
Primordial magnetic fields and

their super-adiabatic amplification

Christos G Tsagas

DAMTP, University of Cambridge



Magnetic Fields in the Universe

Magnetic fields appear everywhere in the universe.

Large scale magnetic fields, between 10−7 and

10−5 G, have been observed in galaxies, galaxy

clusters and in high redshift objects.

Despite their widespread presence, however, the

origin of cosmic magnetic fields is still a mystery.

Even if the galactic dynamo works fine, it still

requires a small “seed” magnetic field to begin

with.

A number of suggestions have been put forward

for producing these seed fields.

The scenarios vary from eddies and density fluctu-

ations in the early plasma, to cosmological phase-

transitions, inflationary and superstring inspired

scenarios.



The Galactic Dynamo

The dynamo amplifies weak magnetic fields, by
combining the turbulent motion of the gas with
the differential rotation of the galaxy.

The origin of these seed fields is still elusive.

If the dynamo is efficient, the initial magnetic
fields can be as low as ∼ 10−23 G (at present).

This limit is relaxed down to ∼ 10−34 G if the
universe is dominated by “dark energy”.

Without dynamo magnetic seeds of 10−12 G, or
even 10−8 G, are required.

The coherence scale of the seed field is also an
issue.

Typically, the coherence length must be compa-
rable to the largest turbulent eddy (∼ 100 pc col-
lapsed, or ∼ 10 kpc comoving).

These magnetic seed fields can result from local
astrophysical processes (e.g. buttery effects), or
be the remnants of a large-scale primordial field.



Primordial Magnetism

Primordial magnetic fields can explain both the

galactic fields, as well as those detected in galaxy

clusters and highly redshifted formations.

There have been many attempts to generate pre-

recombination magnetic fields in the out of equi-

librium epochs between inflation and decoupling.

However, causality means that the coherence scale

of the seed fields is unacceptably small.



Magnetism and Inflation

Inflation has long been suggested as a solution

to the causality problem, as it naturally achieves

superhorizon correlations.

Nevertheless, the general perception is that due

to the conformal invariance of electromagnetism

any magnetic field present during inflation will be

strongly diluted.

One can get around this obstacle by breaking

away from standard electromagnetic theory.

More than one ways of doing that have been sug-

gested in the literature, with a number of them

introducing ad hoc new physics.

The success of these proposals, however, is usu-

ally achieved at the expense of simplicity.



Maxwell’s Equations

Relative to an observer with 4-velocity ua, Maxwell’s

equations decompose into two propagation equa-

tions

Ė〈a〉 =
(
σab + εabcω

c − 2
3Θhab

)
Eb + εabcu̇

bBc

+curlBa − J〈a〉 , (1)

Ḃ〈a〉 =
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c − 2
3Θhab

)
Bb − εabcu̇

bEc

−curlEa , (2)

and two constraints

DaEa + 2ωaBa = ρe , (3)

DaBa − 2ωaEa = 0 . (4)

Here Ea and Ba are the electric and magnetic

fields, as measured by the observer, with Eaua =

0 = Baua.

Also, Ja is the 4-current density and ρe is the

charge density.



The Magnetic Wave Equation

Taking the time derivative of (1) and eliminating
the electric field we arrive at the following wave-
like equation
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where w = p/ρ. Similarly one obtains the wave
equation for Ea.

The latter and the above isolate all the sources
affecting the evolution of electromagnetic fields
in a general spacetime (with a perfect fluid).



The case of a FRW background

On a curved FRW model the linear magnetic

wave equation reads

B̈a −D2Ba = 5
3ΘḂa − 4

9Θ
2Ba + 1

3(ρ + p)Ba

−RabB
b . (6)

The RabB
b term results from the general rela-

tivistic coupling between the electromagnetic field

and the spacetime curvature.

Introducing conformal time (η, with η̇ = 1/a), we

have

B′′a −D2Ba + 2kBa = 0 , (7)

where Ba = a2Ba and k = ±1.

The above closely resembles the wave equation

derived by Turner and Widrow.

The main difference is that here the magneto-

curvature term is natural and not the result of

an ad hoc coupling between the EM field and the

spacetime curvature.



The Case of a k = −1 background

The decomposition Ba =
∑

nBnQn
a leads to

B′′n + n2Bn + 2kBn = 0 , (8)

where n2 = ν2 + 1 (ν ≥ 0) and k = −1. Then,

B′′ν + (ν2 − 1)Bν = 0 . (9)

So, for ν2 → 0, which corresponds to the largest
subcurvature modes, we obtain the solution

Bν = C1 cosh η + C2 sinh η . (10)

The above translates into

Bν ∝ a =⇒ Bν ∝ a−1 , (11)

through most of the evolution of an open FRW
model with p = 0, p = ρ/3 and p = −ρ (provided
that the electrical conductivity is low).

Thus, during de Sitter inflation, when the con-
ductivity is effectively zero, the magnetic flux in-
creases on sufficiently long wavelengths and the
field no longer obeys the a−2-law (i.e. superadia-
batic magnetic amplification).

Are the magnetic scales and the strengths of as-
trophysical interest?



The Curvature Scale

In an open FRW universe (with 0 < Ω < 1) the

Friedmann equation reads

1−Ω =
1

H2a2
=

λ2
H

λ2
k

, (12)

where Ω = ρ/3H2 is the density parameter, λH =

1/H is the Hubble scale and λk = a is the curva-

ture scale.

This means that

λk =
λH√
1−Ω

. (13)

So, λk > λH always and λk ' λH when Ω� 1.

Note that inflation makes the universe look flat-

ter, by pushing the curvature scale further out,

but does not change its geometry.



Magnetic Scales

Consider GUT scale inflation at T ∼ 1016 Gev and

H ∼ 1013 Gev.

We want to redshift the curvature scale at the

end of inflation to the present.

At the end of “reheating” in an open FRW model

1−Ωreh ∼ 10−23(1−Ω0)T
−2
reh , (14)

with Treh (in Gevs) and 1−Ω0 ∼ 10−2.

At the same time

λk =
λH√

1−Ωreh
� λH . (15)

Then,

(λk)0 = (λk)reh

(
a0 = 1

areh

)
= (λk)reh

(
Treh

T0

)
,

(16)

given that λ ∝ a ∝ T−1.



Magnetic Strengths

At the end of inflation and on wavelengths close

to the curvature scale, where Bν ∝ a−1, we have

r =
ρB

ργ
' 10−52λ−2 , (17)

where ρB = B2, ργ ∝ a−4 is the density of the

radiation field and λ is the coherence scale of the

field (in MPcs).

After inflation, the ratio r remains invariant be-

cause the conductivity of the cosmic medium in-

creases and therefore ρB ∝ a−4.

So, today

(ρB)0 ' 10−52(ργ)0(λk)
2
0 (18)

The above does not account for any potential

magnetic amplification during reheating or during

the protogalactic collapse.



Numerical Results

H/mPl TRH λ0 log r B0
10−6 1016 GeV 106 Mpc −64 10−37 G
10−6 1014 GeV 102 Mpc −56 10−33 G
10−6 1013 GeV 1 Mpc −52 10−31 G
10−6 1012 GeV 10−2 Mpc −48 10−29 G
10−6 1011 GeV 10−4 Mpc −44 10−27 G

Numerical estimates for the present scale (λ0),

the invariant energy density ratio (r) and the cur-

rent magnitude (B0) of the super-adiabatically

amplified magnetic field for GUT scale inflation

(H/mPl ' 10−6) and representative reheating tem-

peratures (TRH).


