Eulerian vs. Lagrangian Description

The flow of a fluid can be described in two different, but equivalent ways:

A) Eulerian description: All fluid properties are measured with respect to a fixed
coordinate system. Time variations are described by
4 | 2 / local derivatives at a given coordinate location, e.g.
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B) Lagrangian description:  All fluid properties are measured with respect to a moving
control mass of variable volume V(t) occupied by the same
Eﬂ particles at all times. Time variations are described by
m’ total derivatives at the location of the control mass, e.g.
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Relation between the two derivatives: =—4v-V




Reynold’s Transport Theorem (I)

For a scalar field ¢ along a moving control mass:
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where:
V(t) volume of control mass
A(t) surface area of volume V(1)

7 unit normal vector to surface A(t)

Using Gauss’ theorem: /A u-ndS = /V V- 4dV  we obtain:
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On the other hand, if V, is a fixed control volume (Eulerian description), then one can
show that:
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Reynold’s Transport Theorem (11)

For a vector field ® along a moving control mass:
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where ® ® ¥ is the tensor product:
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Conservation of Mass

he total mass of the fluid is
M = / pdD
1%

and it Is conserved, if there is no mass production inside the fluid.

By definition, the mass within the volume V(t) of a moving control mass is conserved:
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Using Reynold’s transport theorem, we find that:
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or, equivalently
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which is called the continuity equation.
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Conservation of Momentum (1)

The total momentum of the fluid is
P= [ prav
v P
and it is conserved, if there are no external forces or torques acting on the fluid.

However, the momentum contained within the volume V(t) of a moving control mass
changes with time, due to volume and surface forces acting on this control mass.

Volume forces:
e A%
fv /V - pg
where e.g. g is the acceleration of gravity.

face f : = v
Surface forces = / S .7dS = V - SdV
A(t) V(t)

where S is the stress tensor:
S = —pl+1I

Here, p is the isotropic pressure, 1=diag[1,1,1] is the unit tensor and IT is the viscous part
of the stress tensor.



Conservation of Momentum (1)

According to Newton’s 2" [aw, the rate of change of the momentum of the moving
control mass is equal to the sum of all forces acting on it:
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Using Reynold’s transport theorem:
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or, equivalently:
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Conservation of Energy (1)

The total energy density is the sum of the kinetic energy density and the internal
energy density: 7

E = EpUQ -+ pe
The total energy contained within the volume of a moving control mass is

Ey = EdV
v /V(t)

During a fluid flow, the total energy of a moving control mass can change due to
several reasons:

a) Volume forces: The work done per unit time by the volume forces
fyy = gdVv
fv /V 0 Pg

Wy = / - gdv
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b) Surface forces: The work done per unit time by the surface forces
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Conservation of Energy (1)

c) Energy flow:  If energy is flowing into or out of the volume (e.g. due to heat
conduction and () is the energy flow vector field (energy per
unit area, per unit time), then the energy flowing into or out of
the volume per unit time is

WoH = — ) -7dS
@ A(t)Q "

d) Addition of heat: If, in addition, heat is also added directly to each particle,
e.g. using microwaves, at a rate g per unit mass, per unit time,
then the corresponding energy added per unit time is

W, = dV
1 /V(t) i

The rate of change of the total energy of a moving control mass is then

D Ey,
;= Wt Ws+Wo+ W

and using Reynold’s transport theorem:
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Conservation of Energy (l11)
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The corresponding differential form is:
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Summary of Equations

The system of differential equations governing fluid dynamics is
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This system is in first-order hyperbolic form:
S(0)

8tU + 85[3F(U) + 8?/G(U) + azH(U)

where U = {p, pvx puy, pvz, £} is the state vector of unknowns

ﬁ, C_j, H are the flux vectors, and

g’ IS the source vector.



Viscous Stresses

In the Newtonian approximation, one assumes that viscous stresses still obey Hooke’s
linear law (deformation is linearly proportional stress). In this approximation, the
viscous part of the stress tensor is written as:
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Is the deformation tensor, and
n coefficient of shear viscosity

n,  coefficient of bulk viscosity
For monatomic gases 7 = O, while for polyatomic gases n; %= O.

The shear viscosity depends strongly on temperature and only slightly on pressure. When
approximating n = n(T"), Sutherland’s formula holds:

=i (1+2) T



Heat Flow

Heat flow can be the result of:

1)  Heat flow due to temperature gradients
2)  Diffusion processes in gas mixtures

3) Radiation

In the case of temperature gradients, it has been found that Fourier’s law holds:

Q= —kVT

where K is the coefficient of thermal conductivity, depending strongly on T and only
slightly on pressure, just as the shear viscosity coefficient. From molecular theory:

koxn
If C, IS constant, then one can define the Prandtl number
__¢pn 4~
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Since P, is of order unity, this means that heat flow and viscosity must both be treated
consistently.



Entropy Equation

An alternative form of the energy equation, in terms of the specific internal energy, is:
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Using the first law of thermodynamics, we can derive an equation for the dynamical
evolution of the specific entropy:

TDS __De p Dp
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Inviscid flow (perfect fluid):
II1=0
Adiabatic flow of perfect fluid is isentropic:
Q’ =0, ¢g=0 = % = (0 _in smooth flow

— g — constant along particle paths



Isentropic and Homentropic Flows

Along a particle path in an isentropic flow,

p= K(sg)p” Exercise 3a

where K(s,) is a constant, depending on the specific entropy of the particle path at t=0.
Alternatively, one can show that

Tpl=™ = const. Exercise 3b

If the entropy is constant everywhere, at all times, the flow is called homentropic.

Entropy

If c,, c, = constant, then the specific entropy can be expressed as

s=sg+cvln <£> Exercise 4a

p7
where s is a reference value.



Barotropic and Incompressible Flows

If the temperature or the specific entropy are constant everywhere, e.g.

T'= Tp = constant (isothermal flow)
s = sgp = constant (homentropic flow)

then the pressure depends only on the density

p = p(p)
and the flow is called barotropic. Then:
lﬁp =Vh Exercise 4b
P
dp . .
where h = /_ IS the specific enthalpy.

p

If the density of the fluid is constant everywhere,

p = pp = constant
then the flow is called incompressible, and the continuity equation implies:

V. -3=0




Flow at Junctions

Two falling blobs of liquid in a pipe. Wall shear stress in an elastic blood vessel.



Flow in Containers

Dambreak in sphere. Marching cube partially filled with water.



Maritime Applications

Water clashing over a ship’s deck with Rectangular block falling into water.
a rectangular obstacle.



Drops and Dambreak

A drop falling in a pool of water.

Dambreak with box.




Turbulent Flow Past an Obstacle




Shocks




Instabilities in Flows




Industrial Applications
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