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Abstract. A stochastic model for type III bursts is introduced,
discussed, and compared to observations. The active region is
assumed to be inhomogeneous, with a large number of emerging
magnetic fibers. At their bases, random energy release events
take place, in the course of which electrons are accelerated,
travel along the fibers and eventually undergo the bump-on-
tail instability. In the non-linear regime, the formed Langmuir
waves induce strong turbulence in the ambient plasma, with
secondary electrostatic waves appearing. Wave-wave scatter-
ing finally leads to the emission of transverse electro-magnetic
waves at the fundamental and the harmonic of the local plasma-
frequency. The superposition of the emissions from all the fibers
yields a model spectrogram for type III bursts (flux as a function
of frequency and time).

Peak-flux distributions of the model are compared to the
ones of five observations of type III bursts. It turns out that,
in a statistical sense, the model is largely compatible with the
observations: the majority of the observations can be considered
generated by a process which corresponds with the presented
model. The details of the different sub-processes constituting the
model play no decisive role concerning the statistical properties
of the generated spectrograms, to describe them approximately
by randomizing the unknown elements is sufficient. Therewith,
the correspondence of the model with the data is not unique.
Likewise, intrinsic shortness of observed type III events does not
allow a strict enough discrimination between different possible
sub-processes of the model through statistical tests.

With that, the conclusion is that the observations are com-
patible with a model which assumes (i) a randomly structured
active region, (ii) a flare-particle acceleration-process which is
fragmented into a large number of sub-processes, (iii) a distribu-
tion of the accelerated particles which is a random fraction of the
ambient density and of power-law form with random index, and
(iv) the fragmentary acceleration events to occur randomly in
time, i.e. the temporal structure of type III events to be random,
without any correlations between the individual bursts.
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1. Introduction

It is commonly assumed that solar flares are fragmented, being
made up by a huge number of small energy-release events in
a highly inhomogeneous corona. This conclusion is based on
the interpretation of non-thermal flare-emissions in the radio
and hard X-ray range: type III and narrow-band radio-spikes
spectrograms, as well as hard X-ray time series are full of fine
structures in frequency (space) and time (see e.g. Benz and As-
chwanden 1991; reviews in van den Oord 1994).

In this paper, we will concentrate on type III events, the sig-
nature of electron beams accelerated during the impulsive phase
of flares (see e.g. Mc Lean and Labrum, 1985). Type III events
reflect the crucial elements of the flare phenomenon, namely 1)
the energy release mechanism, 2) the acceleration process of
non-thermal particles, 3) their transport along field lines, and
4) the generation of the observable emissions. Moreover, the
up to 100 type III bursts (electron beams) during the impulsive
phase of flares contain information on the temporal and spatial
organization of the flare as a whole, i.e. on the dynamics of the
process during its duration of typically one minute, and on its
boundary condition, the active region in the corona.

Concerning the explanation ofsingleelectron beams, many
theoretical enquiries as well as a wealth of observations have
been undertaken to understand each of the four elements men-
tioned above, a synthesis is still missing, however (see e.g. Mc
Lean and Labrum, 1985; Bastian et al. 1998): The energy in a
flare is most likely released by magnetic reconnection in current
sheets (see e.g. Priest 1992), and electrons are accelerated by
secondary processes (see e.g. Anastasiadis et al. 1997). They
afterwards stream along open field lines, and possibly undergo
the bump-on-tail instability, creating electro-static waves along
their path (e.g. Benz 1993). Whether these waves are driven
into a strong or weak turbulent regime is still disputed (see e.g.
Cairns & Robinson 1995; Robinson 1997; Papadopoulos 1975).
In both approaches, observable radio emission is generated by
wave-wave or wave-particle interactions.



372 H. Isliker et al.: A stochastic model for solar type III bursts

Concerning theglobal aspects of flares, regular struc-
tures such as periodicities or low-dimensional chaos have been
searched for, but not found. What is observed is compatible with
randomness (or chaos which is so high-dimensional that in every
practical sense it can be considered as randomness; Isliker and
Benz 1994, Isliker 1996). The field geometry in the active re-
gion is not observable down to the necessary small scales due to
angular broadening of the radio-sources by scattering of emis-
sions in the turbulent coronal plasma (Bastian 1994). Models
currently under discussion for the active region and its global
dynamics are based on the theory of cellular automata and self-
organized criticality, assuming therewith stochastic processes
in an inhomogeneous and fragmented corona (Lu and Hamilton
1991; Vlahos et al. 1995).

We present a model for solar type III events which bases
on the current theory of the behaviour of single electron beams
and on the known global properties of flares. The model is of
stochastic nature in what concerns the temporal dynamics and
the elements which are due to spatial boundary conditions in the
active region: we assume that, in the active region, at random
times and at random sites electrons are accelerated to a power-
law distribution in energy with random index. Every such accel-
eration takes place at the base of an open fiber (magnetic flux-
tube), which carries its own atmosphere. The electrons stream
outwards and possibly develop a bump-on-tail-instability which
creates a regime of electro-static turbulence, with secondary
electro-static waves appearing. In this medium, wave-wave cou-
pling generates observable emission at the fundamental and the
harmonic of the local plasma frequency. The superposition of
the emissions of the different fibers finally yields a model radio-
spectrogram (emitted flux as a function of frequency and time).
Throughout in this model, the unknown parameters are repre-
sented by random values (in reasonable ranges).

The comparison of the model to observational data will be
focused on the global (statistical) properties of type III events,
and not on the properties of single electron beams. The question
we want to answer is whether the model captures the statistical
properties of type III events, although it contains several simpli-
fying assumptions due to the fact that, so far, neither theory has
more precise answers to many questions, nor all the parameters
are observationally accessible. The statistical quantity we use
for a comparison of the model to observations is the probability
distribution of the peak fluxes at fixed frequencies.

In Sect. 2 we introduce the type III model, in Sect. 3 the
peak-flux distributions of the model spectra and of the observed
type III events are presented and compared to each other, and
Sect. 4 contains the conclusions.

2. The model

2.1. Overview

The elements of the model, explained below in details, are:

1. Fragmentation of the active region:active regions are as-
sumed to be strongly inhomogeneous. Particularly, a large
number of fibers (open flux tubes) is assumed to emerge

from the active region. Each fiber has its random charac-
teristics. They are the ambient medium in which electron
beams travel outwards.

2. Stochastic, fragmented energy release:At the base of each
fiber, at a random time, a random number of electrons is
assumed to be accelerated, and to travel outwards.

3. Bump-on-tail instability: The particle distribution may
eventually develop a hump, and primary Langmuir (L)
waves are created (see e.g. Benz 1993).

4. Strong turbulence:Following Papadopoulos (1975), we as-
sume the L-waves to grow to such a level that the beam-
plasma system reaches a state of strong turbulence, where in
the ambient plasma density-cavitons are formed (localized
secondary Langmuir (L′) waves, or solitons, through the os-
cillating two stream instability), and in turn secondary ion
sound (s) waves are created (the primary ones are damped).
The energy densities of the three different waves turn out to
be stationary for a given growth rate of the primary L-waves
(Vlahos and Rowland 1984; Rowland and Vlahos 1985).

5. Non-linear wave-wave couplingin the weakly turbulent
plasma in-between the Langmuir clumps (which are very
scarcely distributed) yields radio-emission at the local
plasma frequency and its harmonic (random-phase wave-
wave coupling, Papadopoulos and Freund 1979). The model
spectrogram finally is the superposition of the emissions
from all the fibers.

The model presented here is a continuation and improvement
of the type III model of Vlahos and Raoult (1995). The modi-
fications include: adding of harmonic radiation (with adequate
spectrogram representation), allowing electron-populations of
different types to be injected, consequent randomizing of exte-
rior parameters, improving of the growth-rate estimate for the
bump-on-tail instability, treating more thoroughly the three di-
mensional aspects of the problem, and a more realistic estimate
of the energy loss of the beams.

All the numerical values for densities, spatial and temporal
scales which will be given in the subsequent sections are cho-
sen such that spectrograms which are close to observations in
appearance are yielded, with the constraint, however, that these
values are still in a physically reasonable range. We stress the
fact that none of the parameters was directly fitted from the
observations presented later, they merely were phenomenolog-
ically optimized.

2.2. The fibers

The n fibers are assumed to be static and isothermal, so that
their density is barometric, and to be overdense compared to the
surrounding coronal plasma by a random factorα(i) ∈ [5, 100]
(chosen uniformly at random), whence the densityn(i)(z) in
theith fiber is

n(i)(z) = α(i) n0 e−z/H (1)

wherez is measured along the axis of the fiber (else a magnetic
term would have to appear). We assumen0 = 4.7 108 cm−3,
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and a scale heightH = 1.9211 109 cm. The particle distribution
function is a Maxwellian,

f
(i)
amb(z, vz, t) =

α(i) n0 e−z/H

√
2π vth,e

e
− 1

2

(
vz

vth,e

)2

(2)

Then fibers are independent of each other, they merely have
the same temperatureTe = 106 K and consequently the same
thermal electron speed, defined via1

2 mev
2
th,e = 1

2 kBTe. They
are also assumed to have the same radiusd0 = 2.0 108 cm at
their base (z = 0), and to open upwards with a half opening an-
gleθ = 5◦. This angle influences the shape of the burst profiles
as a function of frequency. With too large angles, the dilution of
the beam (see Sect. 2.4) is so strong, that the emission is largest
at the highest frequencies, decreases then and increases again to-
wards lower frequencies. The chosen value of5◦ is low enough,
so that the emission increases with decreasing frequency, as it
is in accordance with the observations.

2.3. The injected electrons

At the base of theith fiber (z = 0) a hot population of electrons
is injected with a density which is a random fractionβ(i) ∈
[ 5 10−8, 5 10−6 ] of the ambient densityn(i)(z)|z=0 = α(i)n0
(see Eq. 1). The injection takes place over a random height
L(i) ∈ [ 2.0 107 cm , 2.0 108 cm ] (centered atz = 0) and dur-
ing a random time intervalτ (i) ∈ [ 0 sec , 0.1 sec ]. After all,
the injected distribution is

f
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centered around a random timet(i), which is chosen randomly
ast(i) ∈ [ 0 sec , n/5 sec ] so that on the average 5 beams per
second are injected (n is the number of fibers, i.e. beams). The
injected velocity distributiong(vz) is such that the correspond-
ing distribution of the kinetic energiesE is a power-law,

pE(E = ε) dε =

(
−δ(i) + 1

E−δ(i)+1
2 − E−δ(i)+1

1

)
ε−δ(i)

dε (4)

with E1 andE2 the lower and upper energy cut-offs, respec-
tively. This implies throughE = 1

2mev
2
z that

g(vz) =
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)
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wherev1 =
√

2E1/me andv2 =
√

2E2/me, and where we
have assumedg(−|vz|) = 0. The cut-offs are chosen so that
the injected particles can be considered as a hot tail to the am-
bient plasma:3 vth,e ≤ vz ≤ c (c is the velocity of light). The
power-law indexδ(i) varies randomly from fiber to fiber (i.e.
from acceleration event to acceleration event) within the range
δ(i) ∈ [δ1 , δ2] = [1.12 , 1.80]. This range is chosen according
to the power-law indices of the empirical hard X-ray peak-flux
distributions, as reported by Crosby et al. (1993).

2.4. Beam propagation

The distribution of the beam electrons evolves according to the
one-dimensional Boltzmann equation

∂f
(i)
beam

∂t
+ vz

∂f
(i)
beam

∂z
= −νe,ef

(i)
beam + f

(i)
inj (6)

whereνe,e = 2.19 1019 n(i)(z)/v3
z is the collision frequency for

e-e-collisions. After solving this equation forf
(i)
beam(z, vz, t), we

take the opening of the fibers (Sect. 2.2) into account in a sim-
plified way, assuming that the beam particle density undergoes
a dilution due to particle conservation. The total distribution
function (beam plus ambient plasma) in theith fiber therewith
is

f (i)(z, vz, t) =
1(

1 + z
d0

tan θ
)2 f

(i)
beam(z, vz, t)

+ f
(i)
amb(z, vz, t) (7)

(Note that the divergence of the field lines does not alter the
distribution function of the ambient electrons, it is included in
the barometric formula).

2.5. Wave generation

The electron distribution may develop a bump on the tail, i.e.
a regime with positive slope, so that Langmuir waves with a
growth rate

γ/ωp,e =
π

2
v2

max

1
namb

∂f (i)

∂vz

∣∣∣
vz=ω/k

(8)

are generated (see e.g. Benz 1993). If a hump appears, then its
beginningvbeg and its maximumvmax are determined, and the
above growth rate is approximated as

γ/ωp,e =
π

2
v2

max

1
namb

f (i)(vmax) − f (i)(vbeg)
vmax − vbeg

(9)

Papadopoulos (1975) has shown that in the low corona the
conditions for strong turbulence are fulfilled. This does not nec-
essarily hold anymore in the interplanetary space, where weak
turbulence is most likely to occur (see Robinson (1997), who
discusses electron beams at a distance 1 AU away from the Sun).
Therefore, since we model type III bursts in the decimetric and
metric range, we can assume the beam-plasma system to be in
a strongly turbulent state. This implies that density cavitons are
formed (solitons), the primary Langmuir waves are scattered
away from resonance through the oscillating two-stream insta-
bility (and thereby the beam is stabilized), forming clumps of
secondary Langmuir waves, and ion sound waves are created
(Papadopoulos 1975; Rowland and Papadopoulos 1977). A de-
tailed quantitative model for the energy densities in the different
waves has been worked out by Vlahos and Rowland (1984) and
Rowland and Vlahos (1985). They derived rate-equations for
the wave-energy densities in the primary Langmuir waves (in-
dexL), the secondary Langmuir waves (index L′), and the ion



374 H. Isliker et al.: A stochastic model for solar type III bursts

sound waves (indexs). Solving these equations, it turns out that
the energy densities reach a stationary state,

WL = 1 10−5 n(i)(z) kBTe

WL′ = 7 10−2 γ

ωp,e
n(i)(z) kBTe (10)

Ws = 3 10−2 γ

ωp,e
n(i)(z) kBTe

(in erg/ cm3), depending only on the linear growth-rate. The
Langmuir clumps rule the energetics of the beam, they are, how-
ever, very scarce in space and time, and we may therefore as-
sume that the electromagnetic emission stems from the weakly
turbulent plasma in-between the Langmuir clumps (Eq. 10 actu-
ally describes the average wave-energy densities in the plasma,
which is, with very localized and very short-living exceptions, in
a weak turbulence state, according to Vlahos and Rowland 1984
and Rowland and Vlahos 1985). The electrostatic waves may
coalesce and yield fundamental emission of electromagnetic (t)
waves at the local plasma frequencyνp,e with power

P
(i)
F (ν = νp,e) = 2 ∆V 2π νp,e 106 W̃sW̃L′

(vmax

c

)2
(11)

(L′ + s → t; random phase-approximation, Papadopoulos and
Freund 1979), and harmonic emission at the frequency2νp,e

with power

P
(i)
H (ν = 2νp,e) = 0.4 ∆V 2π νp,e 106 W̃ 2

L′ (
vmax

c
)2 (12)

(L′ + L′ → t), where theW̃k are defined as̃Wk =
Wk / n(i)(z) kBTe (k = L,L′, s), and∆V = 2 H

ν d(z)2π is
the size of the emitting volume (d(z) is the radius of the fiber
at heightz). The power radiated by theith fiber amounts to

P (i)(ν, t) = P
(i)
F (ν, t) + P

(i)
H (ν/2, t) (13)

(the units are arbitrary).

2.6. Beam stopping condition: energy losses

The primary Langmuir waves have their energy at the expense
of the kinetic energy of the beam (the secondary L′-waves and
the s-waves in turn are fed by the primary L-waves) (Vlahos
and Rowland 1984; Rowland and Vlahos 1985). In a stationary
state, the region where the beam has passed through will be
filled with waves, not uniformly, however, but the waves occur in
localized, inhomogeneously distributed regions (Papadopoulos
1975; see also Lin et al. 1981). The filling factor of these clumps
of Langmuir waves is small. We estimate the loss of energy of
the beam at heightz as

E
(i)
beam,loss(z) = r

z∫
z=0

WL d3V (14)

where the integration region is the axi-symmetric 3D-cone with
radiusd0 at z = 0 and opening angleθ (see Sect. 2.2), andr
is the filling factor.r is chosen randomly as0.01 ≤ r ≤ 0.7,

weighted, however, with the beam-energy in such a way that
fast beams have higher filling factors. This takes into account
the fact that high-energy beams are more stable, the enhanced
non-linear effects (stronger Langmuir clumping) reduce their
losses into waves. The beam in fiberi is stopped if

E
(i)
beam,loss = 0.3 E

(i)
beam,inj (15)

with E
(i)
beam,inj the initial kinetic energy of the accelerated par-

ticles. The alternative to this arbitrary beam-stop is to model
the diffusive decay of the beam, which would give just a better
description of a small part in the spectrogram, so that we may
neglect it in the model.

We note that the filling factor influences how far a beam
travels, i.e. what the bandwidth of a type III burst will be. The
range we used for it was not derived from a fit to observations,
but chosen ad-hoc to yield bursts of several hundred MHz band-
width, on average.

2.7. Spectrograms

To generate model spectrograms (emitted flux as a function of
frequency and time), the radio emission at the frequencies

ν = 111.8 MHz, 167.7 MHz, ... , 2012.5 MHz (16)

(i.e. with a step of55, 9 MHz) of all then fibers is calculated
and added (the step). Note that, for a given frequencyν, also the
harmonic emission atνp,e = ν/2 has to be calculated, so that
more frequencies are calculated than what enter the final spec-
trogram. Occasionally, due to this set-up, events with a band-
width smaller than55.9 MHz might not be seen, or possibly for
some narrow-band emission the corresponding fundamental or
harmonic might not be present in the spectrogram.

Computationally, we proceed as follows: For fiberi, at
heightz (which corresponds to a given local plasma-frequency
ν), f(z, v, t) at time t is calculated. This yields the contribu-
tion to the emission of fiberi at frequencyν and timet. This
is repeated then for different times, afterwards for different fre-
quencies, and finally the emissions from the different fibers are
added. In Fig. 1, an example of a spectrogram generated by the
model is shown.

3. Comparison of the model to data through peak-flux
distributions

To judge the adequateness of the model, we compare the nu-
merically generated spectrograms to observational data. The
quantity of comparison shall be the peak-flux distributions, for
which, in the spectrograms, a frequency is selected, the peaks are
identified, the respective flux-values at the peaks are collected,
and their histogram is computed.

For this purpose, a spectrogram containing the F- and H-
emissions of 6000 fibers is generated with the model (a part
out of this spectrogram corresponding to 200 seconds is the one
shown in Fig. 1), and the frequencies 223.6, 670.8, 1118.0, and
1565.2 MHz were chosen to determine the peak-flux distribu-
tion at each of them. On the other hand, five type III events



H. Isliker et al.: A stochastic model for solar type III bursts 375

Simulation

time in seconds
0 50 100 150 200

fre
qu

en
cy 

in 
MH

z

2000

1500

1000

500

0 50 100 150 200

2000

1500

1000

500

Fig. 1. 200 seconds of a spectrogram generated by the model, with time resolution 0.02 sec and frequency resolution 55.9 MHz. For a better
representation of the spectrogram, a constant background is added to the radio fluxes, and the flux is logarithmized. The flux units are arbitrary.
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Fig. 2.Spectrogram of the type III event on 1980/06/27, 16:14:18 UT, observed by the ETH Zürich radio spectrometer (time resolution 0.1 sec,
shown duration 200 sec).

observed by the ETH Z̈urich radio-spectrometer were analyzed
(an example of a spectrogram is shown in Fig. 2), in which
frequencies with relatively many peaks were selected, in order
to have a reliable statistics. Since there is additive noise super-
imposed on the empirical data, it had to be visually checked
whether a numerically detected peak is really a type III burst,
or merely a fluctuation in noise.

3.1. Comparing the peak-flux histograms with theχ2-test

To quantify the comparison of the model histograms to the ob-
servational ones, i.e. to answer the question whether from a sta-
tistical point of view they can be considered as being generated

by the same process, theχ2-test is appropriate: Let{ni} denote
the number of observed peak-fluxes in theith of the totallynbin

bins of the histogram, so that consequently
∑nbin

i=1 ni = n is
the total number of observed peaks, and letmi be the number
of peaks from the model spectrograms in the very same bin (so
that again

∑nbin

i=1 mi = m is the total number of peaks from the
model in all the bins). The test quantity is then defined as

χ2 =
nbin∑
i=1

(√
m
n ni −√ n

mmi

)2
ni + mi

(17)

(see e.g. Press et al. 1992), which, if the two histograms are gen-
erated by the same process, follows aχ2-distribution withnbin
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degrees of freedom. The two distributions can be considered to
be the same on a significance level of 95% if they differ less than
a certain valueχ2

95%, which is taken from theχ2-distribution
with nbin degrees of freedom.

The result of comparing in this way all the observational
data to the four different frequencies of the model is that four
out of five observations can be considered compatible with the
model, as is shown in Table 1: they have at least one frequency
which behaves statistically in the same way as at least one of
the frequencies of the model. Fig. 3 shows an example of a
(normalized) empirical peak-flux distribution, together with the
respective distributions of the four selected frequencies of the
model, which all are compatible with the depicted observational
distribution (see Table 1). As indicated in Table 1, in all cases we
smoothed a minimum envelope (smoothed running minimum,
corresponding to high-pass filtering) to the observational data
and subtracted it. This is done since firstly the quiet emission
of the Sun has to be subtracted for a comparison, and secondly,
in four of the five events a time-varying background is present,
which persists also after the type III burst emission has stopped
and which therewith can unambiguously be identified as an ad-
ditional emission, it is not just the effect of superposition of
bursts close in time. Since the time-scale of this background is
much larger than the one of the bursts, subtraction of a mini-
mum envelope is adequate (the length of the running window
is indicated in the tables). After all, the meaningful entries in
Table 1 are those with a subtracted background.

The reason why we have not just compared equal frequen-
cies of the model and the empirical data is that type III events
have usually an individual highest starting frequency. The start-
ing frequency of the model is around 2000 MHz, whereas in the
five analyzed data sets it is lower. We might therefore adjust the
starting frequency of the model, or else, and that is what we have
done, compare different frequencies of the model to the data,
to have beams in different stages of evolution (on a statistical
average).
Concerning the spectrograms generated by the model as well as
concerning the histograming, a few remarks have to be made:

1: Since many of the beams injected in the model do not have
enough energy to propagate very far, or to propagate at all, and
since, above all at lower frequencies, the emission profiles of
different beams merge, the number of bursts detected at a given
frequency can be much less than the injected 6000 beams (see
the respective entry in Table 2).

2: Generally, in aχ2-test, every model-parameter which is es-
timated from the data (those the model will be compared to)
reduces the degrees of freedom by one, and if the model is
forced to have the same total number of peaks as the observa-
tions do, the degrees of freedom are reduced by one, too (see
e.g. Press et al. 1992). In our application, neither of the two
constraints are fulfilled: first, the total number of peaks we have
in the model is completely unrelated to the number of obser-
vational peaks. Second, none of the parameters of the model
was estimated from the data-sets we compared the model to.
They were chosen and optimized to yield spectrograms which
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Fig. 3. Normalized histogram (probability density) of the peak-fluxes
of the event observed on 1980/06/27, 16:14:18 UT, at 229 MHz (di-
amonds, with error bars; see also Fig. 2), together with the peak-flux
distributions of the model at 223.6 MHz (dashed), 670.8 MHz (short
dashes), 1118.0 MHz (dotted), and 1565.2 MHz (dash-dotted). For a
better visualization, the histogram-values (probabilities) are depicted
at the midpoints of the bins, and eventually connected with lines.

phenomenologically have some known properties of type III
bursts, namely several hundred MHz bandwidth and less than 1
sec duration.

3: The flux-values of the model are in arbitrary units, so that,
in order to make a comparison to observed data possible, we
need a calibration factor for the model, which we determine as
follows: we rescale the peak-fluxes of the model so that they
have the same mean value as the empirical peak-fluxes of a
considered event. Mostly then, the peak-fluxes from the model
are in the same range as the empirical ones, and those which are
outside we discard, the ones which are larger since according to
the shape of the histograms (see Fig. 3) we may say that large
amplitude events are rare and only seen in very long time series,
the ones which are smaller assuming that the small amplitude
events are not seen in the measurements since they are below
the noise-level. That this omitted part of the model-distribution
is relatively small can be seen from the example in Fig. 3, where
thecompletedistributions from the model are shown (they are
just cut for theχ2-test).

4: The number of bins used in theχ2-test influences slightly its
outcome, causing that theχ2 value of Eq. (17) fluctuates, so that
the corresponding probabilities may change by a few percent.
This seems crucial near the confidence level (95%). However,
such fluctuations must be considered as the statistical fluctua-
tions inherent to any statistical test. The more data are analyzed,
the less important becomes the dependence on the number of
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Table 1. Results of theχ2-test which compares the histograms of the peak-flux distributions of different observations of type III events to the
ones of the model (Sect. 3.1). The treatment of the data (subtraction of a minimum envelope or original data) is indicated by stating the length of
the running window. The applied significance level is 95%, and when reached indicated by ’compat.’, otherwise a ’—’ is depicted. (The number
of peaks for the model data are given in Table 2.)

event envelope number model model model model
subtracted of peaks 223.6 MHz 670.8 MHz 1118.0 MHz 1565.2 MHz

80/06/27, 16:14:18
106 Mhz none 48 — — — —

“ 10 sec “ compat. compat. compat. compat.
229 Mhz none 95 — — — —

“ 10 sec “ compat. compat. compat. —
“ 4 sec “ — — — —

301 Mhz none 96 — — — —
“ 10 sec “ — — — —

82/04/18, 05:37:56
105 MHz none 54 — — — —

“ 200 sec “ — — — —
241 MHz none 70 — — — —

“ 200 sec “ compat. compat. compat. compat.
322 MHz none 31 compat. compat. compat. compat.

“ 200 sec “ compat. compat. compat. compat.

82/04/16, 13:10:01
229 MHz none 51 — — — —

“ 10 sec “ — — — —
301MHz none 32 — compat. — —

“ 10 sec “ compat. compat. compat. compat.

82/04/14, 06:04:14
229 MHz none 27 compat. compat. compat. compat.

“ 10 sec “ compat. compat. compat. compat.

80/04/28, 17:06:24
382 MHz none 44 — — — —

“ 10 sec “ — — — —

bins. The rule we followed to choose the number of bins was
to have five peak-fluxes per bin, a compromise between having
small errors in the histograms and retaining still a lot of infor-
mation on the shape of the peak-flux distributions. Generally,
we found that the outcome of theχ2-test is not influenced if we
have5 ≤ nbin ≤ min[n, m]/5 (n andm are the total number of
peaks in the two data-sets), except in some rare cases where the
probabilities corresponding to theχ2 value fluctuate between
90% and99%, and where by chance a case is diagnozed to be
negative instead of positive.

5: All-over, the bin-width varies from bin to bin in such a way
that the number of data-points per bin is always the same.

6: In order to improve the statistics on the side of the observa-
tions, we made the combined peak-flux distribution of the peaks
of the four frequencies in Table 1 which are 229 MHz or 241
MHz, all with the minimum envelope subtracted. The resulting
histogram is not compatible with the model, its shape is near to
a simple power-law. This kind of comparison, however, we con-
sider to be questionable, since firstly the subtracted background
is different in every of the four frequencies, and secondly equal
frequencies do not imply that the type III bursts are in a similar
stage of their temporal evolution.

3.2. Fitting curves to the peak-flux distributions

An alternative approach to compare the peak-flux distributions
is to fit different curves to the histograms, and to see whether the
parameters of these fits (e.g. power-law indices) are the same
within statistical fluctuations for the model and the data (if the
fits are adequate, at all).

The curves we fit are different forms of power-laws:

f(x) =

{
a (x − b)c + d (a)
a (x − b)c (b)
a xc (c)

(18)

The parametersa, b, c, d are numerically determined by the non-
linear Levenberg-Marquardt method (Press et al. 1992). The
adequateness of the fit is judged by the averaged deviations
between the fit and the model (normalized by the errors in the
data-points), which can be assumed to follow aχ2-distribution
(with the degrees of freedom equal tonbin minus the number of
estimated parameters). A 95% significance level is demanded in
order a fit to be accepted. The curves are fitted to the normalized
probability distributionsp (ai) of the peak-fluxes, defined as
p (ai) := ni/ (n ∆ai), whereni is again the number of peak-
flux values in theith bin,∆ai is the width of the bin andai its
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Fig. 4. Normalized histogram (probability density) of the peak-fluxes
of the model at 670.8 MHz (diamonds, with error bars), together with
the fits according to Eq. (18):f(x) = a (x−b)c +d (dashed),f(x) =
a (x − b)c (short dashes), andf(x) = a xc (dotted). (Representation
of the histograms as explained in Fig. 3.)

Table 2. For a realization of 6000 fibers, the result of a fit to the peak-
flux distributions is listed for different frequencies and different fitted
curves. The power-law index together with its error (determined by 100
bootstrap runs) is given if the fit is appropriate on a 95% significance
level. A ’—’ indicates that no significantly meaningful fit could be
found. Throughout, histograms with 30 bins were used.

model number of a(x − b)c + d a(x − b)c axc

peaks c : c : c :
223.6 Mhz 540 −3.3 ± 0.1 — —
670.8 Mhz 987 −3.5 ± 0.4 −3.5 ± 0.5 —

1118.0 Mhz 1676 −3.6 ± 0.7 — —
1565.2 Mhz 2017 −3.7 ± 1.3 −3.7 ± 0.5 —

midpoint.p(ai) is therewith the probability per unit-flux for a
peak-flux of magnitudeai to occur.

For the model spectrograms, all the peak-flux distributions
could be described by the generalized power-law Eq. (18a), with
indices around 3.5, the power-law Eq. (18b) was less successful,
and the pure power-law fit (Eq. 18c) did not work at all (see Table
2; Fig. 4 shows an example of a model peak-flux probability-
distribution together with the three fits). For the empirical data,
all three power-law forms of Eq. (18) could be successfully
fitted — since there are much less peaks than in the model-
spectrograms, the errors in the probabilitiesp (ai) are larger,
and theχ2-test becomes more tolerant. The estimated indices
are given in Table 3, and Fig. 5 shows an example of a normalized
peak-flux distribution together with the three fitted curves.
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Fig. 5. Normalized histogram (probability density) of the peak-fluxes
of the event observed on 1980/06/27, 16:14:18 UT, at 229 MHz (dia-
monds, with error bars; see also Fig. 2), together with the fits according
to Eq. (18):f(x) = a (x− b)c +d (dashed),f(x) = a (x− b)c (short
dashes), andf(x) = a xc (dotted). (Representation of the histograms
as explained in Fig. 3.)

The case of interest is the generalized power-law fit of Eq.
(18a), since it can be successfully fitted to the model and the
observations, and therefore it can serve for a comparison. Un-
fortunately, the power-law indices estimated from the observed
data scatter wildly for this fit. This scattering is due to the big
errors in the estimates of the probabilitiesp(ai). It is therefore
important to have a good estimate of the error of the estimated
power-law indices. Due to non-linearity and largeness of errors,
the usual Gaussian error propagation gives meaningless error es-
timates, the linearization done in this method is no longer valid.
Therefore, the errors were determined by the bootstrap method,
which works well also if non-linearities become important (see
the Appendix for a description of the bootstrap method). For
each error estimate, a sample of 100 surrogate data sets was
used. It turns out that the errors for the empirical data are con-
siderably large (Table 3). Assuming a Gaussian distribution for
the errors of the power-law indices in Table 2 and 3, we see
that the3σ-intervals around the estimated indices of the model
and the data mostly overlap. These intervals correspond to the
respective 99.7% confidence intervals. Hence, in a statistical
sense, the model and the data are compatible — therewith, the
conclusion from the direct comparison of the histograms above
(Sect. 3.1) is confirmed. However, it seems less stringent here,
due the large errors of the observational power-law indices.

Remark 1:Concerning the influence of the number of bins onto
the resulting power-law indices, it turned out that for a too small
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Table 3. For different observations of type III events, the results of fits to the peak-flux distributions are listed. The power-law index together
with its error (determined by 100 bootstrap runs) is given if the fit is adequate on a 95% significance level. A ’—’ would indicate that the
corresponding fit is statistically not significant. Histograms with 30 bins were used, throughout.

event envelope number of a(x − b)c + d a(x − b)c axc

subtracted peaks c : c : c :
80/06/27, 16:14:18

106 MHz none 48 −0.6 ± 3.4 −11.4 ± 3.9 −0.8 ± 1.2
“ 10 sec “ −12.6 ± 3.6 −2.6 ± 3.7 −1.0 ± 0.2

229 MHz none 95 −0.5 ± 5.9 −2.5 ± 2.0 −1.0 ± 0.2
“ 10 sec “ −2.5 ± 5.1 −1.0 ± 0.3 −0.7 ± 0.2
“ 4 sec “ −7.7 ± 6.5 −1.0 ± 1.5 −0.7 ± 0.2

301 MHz none 96 −15.3 ± 3.0 −7.8 ± 5.6 −1.4 ± 0.3
“ 10 sec “ −15.8 ± 4.6 −2.5 ± 6.4 −1.1 ± 0.2

82/04/18, 05:37:56
105 MHz none 54 −2.1 ± 3.1 −2.0 ± 0.3 −1.3 ± 0.1

“ 200 sec “ −2.1 ± 3.1 −2.0 ± 0.4 −1.2 ± 0.1
241 MHz none 70 −4.4 ± 7.4 −1.3 ± 4.2 −1.5 ± 0.3

“ 200 sec “ −4.4 ± 7.5 −1.3 ± 4.2 −1.1 ± 0.2
322 MHz none 31 −17.2 ± 6.6 −17.0 ± 5.1 −2.3 ± 1.5

“ 200 sec “ −17.2 ± 6.8 −17.0 ± 4.9 −1.5 ± 1.6
82/04/16, 13:10:01

229 MHz none 51 −0.6 ± 8.8 −2.9 ± 5.3 −2.1 ± 0.7
“ 10 sec “ −1.7 ± 7.2 −2.3 ± 5.9 −1.5 ± 0.3

301 MHz none 32 −1.5 ± 7.0 −1.1 ± 3.0 −1.8 ± 0.4
“ 10 sec “ −1.5 ± 7.7 −1.0 ± 3.1 −1.3 ± 0.3

82/04/14, 06:04:14
229 MHz none 27 −0.5 ± 6.8 −15.3 ± 7.3 −1.1 ± 0.7

“ 10 sec “ −0.2 ± 6.7 −15.5 ± 7.5 −0.8 ± 0.6
80/04/28, 17:06:24

382 MHz none 44 −1.4 ± 6.3 −2.1 ± 4.7 −1.4 ± 0.2
“ 10 sec “ −3.2 ± 6.4 −1.6 ± 5.0 −1.2 ± 0.4

number of bins the estimates may depend on the latter, but they
get stable if 30 or more bins are used, i.e. if a lot of information
on the shape of the histogram is retained. We therefore used
histograms with typically 30 bins, throughout.

Remark 2:The reason why we allow for a shift (cut-off) in
the power-law fit (b in Eqs. 18a and 18b) is the following: If
the true peaksx(i) are distributed with a power-law (pA(x) =
a xc), and if there is an overall constant added,x̄(i) = x(i) +
B0, e.g. the background radiation of the quiet Sun, then the
transformed peaks are distributed aspĀ(x̄) = a (x̄−B0)c. The
power-law index is still the same, but in a log-log plot one does
not necessarily see a straight line anymore. This is the more
important since when dealing with observations one has only a
rough estimate of the background emission of the quiet Sun.

4. Discussion and conclusion

The model we introduced is a description of a randomly struc-
tured active region in which many local energy release events
take place. The thereby accelerated particles escape through
open fibers, develop a plasma-instability and create strong tur-
bulence in the ambient medium. Wave-wave coupling finally
leads to emission in the radio range.

The involved sub-processes are modeled in simplified ways
— some more, some less —, since firstly there is so far only
approximative theoretical knowledge on them, and secondly the
needed boundary conditions are mostly unobservable. How-
ever, considering that type III events are the result of the in-
terplay of many factors (structure of the active region, energy
release mechanism, particle acceleration, propagation along
fibers, plasma instability, turbulence), all with complex bound-
ary conditions which moreover are different from burst to burst,
one may expect that the details of the different sub-processes
loose their significance, in the sense that a stochastic model is
able to describe the type III phenomenon appropriately, it is not
necessary to recur to a precise physical description of all the
elements. In this spirit, different elements of the involved sub-
processes were modeled as stochastic processes, and the highly
complex initial and boundary conditions were represented by
assuming different parameters to be random. This approach is
presumably less promising if the interest would be in modeling
a single electron beam (an isolated type III burst), where the
questions would be to reproduce pulse-shapes, drift rates etc.
The scope of this article, however, is to understand the statisti-
cal properties of entire type III events.

This argumentation finds its confirmation in the presented
results: Concerning statistical properties of type III events, the
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model is largely compatible with observations. Firstly, it yields
peak-flux distributions which are compatible with four out of
five events. Secondly, its time evolution is stochastic (by con-
struction), as it should be to take the results of data-analysis of
Isliker & Benz (1994) and Isliker (1996) into account.

It remains to remark that every statistical test applied to
compare observations to models is rather tolerant, since the ob-
servational data intrinsically have a poor statistics, events with
substantially more than 100 type III bursts are not seen. In other
words, the discriminative power of the observations concerning
the fine details of any model is very restricted, changing some
elements in the model is likely not to spoil the compatibility
with the observations — besides that, the single elements may
anyway have only small influences on the statistics of the model
spectrograms, as discussed above.

Under this proviso, we conclude that the observations are
compatible with a model which assumes that: (i) the active re-
gion is highly inhomogeneous and randomly structured; (ii) the
flare-particle acceleration-process is fragmented into a large
number of sub-processes; (iii) the distribution of the acceler-
ated particles is a random fraction of the ambient density, and of
power-law form with a random index; and (iv) the fragmentary
acceleration events occur randomly in time, i.e. the temporal
structure of type III events is random, without any correlations
between the individual bursts.

In future work, it will be investigated in how far different
population-types for the injected electrons and different tempo-
ral organizations of the acceleration events may be excluded or
accepted as other compatible explanations for type III bursts.
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Appendix A: error estimate by bootstrapping

To find the errors of the estimated parameters of the fitted curves
in Sect. 3.2, there exist two methods, Gauss’ error propagation
and bootstrapping. In Gauss’ error propagation, one represents
the estimated parameters of e.g.f(x) = a(x − b)c + d as a
function of the given data-points of the histograms, e.g.c =
h ({x1, y1} , ...) (for conciseness of presentation, we write here
{xi, yi} := {ai, p(ai)} for the data-points). This relation is then
linearized around the arguments which are subdued to an error,
namely theyi, whose errorsσ (yi)are considered as small distur-
bances, and evaluation of the linearized formula yields the error
of e.g.c asσ2(c) =

∑
j (∂h/∂yj)

2 ({x1, y1} , ...) σ2 (yj). In
order that this approach is successfull, it is needed that the er-
rors in the input data are mutually independent, and that they
are sufficiently small so that the linearization is meaningful. The
second assumption is hurt in our applications, and in general ab-
surdly small values result for the errors (in some circumstances

even negative variances are yielded, due to numerics). Gauss’
error propagation is therefore not applicable.

The bootstrap method is more general, no linearization is
made: given are the pairs of data-points{xi, yi}, i = 1, ...nbin,
from which the parametersa, b, c, d are estimated. The idea
of the bootstrap method is to resample the original data: one
chooses randomlynbin data-points{xik

, yik
}, k = 1, ..., nbin

out of the original set of data, whereby a data-point may oc-
cur several times (drawing with replacement). This procedure
is repeatedL times, and always the corresponding parameters
a(l), b(l), c(l), d(l) are estimated,l = 1, ..., L. The error of the
original parameters, e.g.c, is then given by the standard devia-
tion of the set of thec(l). (See e.g. Press et al. 1992.)
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