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A quantitative test is presented to check scaling and convergence of the correlation integral and consistency of two different
algorithms. An application to two known attractors demonstrates that it allows one to judge fast and reliably the quality of a
conjectured scaling behaviour above all in the case of short or noisy data. Results concerning minimum data amount and maxi-
mum noise level confirm earlier work, the crucial parameter concerning data length turns out, however, to be not the number of
points, but the number of cycles in phase space (peaks in the time series).

1. Introduction

Correlation dimensions have been used to inves-
tigate whether a process is deterministic or not.
However, the last years showed that there is a need
for criteria of reliability of dimension estimates. Er-
roneous dimensions can have two causes:

On the one hand, there is a mathematical reason.
A class of stochastic processes shows a finite corre-
lation dimension, such as fractional Brownian mo-
tion [1]. This motion is approximately a self-similar
random path. Self-similarity locally leads to a finite
fractal dimension of which correlation dimension is
a representative. The dimensions are “erroneous”
just in the sense that they are not indicative of de-
terministic behaviour. Theiler [2] systematically in-
vestigates these processes and proposes methods to
identify them.

On the other hand, erroneous dimensions can re-
sult from statistical effects, in three ways: (i) The
number of available points might not be sufficient.
(ii) The influence of noise is too severe. (iii) There
is an uncertainty in identifying a linear scaling re-
gion of the logarithm of the correlation integral.

The present investigation deals with point (iii) in
this second group of error sources. We will present
a method to determine the reliability of the linear
scaling region in section 3. Applying it in sections 4
and 5 to two well-known examples of attractors of

intermediate dimension (about 2 and 3.5), its effi-
ciency is demonstrated mainly for the case of short
or noisy data sets, where the convergence gets worse
and worse. As an aside we give reference plots of typ-
ical behaviour of attractors if the parameter noise and
data length are varied. They show that the crucial
measure of data length is not the number of points,
but the number of peaks in a time series.

We start with reviewing two ways of calculating
correlation dimensions.

2. Two common ways to determine the correlation
dimension

According to the time delay method of Takens [3],
the phase space is reconstructed from a given a time
series {X(t,)}_,, vielding the d-dimensional vectors
&(¢,). Different kinds of dynamical systems yield dif-
ferent kinds of limit sets in state space, so-called
attractors, distinguishable by the notion of dimen-
sion. For a quasi-periodic motion it is a torus. For
a deterministic chaotic process it generally is a com-
plicated invariant set of finite dimension. Finally, a
stochastic process is an erratic movement and spans
a subset of phase space whose dimension equals the
one of the reconstructed state space — at least in many
cases, compare however the fractional Brownian
motion mentioned in the introduction. We resume
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two popular and easily workable definitions of
dimension:

(A) The Grassberger-Procaccia (GP) method.
Grassberger and Procaccia [4] define the correla-
tion integral

C ()= lim s T Ole= 18-81).

(1)
with the Heaviside function &( ) and any vector
norm | |. The correlation dimension D2’ is defined

via C{?’(€) ~€eP®, for a large enough embedding di-
mension d.

(B) Maximum likelihood (ML) estimate of cor-
relation  dimensions  [5,6]. The distances
1&(t;) —&(1;) | are expected to have a probability dis-
tribution €2, with parameter D®’. This parameter
can be calculated by means of a maximum likelihood
estimate: Assume the scaling law €””’ to hold for
1 < €< ¥,. The maximum likelihood formalism yields

o____ n=K
R AN TP 2)
where the n distances r;=max(|{(2;)—&(¢) 1, 71)
are chosen at random, and K denotes the number of
distances r;; equal to y,. Ellner [6] shows that »n cho-
sen as half of the length of the original time series
yields reasonably accurate results, n=1N.

(C) Intrinsic error estimate of correlation dimen-
sions. Often, the error of a regression in the
log C{?’ (€)-log € representation is taken to be the er-
ror of the estimated correlation dimension. How-
ever, this error is not an intrinsic one. An adequate
error estimate, based entirely on the probability
interpretation of the notions, is the following [6]:
calculating the mean value and the standard devia-
tion of the distribution ¢”‘*’ and propagating the er-
ror the Gauss way into D ?? yields an error 4 of D(®
as

4o 196D J142 In(rE™)rf® —r3P®
NG A

with rq:==y,/7,, and the factor 1.96 stemming from
adopting a 5% confidence interval, as proposed by
Ellner.

(3)
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3. A measure of reliability of the “plateau”

In the GP algorithm, D‘?’ is usually determined as
the linear scaling region in a log C$*’ (€¢)-log € rep-
resentation, the so-called plateau. How to judge the
quality of a plateau? The idea is to use the proba-
bilistic character of the notions: C$*’(¢€) is a distri-
bution of distances |§(¢;) —§(¢;){, expected to be of
the form €””. By means of a y*-test it is quantita-
tively possible to compare the empirical distribution
C$ (€) with the conjectured one €2, checking by
that whether it is justified to assume a particular
scaling of the correlation integral.

Scaling and convergence test. Assume a plateau in
the range y, < e<7y,, suggesting a correlation dimen-
sion D(?), Then the test proceeds as follows:

(a) Divide the e-space (space of distances
| () —&(2)]) into classes,

[Os yl]9 (yl9 6(2)]9 (6(2)a 6(3)]7 cees (E(Md_-l)a yZ] .
(4)

The first class includes the distances smaller than y,.

(b) Calculate the frequencies of distances
1§(t,)—&(t;)| in these classes. Let nf° denote the
“empirical” frequency of distances in the kth class,
as it is given by the distribution C$*’ (€), and n™
the “theoretical” one in the same class, calculated
from €2

nf) = ZICP (e®) = CP (%),

(k) D(2) (k=1) D)
wq(5) -(50) | ©
V2 72

where the normalization Z equals IN(N-1)
X CE(r2)-
(¢) The test quantity x° is defined as
mel (nie)_nilh) 2
=3 Py ) (6)

k=1

and expected to have a y? distribution with my -2
degrees of freedom. To accept a scaling we demand
that x? satisfies prob[x2<x?] <95%, plateaus with
a too low significance are rejected.

Comments. The used value of D is estimated
from a log C$*’ (€)-log € representation. The values
of € in step (a) can be the values for which the
distribution C$’ (¢) has anyway been evaluated. We
generally used 5 <m.<10.



Volume 169, number 5

This answers the question of goodness of the scal-
ing fit and, by comparing different embedding di-
mensions, of convergence of the GP algorithm.

Consistency. We further demand that the GP value
of D® is reproduced by the ML algorithm, within
the - meaningful - error 4 of the latter (eq. (3)).
This is an intuitive and qualitative criterion. To
quantify it we use throughout the upper y2-test the
value D® calculated the ML way. As D is esti-
mated from the same data as the correlation integral,
the usual degree of freedom of the y2-test is still low-
ered by one, yielding again m— 2 degrees of freedom.

Figure 1 shows a well-behaved case of convergence
of the GP algorithm for a time series generated with
the Mackey—-Glass equations (see eq. (11)). It yields
a significance of 95% for the marked range, the pla-
teau is accepted. Going to smaller data sets, or in-
creasing the noise level, the quality of the plateau gets
worse, and extended numerical experiments with
time series generated by different equations (sine
wave, Lorenz equations, Rossler equations, Mackey-
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Glass equations) show that even in these well be-
haved cases the y2-test often fails, it does not ap-
prove the - distinct — plateaus. This may partly have
numerical reasons, however more important are two
theoretical findings:

Badii and Politi [7] and Smith et al. [8] show that
for any lacunar set, i.e. a set with sparse regions, the
scaling law €?® cannot hold anymore in a strict
sense. It must be replaced by the more general form

e?®5e?Py(In¢/P) (7

with  being an unknown periodic function with pe-
riod 1: There will generally be superimposed on the
plateau an oscillation with completely unknown pe-
riod and amplitude, both depending on the individ-
ual structure of lacunarity.

Furthermore, Smith [9] showed that a plateau will
be skew, decreasing from its true value at small radii
r towards larger radii. A phenomenon caused by the
finite size of the attractor: Near the edge, a point is
surrounded by other points only on one side. The

15T T T

10—

d log C{¢) / d log(e)
T

D® =3.49

log(e)

(400 Cycles)

Fig. 1. According to the Grassberger—Procaccia method the slope of the correlation integral log C$?’ (¢) against log € is plotted (see eq.
(1)) for a time series calculated from the Mackey-Glass equation (eq. (11)). We used 16000 points, the time resolution T was chosen
so that f..;/7~ 10, hence the number of cycles ns equals 1600 (see eq. (12)). There is a distinctly flat scaling region for intermediate
radii ¢, modulated by an oscillation towards smaller radii, and by skewness towards larger radii. :
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probability distribution for distances, €?‘*, is there-
fore biased.

The typical plateau in fig. 1 for the Mackey-Glass
system clearly shows both the above deviation fea-
tures. The y2-test is obviously sensitive enough to de-
tect these oscillating and skew deviations from a
wrongly assumed flat scaling region. We are wrong
if we expect a behaviour e?*. We do not have access
to the true values of the deviations, however we have
at least the intrinsic error 4 for the correlation di-
mension (eq. (3)). It seems therefore reasonable to
adjust the y2-test, allowing for deviations within the
error of the correlation dimension. We propose to use

mea max?[ | nf —nf™ | —n; 0]
ith)
k=1 (]

ngapted = ( 8 )
instead of x? of eq. (6). 7, is the error of frequency
in the kth class for the distribution e2‘*, due to the
error 4in D (eq. (3)):

me=Z{[(e*)PPne®]?
+[(E(k_1))D(2)lnE(k—l)]z}l/zA. (9)

This allows a plateau to fluctuate between D) —4
and D+ 4 and to be still acknowledged. Care is to
be taken that the frequencies n{*’ and n{® are well
above the theoretically allowed minimal value of 5.
If they are not, the test has a tendency to become too
tolerant, the deviations from a plateau it allows for
becoming too large. For small numbers of distances
imply a large error 4 (eq. (3)), and by that large tol-
erances #;. In numerical experiments, this has proven
to be a very adequate tool: Slightly oscillating or skew
plateaus are still approved. This is illustrated in the
next two sections.

4. Application I: the number of points

We investigate two intermediately-high-dimen-
sional systems and, with the method of the previous
section, we address two problems: How many points
are necessary to detect a correlation dimension, and
what is the dependence on the number of points per
cycle in phase space?

— The Réssler attractor, which is the limit set of
the three-dimensional Réssler system:
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X=—(Y+2Z), Y=X+0.2Y,
Z=02+Z(X-5.7) (10)

(see ref. [10]). We solved it by a Runge-Kutta al-
gorithm and took the X-coordinate as a time series
to analyze — fig. 2 shows a part of this time series.

- The Mackey—Glass system, whose equation is of
the delay type and therefore existing in an infinite-
dimensional space (the actually used degrees of free-
dom can be lower, e.g. if an attractor exists):

aX(t—1)

Y= X o1°

—-bX(1t). (11)
We choose a=0.2, b=0.1. For a study of this system
see ref. [4], whose method of solving the equation
is used here, converting the equation into a system
of 600 difference equations (for a time profile see
fig. 3).

Both systems were analyzed in a chaotic regime,
using solutions just after a certain amount of time to
avoid transient features. The references values of the
corresponding correlation dimensions were taken
from long time series with ten points per cycle in
phase space: 16000 points yielded a dimension of
3.49+0.17 for the Mackey-Glass attractor; 8000
points in the case of the Rdssler attractor showed a
dimension of 1.86+0.06 (the errors are calculated
via eq. (3), with ry estimated from the GP proce-
dure and D® from the ML procedure).

The results are visualized in figs. 4a and 4b for the
Rossler and the Mackey-Glass attractor, respec-
tively. The calculations were done in an automatic
way, the decision whether there is a plateau or not
can be left to the computer - a question else becom-
ing awkward for short time series. The user has only
to propose ranges ¥, < € <y, of conjectured plateaus
to the procedure. We implemented a loop in order to
check always several possible regions. It turned out,
however, that the procedure is just weakly depen-
dent on the finer details of the choice of y, and y,.
The plateau widths are found to be 35y,/y, <4 for
the Rossler system, 2 <yp,/y $2.5 for the Mackey-
Glass system. Figure 4 shows that the method re-
produces the results of other practical inquiries
showing that Nz 1000 can deliver reliable, though
not very precise results — for dimensions between
about 1 and 7 [11-14]. The scaling test may there-
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Fig. 2. Time profile of the X-coordinate of the R&ssler system. The time step 7 is chosen so that ¢/t~ 20.
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Fig. 3. Time profile of a solution X(¢) of the Mackey~Glass system. The time step 7 is chosen so that /7~ 20.
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Dimension

Fig. 4. Correlation dimension as a function of g, the number of cycles, and of Z,./7, the number of points per least cycle, (a) for the

Rossler system, (b) for the Mackey—Glass system. The true values are marked by arrows.
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Fig. 5. Correlation dimension as a function of ng, the number of cycles, and the variance ¢ of Gaussian noise added to the time series, for
the X-coordinate of the Réssler system. The true value is marked by arrows.

fore be considered as a fast, easy to use, reliable and
automatic aid in estimating correlation dimensions.
Note that this limit N2 1000 is well above the one
derived from theoretical arguments in order to ob-
serve a plateau of width 2: N2 22972 [15,16].

Two remarks aside. (a) Many authors agree that
the number of points per cycle is well chosen when-
ever 105t.0./7520, with ¢, being the first mini-
mum of the autocorrelation function. This is nicely
seen in figure 4, where the dimension for 7.,/ 7~ 20
fluctuates the least (cf. also ref. [17]). (b) Regard-
ing the choice of the time delay At in the reconstruc-
tion procedure: the choice 3t.on/T<dAL/T<teor/T
yields a set which is maximally spread, without the
coordinates of the single vectors being decorrelated.
The experience in our inquiry proves it to be ade-
quate. Albano et al. [ 18] made a systematic inquiry
(cf. also ref. [17]).

An interesting new finding is the following: The
number of points clearly shows to be not the decisive
quantity. The quality of the plateau depends much
more on the number of structures, defined in the fol-

lowing way: We take again the first minimum of the
autocorrelation as a definition of the autocorrelation
time ¢ This provides a relatively precise measure
of the average length of the shortest existing tem-
poral structure (a peak-like feature in our cases),
leading to the fastest cycle in the reconstructed phase
space. If a time series consists of N points, the num-
ber of structures ng can be defined

nS:=Nr/tcorr- (12)

This quantity and ¢,./7, the number of points per
structure — cycle in phase space — are the two ordi-
nates in fig. 4. Clearly, ns governs the behaviour. At
ns=>50, the error is smaller than 10% for the Réssler
system and the dimension of the Mackey-Glass sys-
tem is recognizable. For both attractors, the dimen-
sions are within 10% of the respective true values as
soon as

ns2 100 . (13)

Havstad and Ehlers [14] find in their numerical ex-
periment an even lower limit for the number of points
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Fig. 6. Correlation dimension as a function of g, the variance of Gaussian noise added to a time series which is generated by the Mackey-
Glass system. The same units are used as in fig. 3. Its length is 4000 points, the time resolution 7 is chosen so that f.../7~20 and the
number of cycles ng~ 200. For 6> 0.015 the correlation integral did not converge any more.

necessary, using a lot of care in selecting the points
on the attractor, however.

The quantity ng is also a rough estimate of the
number of independent points in phase space, since
t.orr 18 @ measure for the duration of dynamical cor-
relation. From theoretical arguments, Smith [9]
claims that this number of independent points should
fulfill ng= (5.57,/7:) 2" in order that the dimension
estimate has an accuracy of 10%. For the Rossler sys-
tem (y./y,~3.5) this yields ng=250, and for the
Mackey-Glass system ngz 6500 (where 7,/y~
2.25). Both numbers are much higher than our em-
pirically found limit of about 100.

5. Application II: the influence of noise

We show how the method is able to recognize pla-
teaus spoilt this time not by shortness, but by noise.
Gaussian noise of different variances o was added to
the generated time series, in two situations:

With the Rdéssler attractor we looked at the vari-
ation of the dimension with the number of structures
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ns if an intermediate noise level is present (noise to
signal ratio between 1% and 10%). Figure 5 presents
the result for this attempt, where the added noise level
iso=0, 6=0.1 and 6=0.5. The time series has a quite
well-defined average amplitude of about 7 (see fig.
2), so that o corresponds to a noise to signal ratio of
about 0%, 1.5% and 7%, respectively. The dimension
estimates are spread around the true value, with no
systematic deviation to be seen, and the fluctuations
smaller than 10%.

With the Mackey-Glass attractor we increased the
noise level for a fixed data length to follow the way
how the estimated dimension changes and finally
disappears. In fig. 6 is shown how sensitive to noise
this attractor is. There is a transition zone for the ¢’s,
where the dimension increases in a smooth way from
its reasonable value to higher values. At 6=0.0175,
the correlation integral did not converge anymore,
noise dominates. The noise to signal ratio has no
typical values, since the time series shows ampli-
tudes on many quite different scales. For an average
amplitude of 0.1, the 6=0.0175 corresponds to a
noise level of 17.5%. At a noise level of about 10%,
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the deviation from the true value of the dimension
gets larger than 10%.

6. Conclusions

A test of significance of a power law scaling region
of the correlation integral is desired to overcome the
somewhat subjective part of the method: identifying
a plateau. A regression into the log C$?’ (€)-log € re-
lation would not help for it is always possible and the
errors are not meaningful. A test is proposed here
that uses the probabilistic character of the correla-
tion integral and determines the significance of a
scaling behaviour by a y2-test. That the test has to be
adapted has strong theoretical reasons. The test is a
completion of dimension estimate methods towards
being an algorithm, i.e. an automatic proceeding. It
is easy to implement, several conjectured scaling
ranges can be tested, and their quality can be com-
pared. The given applications prove that it is deliv-
ering, in the adjusted form, reliable and fast deci-
sions. It efficiently reproduces dimensions with 10%
accuracy under the condition that ng2 50 or 100, and
that the noise level is below 10%. The plots of the
applications are also practical references, illustrating
typical behaviour of chaotic systems. They lead to
the following finding: For small amounts of data the
crucial parameter is not the data length but the num-
ber of cycles in phase space (peaks in the time se-
ries). This becomes plausible from the following two
considerations:

First: A strange attractor is fractal just perpendic-
ular to the trajectories £(¢): Locally, at the point
§(%,), an attractor A looks like the product of a line
segment (a piece §(¢) of the trajectory) and a fractal
set Fg,) which is perpendicular to the trajectory,
Froy L&(2): A=Fy, X&(t) [19]. The dimension
of Fy,) can be expected to be the attractor dimen-
sion minus one, D®—1 [20]. Each cycle on the at-
tractor will contribute a point to Fg,,, so that in-
tuitively the fractal structure of this set is the easier
detectable, the more cycles there are given; and by
that the fractal structure of the attractor as well.

Second: The number of structures roughly esti-
mates the number of independent vectors in phase
space which can be built from a time series (section
4). Both the two applied dimension estimate meth-
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ods demand that the used vectors are chosen inde-
pendently. Correlated vectors bias the estimate.
Therefore, the number of structures will naturally in-
fluence the quality of a dimension estimates more
than the number of points in the time series does.
Smith [9] investigates conditions on the number of
independent vectors. We find the limits he claims to
be too high in the investigated cases (section 4).

The importance of the number of structures, which
1s related to the number of independent points in
phase space, should be included in theoretical in-
quiries on the minimum number of necessary data
points.
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