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We propose a method to identify stationary phases in time series. Stationarity is a necessary
condition for many concepts in dynamical systems theory, e.g. deterministic chaos. Therefore,
testing for stationarity should necessarily be the first step in any data analysis. Above all,
this testing is highly important whenever one deals with systems for which stationarity is not
guaranteed by the data acquisition procedure: if only short and unique time series are accessible
and if the experimental situation is not or only restrictedly controllable, as for instance in
astronomy, economy, or medicine.

The proposed stationarity test is easily workable and easy to implement in the form of a
systematically searching loop. It singles out the parts of a time series which are a reasonable
input to a dimension estimate algorithm. Thereby, it can ascertain finite correlation dimensions
which are not indicative of deterministic behavior; this kind of dimensions can occur in stochastic

processes which are nonstationary, e.g. self-affine.

1. Introduction

Dimension estimate is a widely used method in dy-
namical systems theory to ascertain whether a pro-
cess is deterministic or stochastic, and it is the most
popular one for short time series (see, for example,
Mayer-Kress [1986]). In order to categorize a pro-
cess by the notion of dimension the phase space of a
system is reconstructed [Takens, 1981] and the limit
set spanned by the trajectories, the so-called attrac-
tor, is considered. The path of a recurrent stochas-
tic system spans a subvolume of dimension equal to
the embedding dimension, after long encugh time.
A quasiperiodic system moves on a torus of finite
dimension. And finally, a deterministic but irregu-

lar, so-called chaotic system — i.e. a system with
a great sensitivity to initial conditions — yields
a usually intricate set of finite dimension. The
latter two processes are distinguishable via the
power-spectrum.

Not every measured time series, however, is
suited for a dimension estimate: it has to be station-
ary, since stationarity is an important prerequisite
to deterministic chaos. Theiler [1986, 1991] noted
that analyzing nonstationary data can mimic finite
correlation dimensions — so that a finite correla-
tion dimension does not imply stationarity. One
known example of stochastic processes with finite
correlation dimension is fractional Brownian motion
[Osborne & Provenzale, 1989]. It is, however, not
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stationary. Definitely, a separate test of stationarity
is needed.

In several branches of science like astronomy,
geophysics, economy, or medicine, investigating sta-
tionarity is highly important from a practical point
of view, too: The data are not gained in an experi-
ment where the boundary conditions and, by that,
the exterior parameters are technically fixed and the
measurements are naturally stationary. Controlling
the boundary conditions is not — or only partially
— possible. Burst phenomena in stellar coronae for
instance have a start and an end phase, so that,
as a whole, they are not stationary. The question
is whether there are parts of a time series which
can be considered stationary. To know whether a
system is in a stationary state or not (e.g. in a tran-
sient phase) is physically meaningful by itself. And,
as mentioned, the stationary parts can then be en-
quired for finite dimensions.

The aim of this paper is to introduce a reli-
able stationarity test which preselects the parts of
a time series that are a reasonable input to dimen-
sion estimate algorithms. After exposing a typical
example of data from astronomy in Sec. 2, where a
stationarity test is highly useful, we propose a sta-
tionarity test in Sec. 3. Section 4 is dedicated to its
application to experimental and some numerically
generated data, among which is the interesting case
of fractional Brownian motion. We show that the
stationarity test is easily workable, even for short
time series.

2. Example: Possible Non-
stationarity in Short Data
Sets from Astronomy

The application of dimension estimates where we
meet the fundamental problem of stationarity is the
investigation of the dynamics of eruptive phenom-
ena in the solar and stellar atmospheres (so-called
flares), thin plasmas (the particle density is about
10® em~3) whose coherent emissions we observe by
radio telescopes. There are many time series with
a good signal to noise ratio. Giidel & Benz [1988]
report typical examples. Different kinds of coro-
nal bursts occur in the course of a flare: decimetric
pulsations, type I-V events, and millisecond spikes.
An example of a type I event is given in Fig. 1. In-
vestigations of pulsations concerning possible chaos
were done by Kurths et al. [1991] who found that
this type can be characterized by a low-dimensional
attractor. Millisecond spikes were investigated by
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Fig. 1. The time profile of a measurement of a type I event

(82/04/23, 09:08:15) (the largest stationary sections are
marked by horizontal bars). '

Isliker [1992]. An analysis of other burst types (type
I, IT and ITI events, again millisecond spikes, and
stellar flares) is in preparation.

Looking at Fig. 1, the question is: what parts
of the time series should be analyzed — the entire
time series? Or else: how to select subsections? The
answer is given by the stationarity test in the next
section.

We have to be able to ascertain the stationar-
ity of a process in a given interval mainly under
the condition that only a small amount of data is
available: as the phenomena under scrutiny have
a limited duration (typically 20-200 sec), the time
series are rather short, often near the limit of the
dimension estimate being applicable, with 500 to
some thousand points typically (an adequately cho-
sen resolution is implied). (For conditions on the
minimum number N of points in phase space see,
for instance, Isliker [1992], Brandstater & Swinney
[1987], Ruelle [1990], Abraham et al. [1986], Kurths
& Herzel [1987], and Atmanspacher et al. [1988]),

3. Detecting Nonstationarity

Stationarity in the strong sense is the property that
all statistical quantities of a process are indepen-
dent of absolute time; they are at most a function
of relative times. Fractional Brownian motion for
instance is not stationary: its variance is a function
of its duration.

In order to investigate stationarity a time
series is usually divided into several parts and sta-
tistical properties of each part are compared. This



approach can be inconclusive if statistical quanti-
ties are considered which contain toc little in-
formation about the process. This often occurs
for the various techniques which test for the sta-
tionarity of the second-order properties of a time
series (cf. Priestley [1991]). Look at the following
examples:

(a) Using simply the variances of the parts of a time
series may be misleading: for instance the vari-
ance of the nonstationary fractional Brownian
motion depends only on its duration ¢ (it is pro-
portional to t/PH with Dy a constant (see
Mandelbrot [1982]). Parts of a time series of
this nonstationary process will thus have equal
variances if they are of equal length.

(b) Though it is a necessary condition for station-
arity that the power spectrum does not change,
comparing the power spectra of singular parts is
deceptive: the nonstationary self-affine process
constructed by Osborne & Provenzale [1989)
(see next section) will by construction have the
same power spectrum in every part of a time
series!

The physical invariant measure p gives a complete
picture of a stationary process. It is a statistical
description of a system in state space, a probabil-
ity density, measuring how frequently the different
parts of state space are visited, loosely speaking. It
reflects the dynamics of a system by taking into ac-
count that some parts of the state space are more
frequently visited than others. This density con-
tains the information of all statistical moments,
which are calculated from it.

The invariant measure p is operationally de-
fined in the n-dimensional state space as the time
average of Dirac é-distributions along a trajectory

x(t),
.1 (T
pi= lim T/o bx(ey dt (L

[Eckmann & Ruelle, 1985). If the system is assumed
to be ergodic, then space averages, with p as weight,
indeed equal time averages:

.1 T
v/st-ate space f(x)p(dx) = '1!1_{%0 T /0 f(x(t))dt 4

(2)
for any function f(x) in this state space.

As only one coordinate of state space is acces-
sible (say x1), the projection p(dx1) of p(dx) onto

e
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this coordinate z; is considered:
plder) = [ pldordey---doa).  (3)

We calculate the measure empirically by dividing
the x;-axis (which is the a.mplltude or ﬂux in our
data) into intervals [mgk), z; Bk = 1,..., K,
counting the measured points falling into these in-
tervals, which yields a frequency ny:

n := number[z\? < z; < z{F)

LD

4 Z _/(u) &(x — x1)dx
= zzl Xw(lk)’xgk.g.n](a:]') - (4)

The sums are over the flux values z; and Xi, 3(z)
is the characteristic function of the interval [a, ]
(ie. Xpggj(x) = 1if z € [a, b], else 0).

In order to check the stationarity of a given time
series we estimate the invariant measure for the en-
tire series (";: )), which yields a reference density
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To see how much a given subpart of the time series,
e.g. the first half of it, deviates from this reference
population, the invariant measure for this first half
is estimated {n lmlf)) The natural way to compare
the two probability distributions is the y2-test. The
test quantity is defined as

(6)

(half) (all)\2
n - Z

Xz = E :( k (a"-;’k ) 3 (6)
k sz

with Z the number of pomts in the first half of
the time series: Z =3}, n balf) hig quantity can
be expected to have a x*- dlstnbut.mn, the degrees
of freedom are the number of intervals minus one,
K-11If Zpg"n) < 5, the interval k and a neighbor-
ing one, e.g. k — 1, have to be merged.

The number of intervals K has to be chosen
with care for it influences the outcome of the test.
If it is chosen too small, most of the details of the
dynamics are missed, and hardly any data set will
be stationary. With increasing K, the relative er-
rors of the estimated p}c“n)’s increase. The optimum
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choice is an intermediate value. This is reflected
in how the test depends on K: the test is negative
(= not acknowledging stationarity) for small K’s,
no matter whether the data are stationary. Increas-
ing K beyond a particular threshold, the test gets
positive if the data are stationary, and it remains
positive if K is further increased. In the case of
nonstationary data the test remains negative with
increasing K.

Experiments with data point out that for peaky
data of length N, with N ~s 1000-2000, a good and
intermediate value of K is K = 90. It is beyond
the mentioned threshold and results in typically
3060 effectively used intervals (concatenation of
neighboring intervals in order to fulfill the require-

ment Zpgcau) > 5). A better way to do the binning
is to use equiprobable bins in which case one can
start with about 50 bins. Their number remains
unchanged, for it is comfortably below the ma.:u-
mum K.y, derived from the condition Zp all) —
Z(1/K) > 5.

With a 95% significance level we demand that
the invariant measure in the first half of the section
does not differ from the one in the entire section —
the invariant measure remaining unchanged in time
implies stationarity.

Stationary regimes of a time series { Xy, }V | can
now systematically be searched for: first, the entire
time series {X;,}N , is tted, i.e. the invariant den-
sity p estimated from {X;}¥, ha.s to be compared
to the one estimated from {Xt.} Z. Then, subsec-
tions {X;, },_I of the time series of sma.]ler size are
tested, i.e. the invariant density p estimated from
{Xt;};ug, has to be compared to the one estimated

from {X;, }5'_’;" "2 One can look upon analyz-
ing the data of a subsection as analyzing data in
a window put onto the time series. In these terms,
the best way to proceed is to decrease a window’s
length, to shift it through the data, to decrease its
length again and so on, down to a minimum length
of interest.

Remark . The invariant measure p is the basis of
correlation dimension calculation — with the usual
definition of correlation dimension: At a first step,
reconstruct the phase space from the time series
by the time delay technique [Takens, 1981; Packard
et al., 1980]. The resulting vectors £; span a set
in phase space. Using the invariant measure p, the
correlation dimension of this set is determined by
the correlation integral [Grassberger & Procaccia,

1983a, 1983b]

ce) = [ [ dedon@o(o)Oe -1 - vl)
~ lim 2
" Nooo (N—W)(N-W —1)
N
x Y O-l&-&l), (7)
HW<j
with the Heaviside function © and “|.|” denoting

any vector norm, in the sense that the correlation
dimension D®) is defined as the scaling property of
this correlation integral: c}f’ (e) ~eP? for e — 0.
The decorrelation parameter W > 0 has been intro-
duced by Theiler [1986]. (Details on the technical
questions around the evaluation of correlation di-
mensions can be taken from Atmanspacher et al.
[1988].) Therefore, the invariant measure p is ex-
actly the gquantity which must not change in time in
order for a dimension estimate fo be reasonable.

Remark 2. A frequently used means, in time series
analysis, to arrive at a time series which is more
likely to be stationary is to derivate the original
time series. Derivation, however, increases noise
and decreases signal so seriously that a dimension
estimate becomes too critical, in our cases.

4. Exemplary Application:
Identifying Stationarity

Figure 2(a} shows the measure p{dz;) of the type
I in Fig. 1, based on the entire time series (solid
line) together with the measure based on the first
half of the same time series (broken line). The co-
incidence is bad, there are systematic deviations
between the two densities: the y>-test refuses to
accept that the data are stationary. According to
our way of proceeding, a window of smaller and
smaller size is shifted through the data, performing
the stationarity test on the window each time: the
entire window is compared to the first half of it. The
largest stationary section found in the upper type I
is 7502500, marked by one of the horizontal bars
in Fig. 1. The fairly coinciding measures p(d1)
are given in Fig. 2(b), suggesting that this event
is stationary, which is confirmed by the y2-test on
the usual 95% significance level. Some other sub-
sections of the event are also stationary, the largest
two are marked in Fig. 1 (see also Table 1).
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Similar coincidences are obtained for (Table 1 — an auto-regressive process of order 1 — this
gives a list of the particular stationary regions) is a representative of the general class of the

so-called auto-regressive processes of order p

— some subsections of other bursts; (AR-p processes), which actually are the gen-

— a coordinate of a trajectory of the Lorenz equa- eral form of linear stochastic processes [Kurths
tions in a chaotic regime {2048 poiuts); & Herzel 1987):
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Fig. 2. The invariant densities p(x;), based on an. entire part of a time series (solid line) and based on the first half of the
same part, respectively (broken line). We used 50 equiprobable bins on the z;-axis. (For a better visualization we plot the
midpoints of the intervals against the density instead of the histograms). The data sets are parts of the type I event on
82/04,/23, 09:08:15 (cf. Fig. 1): (a) the entire time series, 1-3000; (b) the part 750-2500 out of the same event (marked by &
horizontal bar in Fig. 1). .

Table 1. Parameters estimated for both observational data and samples of typical
models: A measured time series (type I event), a coordinate of the Lorenz model,
an auto-regressive process of order 1 [Eq. (8)] and a self-affine process [Eqs. (10) and
(11)]. We list the result of the stationarity test, using a 95% significance level, and
the cotrelation dimension D@ [Eq. (7)]-

Data Stationarity: Corr'dim.
Date Start Points Subsection x-test D@
82/4/23 09:08:15 3000 1-750 stat. div.
750-2500 stat. div.
12502500 © stat. div.
Lorenz-model 2048 1-2048 stat. 2.06
AR-1 process 2048 1-2048 stat. no plateau

Self-affine process 2048 1-2048 not stat. 3.0+02
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No

)
X(t) =) apX(tip)+ Ny, i=1,..., M,

k=1
(8)

where N;, is identically and independently
distributed (white noise). We chose p = 1,
a1 = 0.95, the noise spreads over the interval
[—0.25; 0.25], and M = 2048,

coincidence is yielded by

fractional Brownian motion, which is a self-affine
random path. For {X(#)}},, a time series
measured at temporal resolution 7 = ;1 — 1,
self-affinity of the increments is defined by the
property

(1X (& + A At) - X(8:)])

= M(|X(t: + A1) - X (&), (9)
where “(.)” is the average over all points, and
H is called the characteristic scaling exponent.
Self-affinity means that a scaling exponent H
does exist independent of the shift in time A
[Mandelbrot, 1982]. The example of such a ran-
dom process investigated by Osborne & Proven-
zale [1989)] starts from a power-law decay of its
power spectrum P(wy),

Plw) = Cuw®, (10)
with spectral index «, and constructs a stochas-
tic time series by

M/2

X(t:) ==Y G cos(wptitex), i=1,..., M,
k=1

(11)

wherew :=kAw(k=1,..., M/2), with Aw =
21 /M At, and ¢ = /P(wi) Aw. The iy are
chosen at random. Osborne & Provenzale [1989]
justify their assertion that such time series are
one component of a self-similar random path
by testing it with the defining property of self-
affinity [Eq. (9)]. They carry out a second self-
affinity test by measuring the length of the
curves with different rulers. The results are the
same: these time series have a self-affine struc-
ture. For self-affine processes, the variance o is
time dependent:

o~tH, (12)

with ¢ being the considered duration of the pro-
cess. The invariant measures p(dz1) obtained
for this process (with a = 1.75 and M = 2048)
exhibit a large discrepancy, the x>-test states
that the two distributions significantly change
(Table 1) — without problems, the process is
identified to be not stationa*v.

Just as an aside: Physical ideas on probable pro-
cesses in the solar corona suggest that the erup-
tive phenomena we investigate can sometimes be
superimposed upon a varying background. In these
cases it is reasonable to subtract a minimum enve-
lope whose characteristic time is much greater than
the characteristic time of the process (the auto-
correlation time). Whether such a background is
present or not has to be inferred from the individ-
ual measured spectra.

The proposed test is a quantitative instrument
to judge stationarity. It shows that the solar
data investigated are sometimes in a stationary
phase. The test renders it possible to select sta-
tionary phases if it is implemented in the way of a
systematic search algorithm.

5. Conclusion

The proposed stationarity test fills in the some-
what neglected gap of data analysis: ascertaining
stationarity. Basing on the invariant measure, a
description of the dynamical behavior of a system,
it fits naturally into the context of dimension es-
timate. Stationarity is a statistical property, and
the test formulates a necessary condition for sta-
tionarity by means of a statistical test, the x2-test;
if it rejects some data, then with the confidence of
the significance level the data are asserted not to
be stationary.

The test allows us to overcome some difficulties
in interpreting correlation dimensions in time series:
Self-affine stochastic processes are easily recognized
by it. The situation does not really change when
long time series are accessible — then for instance
the Lyapunov exponents could be calculated. Sta-
tionarity of the time series, however, still remains a
prerequisite.

And above all, the test is a well suited tool
for handling short and unique experimental time se-
ries. Applicable without problems, it is a practical
help in the selection of the stationary phases in an



unknown process: whenever the stationarity of a
time series is not guaranteed by fixing the bound-
ary conditions in an experiment, the stationarity
test, implemented as a loop, allows us to search
efficiently for subsections which can be considered
stationary. On these intervals dimensions can now
be estimated, a class of misinterpretations being
thus excluded, above all if correlation integrals are
evaluated with a careful choice of the decorrelation
parameter ‘W’ in Eq. (7).

Applying the stationarity test and a dimension
estimate algorithm yields a detailed picture of a sys-
tem’s behavior in the course of time: it provides
a list of the nonstationary sections, the stationary
ones, and inside the latter the deterministic chaotic
ones, all in their sequential order.
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