

`

n prob@N~ t !5n#, ~48!

which in Laplace space becomes, when also inserting
~47!,

^N~s!&5 (
n50

`

n prob@N~s!5n#5
1

s
@12w~s!# (

n50

`

nw~s!n.

~49!

The sum can be evaluated by using the relations(n50
` nxn

5x(d/dx)(n50
` xn and (n50

` xn51/(12x), which finally
yields

^N~s!&5
w~s!

s@12w~s!#
. ~50!

It thus turned out that the expression for^N(s)& in the
defective case is identical to the relation for the case wh
w(t) is normalized to one~see, e.g., Ref.@16#!. The essential
modification in the derivation for the defective case was
addition of the termnesc in Eq. ~43!.

Contrary to the relations which determine^rW2(t)& @mainly
Eq. ~35!#, the formula for^N(s)& @Eq. ~50!# is valid also in
the case of finite systems (l ,`): The Laplace convolution
theorem we used to solve the integral equations~40! and~42!
is applicable to convolutions over finite intervals, contrary
the Fourier convolution theorem used in Sec. III A, whi
demands infinite integration intervals in order to be app
cable; see, e.g., Ref.@19#.

IV. APPLICATION OF THE CTRW FORMALISM
TO THE CASE DFË2

A. Diffusion for DFË2

We analyze the diffusive behavior for the caseDF,2,
where it had been shown in Sec. II E that the random wal
of the type of defective Levy flights. We will use th
asymptotic power-law formpr

(a;DF,2) for pr @Eq. ~28!#, writ-
ing for conciseness
02641
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pr5C rDF23, ~51!

where C summarizes the constant prefactors in Eq.~28!.
Equation~51! implies through Eqs.~29! and~30! for the joint
probability distribution of jump increments and travel time

c~rW,t!5
C

4p
r DF25d~t2urWu/v !. ~52!

By assuming that the system is asymptotically largel
→`), so that formalism developed in Secs. III A and III
can be applied, the diffusive behavior is determined throu
Eqs.~35! and ~37!. We need thus the Fourier-Laplace tran
forms of c(rW,t) @Eq. ~52!# andF(rW,t) @Eqs.~33! and ~34!#.
The way we calculate the Fourier and Laplace transfor
also in the subsequent sections, with the conditionss!1 and
k!s ~see Sec. III B! is described in Appendix B:

The Fourier-Laplace transform ofc(rW,t) @Eq. ~52!# for
DF.1 is

c~kW ,s!(DF.1)'m2CvDF22G~DF21!s22DF

2
1

6
k2CvDFG~DF!s2DF ~53!

and forDF,1 it is

c~kW ,s!(DF,1)'m2^T&s2
1

6
k2CvDFG~DF!s2DF ~54!

with G(•) Euler’sG function,m the normalization ofpr @Eq.
~26!#, and ^T& the expectation value of the time spent in
single jump, defined in Eq.~64! below.

F(rW,t) @Eqs. ~33! and ~34!# consists of three parts
F (c)(rW,t) is determined through Eqs.~51! and ~33! as

F (c)~rW,t!5
C

4p~22DF!
r DF24d~t2urWu/v !, ~55!

whose Fourier-Laplace transform forDF.1 is ~see Appen-
dix B!

F (c)~kW ,s!(DF.1)'
CvDF21G~DF21!

22DF
s12DF

2k2
CvDF11G~DF11!

6~22DF!
s2DF21,

~56!

and forDF,1 it becomes
3-9
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F (c)~kW ,s!(DF,1)'
CvDF21

~22DF!~12DF! S d

v D DF21

2
CvDF21G~DF!

22DF
s12DF

2k2
CvDF11G~DF11!

6~22DF!
s2DF21.

~57!

The Fourier-Laplace transform ofF (e)(rW,t) @Eq. ~33!# is
given as~see Appendix B!

F (e)~kW ,s!5nescvG~1!s212k2
nescv

3G~3!

6
s23. ~58!

Last, the Fourier-Laplace transform ofF (0)(rW,t) @Eq.
~34!# is ~see Appendix B!

F (0)~kW ,s!5a1
(0)2a2

(0)s ~59!

with a1
(0) , a2

(0) finite constants.

Inserting c(kW ,s) @Eqs. ~53! and ~54!# and F(kW ,s)
[F (c)(kW ,s)1F (e)(kW ,s)1F (0)(kW ,s) @Eqs. ~56!, ~57!, ~58!,
and ~59!# into Eq. ~35!, differentiatingP(kW ,s) according to
Eq. ~37!, setting thereafterkW zero, we find, neglecting the
constants, keeping only the leading terms ins for s→0, and
noting thatmÞ1,

^rW2~s!&;
1

s3 for 0,DF,2. ~60!

The DF dependence@throughc(kW ,s) and F(kW ,s)] has dis-
appeared in the limits→0, the behavior is actually domi
nated by theDF-independent escape termF (e)(kW ,s).

Since Eq.~60! holds only for s→0, the direct Laplace
back transformation is not defined, and we have to use
Tauberian theorems~see, e.g., Ref.@20#!, which yield for t
large

^rW2~ t !&;t2 for 0,DF,2. ~61!

The diffusion is thus in any case anomalous, namely
hanced of the superdiffusive ballistic type.

B. DFË2: The expected number of collisions

Since the escape ratenesc is in any case finite forDF
,2 ~Sec. II D!, it is of interest to know how many times
particle collides on the average with the fractal before it
capes. Thereto, we determine the expected number of ju
^N(t)& performed by a particle in the time interval@0,t#.
According to Sec. III C, we first have to determinew(t),
which through Eqs.~38! and Eq.~52! we find to be

w~t!5CvDF22tDF23 ~62!

for t>d/v ~the minimum jump length isd, see Sec. II A!.
02641
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For DF,1, the Laplace transform ofw(t) is ~see Appen-
dix B 5!

w~s!'m2^T&s, ~63!

with m the normalization ofw(t) @see Eq.~39!#, and where
^T& is the expectation value of the the time spent in a jum

^T&5E
d/v

`

tw~t!dt. ~64!

For DF.1, the Laplace transform ofw(t) becomes

w~s!'m2CvDF22G~DF21!s22DF, ~65!

the second term diverges fors→0, implying that the ex-
pected flight timê T& is infinite ~see Appendix B!.

Inserting into Eq.~50!, we find, when keeping only the
leading terms ins and noting thatmÞ1,

^N~s!&;
m

12m

1

s
for 0,DF,2. ~66!

As in the case of̂ rW2(s)& @Eq. ~60!#, ^N(s)& is independent
of DF , due to the fact that the normalizationm,1, i.e., the
finite rate of unaffected escapenesc @512m, see Eq.~25!#
dominates the behavior. From Eq.~66!, the Tauberian theo-
rems yield for the back transform

^N~ t !&;
m

12m
d~ t ! for 0,DF,2. ~67!

The expected number of jumps is therewith constant, it d
not increase with time anymore for large enough times.
Fig. 4, we shoŵ N(t)& as a function of the dimensionDF
(DF,2) for asymptotically large systems (l→`) and large
times such that̂N(t)& has settled to its expected value. O
viously, particles do very inefficiently interact with fracta
of dimension below 2, they almost do not see the fract
and only if the dimension approaches quite close the valu
collisions with the fractal become numerous and importa

FIG. 4. The expected number of collisions^N(t)& vs fractal
dimensionDF , for 0,DF,2, assuming asymptotically large sys
tems (l→`) and large times~see Sec. IV B!.
3-10
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For finite systems, the escape ratenesc is still larger~see Sec.
II D !, and collisions with the fractal get even more rare.

V. APPLICATION OF THE CTRW FORMALISM
TO THE CASE DFÌ2

A. Diffusion for DFÌ2

For DF.2, pr cannot be approximated by a power la
~see Sec. II E!, we have to keep the full form ofpr in Eq.
~16!, and the random walk is governed by the central lim
theorem, since all the moments ofpr are finite. We thus
expect diffusion to be normal, a theoretical expectation
have to confirm in the following.

We assume the system to be asymptotically largel
→`), so that we can apply the formalism of Secs. III A a
III B, and moreover it follows thatnesc50 andm51 ~see
Sec. II D!. In order to determinêrW2(t)& through Eq.~37!, we
have first to determine the joint distribution for walk incr
ments and flight timesc(rW,t) @Eq. ~29!#, and the distribution
F(rW,t) to make a jump of at least lengthr @Eqs. ~33! and
~34!#. For convenience, we writepr @Eq. ~16!# in the form

pr5C exp@2br DF22#r DF23, ~68!

where all the constants in Eq.~16! are incorporated in the
constantsC and b in an obvious manner. Equations~68!,
~29!, and~30! imply that

c~rW,t !5
C

4p
exp@2br DF22#r DF25d~ t2r /v !. ~69!

The Fourier-Laplace transform ofc(rW,t) is found to be~see
Appendix B!

c~kW ,s!'m2^T&s2
1

6
k2v2~^T2&2^T3&s!, ~70!

wherem is the normalization ofpr and, since we assume th
system to be asymptotically large (l→`), we havem51
~Sec. II D!. The ^Tn&,` are constants, whose exact valu
are not relevant for our purposes, here@they are actually the
moments of the distributionw(t) which is introduced below
in Sec. V B, see Appendix B!#.

The collisional partF (c)(rW,t) of F(rW,t) is given through
Eqs.~33! and ~68!,

F (c)~rW,t !5
C

4pb~D22!
exp@2br DF22#r 22d~ t2r /v !.

~71!

Fourier-Laplace transformingF (c)(kW ,s) yields ~see Appen-
dix B!

F (c)~kW ,s!'b12sb22k2~b32sb4!, ~72!

with the bi,` constants.
The escape termF (e)(rW,t) of F(rW,t) @Eq. ~33!# is zero for

asymptotically large systems~sincenesc50).
02641
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F (0)(rW,t) @Eq. ~34!# is independent ofDF , so that its
Laplace-Fourier transform is given by Eq.~59!.

Having determined c(kW ,s) and F(kW ,s)5F (c)(kW ,s)
1F (0)(kW ,s), we can turn to the determination of^rW2(s)&
through Eq.~37!. For the asymptotically large systemsl
→`), which we consider here, it holdsm51, so that the
leading term in Eq.~37! for s→0 is

^rW2~s!&;
1

s2
, ~73!

and the Tauberian theorems yield the back transform

^rW2~ t !&;t ~74!

for large times, i.e., diffusion is normal, as it is expect
from the central limit theorem.

B. DFÌ2: the expected number of collisions

According to Eq.~38! and Eq.~68!, the distributionw(t)
of times spent in a jump is

w~t!5CvDF22exp@2bvDF22tDF22#tDF23, ~75!

and for its Laplace transform we find~see Appendix B 5!

w~s!'m2s^T&, ~76!

wherem is the normalization ofw(t) @see Eq.~39!#, and^T&
the expected time spent in a single jump@defined as in Eq.
~64!#.

To determine^N(s)& through Eq.~50!, we discern be-
tween asymptotically large and finite systems: For asym
totically large systems (l→`), we havenesc50 andm51
~see Sec. II D!, and, keeping only the leading terms fors
→0, Eq. ~50! yields

^N~s!&;
1

^t&

1

s2
, ~77!

so that by the Tauberian theorems the back transform is

^N~ t !&;
t

^t&
. ~78!

For large times, the number of jumps is just the time divid
by the expected time a walker spends in a single jump. T
is a consequence of the central limit theorem.

In the case of finite systems, the escape rate is fin
nesc.0, so thatmÞ1 ~Sec. II D!, and the leading term for
s→0 in Eq. ~50! is

^N~s!&;
m

12m

1

s
. ~79!

By using the Tauberian theorems, we find

^N~ t !&;
m

12m
d~ t !, ~80!
3-11
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H. ISLIKER AND L. VLAHOS PHYSICAL REVIEW E 67, 026413 ~2003!
the expected number of collisions is constant for large tim
there is a finite,m-dependent, average number of collision
after which a particle does not interact with the fractal an
more and moves unaffected until it escapes.

Figure 5 showŝ N(t)& for finite systems@Eq. ~80!# as a
function of l /d, the scaling range of the fractal@m in Eq.
~80! is an implicit function of l and d, see Eq.~26!#, for
different dimensionsDF . The number of collisions increase
of course with the scaling range of the fractal. For fract
small in size, sayl /d5100, collisions with the fractals be
come important for dimensionsDF above roughly 2.3.

VI. MONTE CARLO SIMULATIONS

To illustrate and verify the results of the previous se
tions, we perform a number of Monte Carlo simulations
random walks through fractal environments.

A. Particle simulations: Testing pr

In order to test the relations we found forpr , we generate
a number of fractals of different, prescribed dimensions,
we determine numerically the distribution of random wa
increments.

1. Generation of test fractals

The fractals we use in our simulations are generaliz
three-dimensional versions of the ‘‘middle (122a)th’’
Cantor set@the middle part of length (122a) is omitted#.
They are constructed with the method of iterated funct
schemes~see, e.g., Ref.@15#!, i.e., with the use of the fol-
lowing eight contractive maps in the three-dimensional u
cube@0,1#3@0,1#3@0,1#:

S1~xW !ªaxW ,

S2~xW !ªaxW1~12a,0,0!T,

S3~xW !ªaxW1~0,12a,0!T,

FIG. 5. The expected number of collisions^N(t)& @Eq. ~80!# vs
the scaling rangel /d of fractals for large times, and for the cas
DF52.1 ~solid!, DF52.3 ~dotted!, DF52.5 ~short dash!, DF52.7
~dash-dot!, andDF52.9 ~long dash!; see Sec. V B.
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S4~xW !ªaxW1~0,0,12a!T,

S5~xW !ªaxW1~12a,12a,0!T,

S6~xW !ªaxW1~12a,0,12a!T, ~81!

S7~xW !ªaxW1~0,12a,12a!T,

S8~xW !ªaxW1~12a,12a,12a!T,

where 0,a,0.5 is a free parameter. The set invariant und
these contractions is a fractal~see, e.g., Ref.@15#!. To gen-
erate the fractal sets in practice, a random pointxW r in the unit
cube is chosen and iterated with the maps of Eq.~81!, choos-
ing at random one of the eight contractions at a time: thenth
iterate xW (n) is xW (n)5Si n

(Si n21
„•••(Si 2

„Si 1
(xW r)…)•••…), with

the indicesi j random integer numbers between 1 and
After a transient phase of say 1000 iterations, the itera

$xW (1001),xW (1002),xW (1003), . . . % are indistinguishably close to th
underlying mathematical fractal, randomly distributed acro
it. After their generation, the sets are shifted to have th
center at the origin, and they are multiplied by a prescrib
radial sizel, so that they are contained in a sphere of rad
l around the origin.

Since we want to model the case of natural fractals, wh
show a lower cutoff of the scaling behavior at some scald
~see Sec. II A!, we must force the scaling behavior of th
fractals we construct to break down at the scaled — in the
way we construct the fractals, it would by chance always
possible that two pointsxW (10001 i ) andxW (10001 j ) are closer to
each other thand. To achieve this, the fractals we finally us
are defined as the subsetF5$xW (10001 i 1),xW (10001 i 2),
xW (10001 i 3), . . . ,xW (10001 i nF

)% of all the iterates above the
1000th, (1< i 1, i 2, i 3,•••, i nf

), such that uxW (10001 i k)

FIG. 6. Projective view of the fractal setF3 ~dimensionDF

51.8; fine dots! we use in the Monte Carlo simulations~see Sec.
VI A 1 and Table I for its detailed properties!. Over-plotted are the
edges of a cube for better visualization. The spatial Cartesian c
dinatesx, y, andz are in arbitrary units.
3-12



RANDOM WALK THROUGH FRACTAL ENVIRONMENTS PHYSICAL REVIEW E67, 026413 ~2003!
TABLE I. For the setsF1 , F2 , F3 , F4, the parametera, the theoretically expected dimensionDF , the
most probable nearest-neighbor distanced* , the numerically estimated correlation dimensions (Dc), the

power-law indexĝ of p̂r from the simulations, the analytically predicted valueg of this index Eq.~28! ~an

e indicates in both cases that the distribution is of exponential shape!, the fractionn̂esc of particles which do
not hit the fractal and escape unaffected, and the theoretical predictionnesc @Eqs.~20! and ~21!# are listed.

Fractal
set nF a DF d* Dc ĝ g n̂esc

nesc

F1 100 0.125 1 1.41 1.1 22.1660.07 22.0 0.98 0.98
F2 1 000 0.25 1.5 1.25 1.6 21.6060.04 21.5 0.95 0.96
F3 3 981 0.31498 1.8 0.74 1.8 21.2160.02 21.2 0.87 0.82
F4 10 000 0.35355 2 1.06 2.0 21.0660.02 21.0 0.79 0.85
F5 100 000 0.43528 2.5 0.58 2.5 e e 0.22 0.02
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2xW (10001 i l )u>d for all k, l. In practice, we just skip iterate
which are closer thand to at least one of the previous ite
ates.~It is to note that this forcing of a smallest interpoi
distance is not needed in the case of natural fractals, w
the elementary volumes they consist of cover any po
which lie too close. Stated differently, the sets we gene
arefinite fractals, whose properties we have to adjust in or
them to be good models fornatural fractals; see Sec. II A.!

The theoretically expected dimensionDF of the fractals is
given as

DF5
ln 1

8

ln a
, ~82!

for 0,a,0.5 (a.0.5 impliesDF53, and the sets are no
fractals; see, e.g., Ref.@15#!.

We generate the five setsF1 , F2 , F3 , F4 , F5 listed in
Table I for different parametersa such that the correspondin
dimensionsDF are 1, 1.5, 1.8, 2, 2.5, respectively. We s
d50.5 ~smallest scale! and l 550 ~radial size!, so that the
fractal scaling behavior extends over two orders of mag
tude. The number of pointsnF of the fractals should in prin-
ciple be given by Eq.~4!, but d* can be determined onlya
posteriori, after the fractals have been generated. Instea
iterating the generation procedure of the fractals in some
to achievenF according to Eq.~4!, we determinenF as

nF5S l

d D DF

, ~83!

since most easily and straightforwardlyd, l, andDF can be
prescribed to the generation of the fractals.

Figure 6 shows the setF3. We confirmed the fractal di-
mension of the sets by estimating their correlation dim
sions ~Fig. 7, Table I!. Table I also lists the most probab
nearest-neighbor distanced* ~determined in the histogram
of all the smallest interpoint distances, as described and
lustrated in Sec. II B!, which is needed as a parameter in t
analytical relations we have derived forpr .
02641
re
ts
te
r

t

i-

of
y

-

il-

2. The particle simulation

A number of particlesnp is chosen, and for each particl
we choose a random pointxW i of the fractal and a random
spatial direction as initial conditions. We let each partic
move into the random direction and monitor at what distan
it passes by another point of the fractal within a distancer,
the cross-sectional radius, for the first time. The distances
particles travel are collected, and their histogramp̂r is con-
structed. Figure 8 shows the histograms for the setsF1 , F2 ,
F3 , F4 , F5, using a cross-sectional radiusr5d/250.25,
together with plots of the analytically derived expressions
pr , Eqs. ~16! and ~19!, and of the approximate form Eqs
~28! of pr in the casesDF,2. Table I lists the power-law
exponents~in the case of power laws!. The coincidence be-
tween theory and simulation is very satisfying, the theo
describes not just the functional form correctly, but also
position of the simulated histograms relative to they axis,
which means their normalization and therewith the esc
rate. The escape rates from theory and simulations are
listed in Table I: the values are in reasonable agreement

To investigate the influence of boundary effects, we
peated the simulation for the setF3, with the starting points
of the particles now restricted to the interior of the fract
Fig. 9 shows the result: the boundary effects are obviou

FIG. 7. Correlation dimension of the setF3 ~see Table I!: Plot-
ted is the correlation integralC(r ) vs the radiusr ~solid!, together
with a power-law fit~dashed!.
3-13
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FIG. 8. The probability distributions of the random walk incrementspr , as given through the Monte Carlo simulation (1 with error
bars!, and as given by the analytical formula@Eqs.~16! and ~19!; dashed#, for the setsF1 ~a!, F2 ~b!, F3 ~c!, F4 ~d!, F5 ~e!. For the cases
F1 , F2, andF3, also the approximate power-law expression forpr , Eq. ~28!, is shown~dotted!.
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minor, the coincidence between simulation and theory is
altered.

B. Particle simulations: Testing the diffusive behavior

In a second Monte Carlo simulation, we intend to confi
the theoretically derived results on the diffusive behavior.
do not use numerically generated fractals, since they
bound to have relatively small size, the relations though
want to verify are derived for asymptotically large syste
( l→`). Thus, we directly use the probability distribution
02641
ot

e
re
e
s

flight incrementspr @Eq. ~16!, ~19!, or ~28!# to determine the
jump increments. The directions of the jumps are random

For a given dimensionDF , we determine first the prob
ability nesc to move unaffected by the fractal forever@Eq.
~20! or ~21!#. All the particles start at timet50 at the origin.
At the start as well as after every ‘‘collision’’ with the fracta
~which in this simulation are mere turning points!, the par-
ticles have a probabilitynesc to move for ever unaffected by
the fractal on a straight line path, or else, with probabil
12nesc, they perform a jump of length randomly distribute
3-14
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RANDOM WALK THROUGH FRACTAL ENVIRONMENTS PHYSICAL REVIEW E67, 026413 ~2003!
according topr @Eq. ~16!, ~19!, or ~28!# into a random direc-
tion and ‘‘collide’’ again with the fractal~actually they just
arrive at their new turning point!. The results are shown in
Figs. 10–12 for the casesDF50.5, DF51.5, andDF52.5,
respectively, together with power-law fits. The diffusion
ballistic in the casesDF,2 ~the index of the power-law fits
is 2), and normal forDF.2 ~the index of the power-law fit
at large times is 1), which confirms our analytical resu
@Eqs.~61! and ~74!#.

The casesDF50.5 andDF51.5 show a very unambigu
ous behavior, as a result of the high rate for unaffected
cape, which causes most particles not to collide anym
with the fractal already after very few collisions, i.e., aft
relatively short time. ForDF52.5, diffusion becomes nor
mal only for large times, for small and intermediate tim
diffusion is enhanced: the index of the power-law fit at sm
times in Fig. 12 is 1.8.

FIG. 9. Same as Fig. 8, i.e., simulated, theoretical, and appr
mate random walk increment distributions, for the setF3 with DF

51.8. The starting points of the particles are though restricted
the interior of the fractal.

FIG. 10. The mean square displacement^r 2(t)& vs time t for
DF50.5 ~solid!, and a power-law fit~dashed, completely coinciding
with solid!.
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VII. SUMMARY AND DISCUSSION

A. Summary of the results

We have analytically derived the distribution of jump in
crements for random walk through fractal environments,
well as the corresponding diffusive behavior. We discern
tween finite and asymptotically large systems, the latter
ing so large that the escape ratenesc has practically settled to
its asymptotic value.

Fractal dimension DF,2. The main results are as fo
lows:

~i! The distribution of walk increments can be consider
to be a power-law with indexDF23.

~ii ! There is always a finite rate of unaffected esca
which is usually considerably large, even for asymptotica
large systems; the distribution of jump increments is th
defective.

~iii ! the diffusion is ballistic.
Fractal dimension DF.2. The main results are as fo

lows:
~i! The distribution of walk increments is exponential

decaying.

i-

to

FIG. 11. The mean square displacement^r 2(t)& vs time t for
DF51.5 ~solid!, and a power-law fit~dashed, completely coinciding
with solid!.

FIG. 12. The mean square displacement^r 2(t)& vs time t for
DF52.5 ~solid!, and two power-law fits~both dashed!, one in the
range 1<t<20, and the other in the range 800<t<10 000.
3-15
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H. ISLIKER AND L. VLAHOS PHYSICAL REVIEW E 67, 026413 ~2003!
~ii ! For asymptotically large systems, the escape rat
zero; it becomes positive for finite systems.

~iii ! The diffusion is normal for large times and large sy
tems.

~iv! Even for asymptotically large systems, there is a tr
sient phase at small and intermediate times where diffus
is enhanced.

All these results have been verified with Monte Ca
simulations. The theory we introduced predicts in particu
in a satisfying way the escape rate and the point where
distribution of jump increments turns over to exponential
the casesDF.2—both these features depend very sen
tively on the parameters of the model, as arguments of
ponential functions.

The caseDF52 is an exact power law, and the esca
rate is zero for asymptotically large systems. We did not tr
the diffusive behavior of this boundary case.

B. Discussion

The parameters which describe the problem of rand
walks through fractal environments are the smallest dista
d between points of the fractal, the scaled* where the scal-
ing of the fractal breaks down on the average, the radial
l of the fractal, the dimensionDF of the fractal, the cross
sectional radiusr of the points~elementary volumes! of the
fractal, and the velocityv of the random walkers. The resul
~jump distributionpr , escape ratenesc) do not depend on the
absolute spatial scales, but just on the relative scalesl /d*
~the extent of the scaling of the fractal!, d/d* ~which is close
to 1, see Sec. II B!, andr/d* , which is in any case smalle
than 1/2~see Sec. II A!. Notably, the scaling rangel /d* does
not influence the functional form ofpr . The velocityv is
assumed to be constant and plays just a minor role in
setup.

The random walk in the casesDF,2 is of the Levy type
~Sec. II E!. The distribution of jump incrementspr is though
defective, i.e., not normalized to one, which implies a fin
rate for unaffected escape~Sec. II D!. Thus, even for asymp
totically large systems, particles interact very restricte
with fractals with dimension below 2, they almost do n
‘‘see’’ the fractals and are almost not hindered on their pa
in their majority they move unaffected on a straight line pa
already after very few collisions with the fractal. Cons
quently, diffusion is ballistic@see Eq.~61!#: from the begin-
ning a considerable fraction and after some time the v
majority of the particles move freely according torW5vW t, so
that the square displacement from the origin becomesrW2

;t2. Diffusion is thus governed by the finite escape rate
From the form ofpr in the casesDF,2 @Eq. ~28!#, it

follows thatpr is the steeper, the lowerDF is, which implies
that for the thinner fractals~those with the lower dimension!
long jumps are less likely—this seems paradoxical. T
paradox is resolved, though, when taking the escape rate
account: The lowerDF is, the more particles move una
fected on straight line paths for ever, so that actually lo
jumps—including the infinite jumps along unaffecte
paths—are more likely the lowerDF is.
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For dimensionsDF above 3, the fractals become efficie
scatterers, they even force normal diffusion, though only
large times. In the regime of short and intermediate tim
diffusion is clearly different from normal, namely, enhanc
~see Fig. 12!. The distribution of jump incrementspr is of
power-law shape with an exponential turnover@Eq. ~16!#,
and it seems that for intermediate times~i.e., small jump
increments! the power-law part ofpr is essential for the dif-
fusive behavior, whereas in the large time regime the ex
nential roll-over starts to dominate.

The analytical treatment of the diffusivity we presented
valid only for infinitely large systems. For finite systems,pr
is defective also in the casesDF.2, there is a finite rate of
unaffected escape~see Sec. II D!, which must be expected to
modify the results we found here forDF.2 and infinite
systems, above all in the case of relatively small syste
For large but finite systems, our results concerning diffus
can be expected to remain basically valid. The analyti
study of finite size effects on diffusion we leave for a futu
study, it needs different mathematical methods than th
applied here.

It is worth noting that the distinctly different behavior o
random walk through fractal environments we found for t
cases whereDF is above or below 2 reflects the property
mathematicalfractals mentioned in Sec. II A: scattering o
mathematical fractals with dimension below 2 is practica
inexistent, with dimension above 2 it gets though very e
cient.

The cross-sectional radiusr we used in the simulations
was the maximal allowed value,r5d/2 ~see Sec. II A!. De-
pending on the concrete application,r might be smaller than
d/2, which would imply that in the cases where the esca
rate is finite, it will increase, and the behavior of the syst
will be even more dominated by the escape rate.

The scattering process is strongly simplified in that
assume that the velocity is conserved in magnitude in co
sions with the fractal, we do not model the energetic aspe
of the random walk at this stage.

We made the assumption that there are no correlat
between the incidence direction and the escape direction
particles interacting with a point~elementary volume! of the
fractal, or more precise: if there are correlations between
incidence and escape direction, then only the elementary
ume should be in charge of this correlation, it should not
caused by the overall structure of the fractal, so that s
from the view point of the fractal, incidence and escape
rections appear to be random. In plasmas, though the s
tion might be more complex, there may be a backgrou
magnetic field which guides the particles, and the elec
field residing in the scattering centers may be correlated
direction with the magnetic field.

We assumed open boundaries; particles leave the sy
once they have reached the edge of the systems. In rea
plasma applications, there may well be an efficient mec
nism of reinjection, i.e., the particles are mirrored back in
the system: In space plasmas, magnetic mirroring at conv
ing magnetic field topologies is a well known effect, and
confined plasmas with toroidal topology, particles must
expected to reenter the fractal~turbulent! region since they
3-16
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RANDOM WALK THROUGH FRACTAL ENVIRONMENTS PHYSICAL REVIEW E67, 026413 ~2003!
are forced to follow the closed, torus-shaped magnetic fi
Some of the histogramsp̂r of jump increments from the

simulations show a more or less strong oscillation super
posed onto the power-law behavior~see Figs. 8 and 9!, as do
the estimates of the correlation integral~see Fig. 7!. These
oscillations are actually caused bylacunarity, i.e., the prop-
erty of a fractal to have systematically interwoven emp
regions ~Mandelbrot in Ref.@14# discusses in detail this
property of fractals!. In Ref. @21#, it was shown that the
scaling behaviorn(r )}r DF for fractals~see Sec. II B! should
actually be replaced by

n~r !}r DF f ~ ln r /P! ~84!

with f being an unknown periodic function of period 1. Th
periodP and the amplitude of the superimposed oscillatio
cannot be knowna priori, they are an inherent property o
the concrete fractal under scrutiny. We decided not to incl
this effect in the theory. It contains several parameters wh
are not easily estimated from a fractal, and in many frac
~admittedly though not in all!, the amplitude of the oscilla
tion is relatively small, the oscillation is often rather like
‘‘higher order correction,’’ and it is a reasonably good a
proach to neglect the effect—as Fig. 8 shows, our the
catches quite well the basic features of the fractals.

VIII. CONCLUSION

The theory presented here has potential application
permeable media, such as plasmas~stellar atmospheres, th
magnetosphere, confined plasmas!, with fractally distributed
inhomogeneities~turbulence! which affect particle motion. It
connects the respective fractal structures to random wa
and, eventually, to anomalous diffusion.

What we presented here is the basic analysis of rand
walk through fractal environments. A next step will be
extend the theory by including the random walk in veloc
space, which the particles perform in parallel to the rand
walk in direct space. The velocity of the random walkers w
no more be constant, but it will change at the collisions w
the fractal on the base of a stochastic model for the fi
inhomogeneities~electric fields in the case of plasmas!. This
will allow us to study particle acceleration in turbulent med
through the general approach of random walks and stoch
processes.
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APPENDIX A: ALTERNATIVE DERIVATION
OF THE ESCAPE RATE

In this appendix, we confirm Eqs.~20! and ~21! for the
escape ratenesc in an alternative way, which reveals the co
nection ofnesc to the normalizationm of pr @Eq. ~26!#:

Sincepr is the probability to travel freely a distancer and
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then to collide with the fractal~see Sec. II C!, *d
l prdr is the

probability to hit the fractal at all for a particle which ha
started from a point of the fractal. The rate of unaffect
escape is therefore alternatively given as

nesc512E
d

l

prdr ~A1!

so that, with the definition ofm in Eq. ~26!, we havenesc
512m, and Eq.~25! follows.

The jump distributionpr can be integrated analytically: in
the caseDFÞ2, the indefinite integral ofpr @Eq. ~16!# is

E r

pr 8dr852expH DFr2F S r

d*
D DF22

2S d

d*
D DF22G

4~22DF!d
*
2

J
1const, ~A2!

so that we find

m5E
d

l

pr 8dr8512expH DFr2F S l

d*
D DF22

2S d

d*
D DF22G

4~22DF!d
*
2

J .

~A3!

Equation~A3! together with Eq.~25! confirms Eq.~20!. The
confirmation of Eq.~21! is completely analogous.

Equation ~A3! implies thatm<1 for any choice of the
parametersd, d* , andl ~with d<d* , l , see Sec. II A!, the
interpretation ofpr as a probability distribution is thus con
sistent. In particular, from Eq.~A3! follows m,1 for DF
,2, and pr is always defective. ForDF.2, we find m
<1, wherem51 only if l 5`. The possibly finite escape
rate (nesc>0) discussed in Sec. II D is thus related to t
fact that m<1, the probability distributionpr is possibly
defective, not necessarily normalized to 1.

APPENDIX B: FOURIER AND LAPLACE TRANSFORMING
THE PROBABILITY DISTRIBUTIONS

The distributionsc(rW,t), F (c)(rW,t), andF (e)(rW,t) are all
of the same functional form, so that their Fourier-Lapla
transforms are analogous. We demonstrate the way we
culate these Fourier-Laplace transforms on the example
the general functionx(rW,t), which is of the form

x~rW,t !5x~r !d~ t2r /v !, ~B1!

as are c(rW,t), F (c)(rW,t), and F (e)(rW,t), with d<r<`,
d/v<t<`, and where rªurWu. Also the distribution
F (0)(rW,t) is of the form Eq.~B1!, and basically the expres
sions we derive forx(rW,t) are also valid forF (0)(rW,t), with
some modifications though, sinceF (0)(rW,t) has a finite sup-
port (0<r<d). The treatment ofF (0)(rW,t) will be presented
in Appendix B 4.
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1. The Fourier transforms x„r¢,t…

The Fourier transform ofx(rW,t) in spherical coordinates
(r ,u,f) is defined as

x~kW ,t !5E d3rx~rW,t !eikW•rW ~B2!

5E r 2sinudfdudrx~r !d~ t2r /v !eikW•rW ~B3!

5E
d

`

r 2drx~r !d~ t2r /v !E
0

p

du sinueikW•rWE
0

2p

df,

~B4!

where we have explicitly introduced the lower limitd for the
r integral, below whichx(rW,t) is zero. For theu integral, we
can assume without loss of generality thatkW uuẑ, so thatkW•rW

5kr cosu, where kªukW u. Substituting furthermorex
ªcosu, theu integral becomes

E
0

p

du sinueikr cosu5E
21

1

dxeikrx5
2

kr
sin~kr !, ~B5!

so that

x~kW ,t !54pE
d

`

rdrx~r !d~ t2r /v !
sinkr

k
. ~B6!

The d function in Eq. ~B6! implies first r 5vt, secondt
>d/v ~sincer>d), and third that the entire expression mu
be multiplied byv ~as a substitutionr→zªt2r /v would
bring forth!, so thatx(kW ,t) becomes

x~kW ,t !54pv2tx~vt !
sinkvt

k
~B7!

with t>d/v. Assumingkvt!1 ~see Sec. III B!, we approxi-
mate sinkvt'kvt21

6(kvt)3, which yields

x~kW ,t !'4pv3t2x~vt !2
4p

6
k2v5t4x~vt !. ~B8!

For conciseness, it is useful to introduce the margi
probability distributionl(t) of x(rW,t), integrated over space

l~ t !ªE x~rW,t !d3r ~B9!

5E x~r !d~ t2r /v !r 2sinudrdfdu ~B10!

54pE x~r !d~ t2r /v !r 2dr, ~B11!

where in Eq.~B10! we used spherical coordinates, and in E
~B11! we exploited the spherical symmetry. Ther integration
of thed function impliesr 5vt and an overall multiplication
by v, so that finally
02641
t

l

.

l~ t !54pv3t2x~vt ! ~B12!

with t>d/v. With the aid ofl(t), x(kW ,t) @Eq. ~B7!# can
now be written as

x~kW ,t !5v21t21l~ t !
sinkvt

k
~B13!

and the approximate form@Eq. ~B8!# writes

x~kW ,t !'l~ t !2
1

6
k2v2t2l~ t !. ~B14!

2. The Laplace transform of x„k¢ ,t…

Through Eq.~B14!, the Laplace transform ofx(kW ,t), de-
fined as

x~kW ,s!5E
0

`

dtx~kW ,t !e2st ~B15!

reduces for smallk to the Laplace transforms ofl(t) and
t2l(t),

x~kW ,s!'E
d/v

`

dtl~ t !e2st2
1

6
k2v2E

d/v

`

dtt2l~ t !e2st.

~B16!

a. The Laplace transform ofl„t…

Assumings!1, we approximate the Laplace transfor
l(s) of l(t),

l~s!5E
d/v

`

l~ t !e2stdt, ~B17!

by expandingl(s) arounds50 according to

l~s!'l~s!us501s
d

ds
l~s!us50 ~B18!

so that from Eq.~B17!

l~s!'E
d/v

`

l~ t !e2stdtus→02sE
d/v

`

tl~ t !e2stdtus→0 ~B19!

5B(0)~s!us→02sB(1)~s!us→0 , ~B20!

where for convenience we have introduced the functions

B(n)~s!ªE
d/v

`

tnl~ t !e2stdt ~B21!

with the integer parametern50,1,2,3, etc.

b. The Laplace transform of t2l„t…

Analogously to the case ofl(t), we determine the
Laplace transform oft2l(t),
3-18
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L@ t2l~ t !#~s!5E
d/v

`

t2l~ t !e2stdt, ~B22!

by approximating in the way of Eq.~B18!,

L@ t2l~ t !#~s!'E
d/v

`

t2l~ t !e2stdtus→0

2sE
d/v

`

t3l~ t !e2stdtus→0 ~B23!

5B(2)~s!us→02sB(3)~s!us→0 , ~B24!

where we have again identified the functionsB(n)(s) @see Eq.
~B21!#.

Inserting Eqs.~B20! and ~B24! into Eq. ~B16! yields for
x(kW ,s),

x~kW ,s!5B(0)~s!us→02sB(1)~s!us→02k2
v2

6
[B(2)~s!us→0

2sB(3)~s!us→0]. ~B25!

The problem of Laplace transformingx(kW ,t) is thus reduced
to evaluating the functionsB(n)(s) for s→0 and n
50,1,2,3.

3. Evaluating the functionsB „n…
„s… for s\0

The functionB(n)(s) at s50,

B(n)~s!us505E
d/v

`

tnl~ t !dt5:^Tn&l ~B26!

is thenth moment̂ Tn&l of l(t). In particular,B(0)(s)us50 is
the normalizationml of l(t), and we note that

B(0)~s!us50[E
d/v

`

l~ t !dt ~B27!

5E x~rW,t !d3rdt ~B28!

5E
d

`

x~rW !d~ t2r /v !d3rdt ~B29!

5E
d

`

x~rW !d3r ~B30!

5E x rdr5ml , ~B31!

where in Eq.~B28! we basically repeated the definition o
l(t) @Eq. ~B9!#, in Eq.~B29! we inserted the generic form o
x(rW,t) @Eq. ~B1!#, in Eq. ~B30! we did thet integration, and
in Eq. ~B31! we introducedx r , the marginal spatial prob
ability distribution of x(rW), integrated over solid angle:x r

ª*x(rW)ds @in analogy to howpr is related top(rW), see Sec.
02641
III #. The normalizations ofl(t), x(rW,t), x(rW), and x r are
thus identical and are represented byml . In the case where
x(rW,t) representsc(rW,t), l(t) corresponds tow(t), andml

is calledm, see Sec. II D.
If all the momentŝ Tn&l are finite up ton53, Eq.~B20!

can be written

l~s!'ml2s^T&l ~B32!

and if l(t) is normalized to one, then we have furthermo
ml51. @The first moment̂ T&l of l(t) in the case where
x(rW,t) representsc(rW,t) corresponds to the expected tim
spent in a single jump increment.# With finite second and
third moments, Eq.~B24! becomes

L@ t2l~ t !#~s!'^T2&l2s^T3&l . ~B33!

Equations~B32! and~B33! are formal in the sense that th
momentsml , ^T&l , ^T2&l , and ^T3&l do not necessarily
exist, they may be infinite. To determine the expressio
B(n)(s) for s→0 and the moments ofl(t), if they exist, we
have to specify the different cases whichx(rW,t) and l(t)
represent.

a. The case DFÌ2

For DF.2, x(rW,t) representsc(rW,t) or F (c)(rW,t). Using
the relation Eq.~B12!, we find from Eq.~69! in the case of
c(rW,t) that

l (c)~ t !5CvDF22exp@2b~vt !DF22#tDF23 ~B34!

and in the case ofF (c)(rW,t) from Eq. ~71! that

l (F(c))~ t !5
Cv

b~D22!
exp@2b~vt !DF22#. ~B35!

In both cases, l(t) is of the form l(t)
;exp@2b(vt)DF22#ta, with a a corresponding constant, s
that the expressionsB(n)(s)us→0 @see Eq.~B21!# turn to in-
tegrals of the form

B(n)~s!us→0;E
d/v

`

tn1aexp@2b~vt !DF22#e2stdtus→0 .

~B36!

The exponential guarantees that the integrals are finite,
s→0 andn50,1,2,3, Eqs.~B32! and ~B33! are thus valid,
andx(kW ,s) is determined through Eq.~B25!.

b. The case DFË2

For DF,2, the moments ofl(t) can be infinite.x(rW,t)
representsc(rW,t), F (c)(rW,t), and F (e)(rW,t). Through Eq.
~B12!, the corresponding functionsl(t) are given forc(rW,t)
from Eq. ~52! as

l (c)~ t !5CvDF22tDF23 ~B37!

for F (c)(rW,t) from Eq. ~55! as
3-19
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l (F(c))~ t !5
CvDF21

22DF
tDF22 ~B38!

and forF (e)(rW,t) from Eq. ~33! as

l (F(e))~ t !5nescv. ~B39!

In all cases,l(t) is of a pure power-law form,l(t);ta, and
the expressionsB(n)(s)us→0 @n50,1,2,3; see Eq.~B21!# turn
to integrals of the form

B(n)~s!us→0;E
d/v

`

tn1ae2stdtus→0 . ~B40!

If n1a,21, then the integrals are finite fors50 and just
equal thenth moment,

B(n)~s!us50;E
d/v

`

tn1adt;^Tn&l . ~B41!

For n1a>21, B(n)(s)us→0 is infinite, and we determine
the exact divergence behavior by the substitutiont→yªst,

B(n)~s!us→0;E
d/v

`

tn1ae2stdtus→0 ~B42!

5E
sd/v

` S y

sD
n1a

e2y
dy

s U
s→0

~B43!

5
1

sn1a11U
s→0

E
sd/v

`

yn1ae2ydyus→0 . ~B44!

The integral in Eq.~B44! is finite and approachesG(n1a
11) for s→0 as long asn1a.21, whereG(•) is Euler’s
G function, so that

B(n)~s!us→0;
1

sn1a11
G~n1a11! ~B45!
y

.

s

02641
for n1a.21.
Equations~B41! and~B45! determinex(kW ,s) through Eq.

~B25!.

4. The Fourier-Laplace transform of F „0…
„r¢,t…

The distributionF (0)(rW,t) has the same functional form
asx(rW,t) @Eq. ~B1!#, just that its support is finite. It can thu
be treated analogous tox(rW,t), and its Fourier-Laplace trans
form is given by Eq. ~B25! on replacing the functions
B(n)(s) by the functionsB̄(n)(s),

B̄(n)~s!5E
0

d/v
tnl~ t !e2stdt. ~B46!

The marginal probability distributionl (F(0))(t) is given
through Eqs.~B12! and~34! @note thatF (0)(rW,t) is the same
for DF.2 andDF,2],

l (F(0))~ t !5v, ~B47!

with 0<t<d/v ~from 0<r<d). The expressions
B̄(n)(s)us→0 (n50,1,2,3) to be determined take the form

B(n)~s!us→0;E
0

d/v
tne2stdtus→0 , ~B48!

which are obviously finite forn50,1,2,3, the cases needed
determineF (0)(kW ,s) through Eq.~B25!.

5. The Laplace transform of w„t…

The Laplace transform ofw(t) ~Secs. IV B and V B! is
given by Eq.~B20!. In the caseDF.2, the functionl(t) is
given by Eq.~B34!, with the expressionsB(n)(s) for s→0
evaluated according to Eq.~B36!. In the caseDF,2, l(t) is
given by Eq.~B37!, and again Eq.~B20! yields the Laplace
transform ofw(t), by using Eqs.~B41! or ~B45! to deter-
mine B(n)(s) for s→0.
.
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