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SOLAR ERUPTIONS

NRL Plasma Physics Division

o Solar eruptions: Coronal mass ejections
(CMESs), flares, prominence eruptions

« Canonical parameters of solar eruptions:

— KE, photons, particles ~ 1032723 erg
| — Mass ~ 101471¢ g
EIT 2000/09/1209:48 mission at 195 A — Speed ~100 - 2000 km/s

» Space Weather: CMEs are the solar
drivers of large geomagnetic storms

c2 2uoonarz0ese  Scattered white-light




SCIENTIFIC CHALLENGES

NRL Plasma Physics Division

Observational challenges:
» All remote sensing

 Different techniques observe different
aspects/parts of an erupting structure

» 3-D geometry not directly observed

EIT 2000/09/12 11:48

Theoretical challenges:

* An important unsolved question of
theoretical physics

 Energy source

Driving force (“magnetic forces”)
— Underlying magnetic structure

_ Physical relationship between CMEs,
C2 000091121230 . flares, and eruptive prominences (EPS)



MAGNETIC GEOMETRY UNDERLYING CMEs

NRL Plasma Physics Division

Pre-SOHO Post-SOHO
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llling and
Hundhausen
(1986)
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Chen et al. (1997)

Hundhausen (1999)



OBSERVATIONAL EVIDENCE

NRL Plasma Physics Division

90°

0

C2 1997 April 13 16:36 UT

» Good quantitative agreement with a flux rope viewed end-on (Chen et al. 1997)
— No evidence of structural changes attributable to disconnection

o Other examples of flux-rope CMES (Wood et al. 1999; Dere et al., 1999; Wu et al. 1999;
Plunkett et al. 2000; Yurchyshyn 2000; Chen et al. 2000; Krall et al. 2001; Thernisien et al. 2006)



OBSERVATIONAL EVIDENCE (cont'd)

NRL Plasma Physics Division

-

C2 Z0a0/08/20 21:54

7

» A flux-rope viewed from the side

 Halo CMEs are flux ropes viewed head on [Krall et al. 2005]



—THEORETICAL CONCEPTS: TWO MODEL GEOMETRIES

NRL Plasma Physics Division

Magnetic Arcades

Magnetic Flux Ropes

CORONA

CORONA

PHOTOSPHERE

Magnetic arcade-to-flux rope
— Energy release and formation of flux

rope during eruption _ _
(e.g., Antiochos et al. 1999; Chen and Shibata 2000; Pre-eruptlon structure: flux rope with
Linker et al. 2001; Lynch et al. 2004, 2009) fixed footpoints (Ss) (Chen 1989; Wu et al.
1997; Gibson and Low 1998; Roussev et al. 2003)

Poynting flux S = 0 through the surface

Not yet quantitative agreement with CMEs Sea O Lol s SUTEeS (Slien d0e)




PHYSICS OF CMEs: Forces

NRL Plasma Physics Division

« “Toroidal” magnetic flux rope with fixed footpoints separated by S¢

- Major Radial Forces: integrate f = pdv /dt=c 2IxB - Vp+ pV

d?z @3 8R) 1 1B? (RJB &
M =—" |In +=fo———+2| — |==-1+2 [+Fy +F
dt? C4L2R{ (aj Fo 2|79

[Shafranov 1966; Chen 1989;
Garren and Chen 1994]

@, =cLl, L:4n®R{In[8—Rj—2}

* [nitiation of eruption:

d (1)

= poloidal flux "injection"




MINOR RADIAL DYNAMICS

NRL Plasma Physics Division

 Minor Radial Forces: (integrated over a)

d%a a
a2 4l

2 p2 2
B —Bp +/p Bp)

 d%a/dt?> =0 is agood approximation [Chen 1989]

» Key property of flux-rope Geometry:
Constant S¢ is an essential scale length

Z°+S? 14
R =
2Z




STRUCTURE OF EQUATIONS OF MOTION

NRL Plasma Physics Division

« Shafranov’s original work:

— Forces in major and minor radial directions
— Axisymmetric toroidal equilibrium

« CMEs: An Extension and New Application

— Local curvature approximation [Chen 1989; Garren and Chen 1994]

— Stationary photospheric footpoints: nonaxisymmetric —— additional lengths scales Sy, as
— Dynamical expansion —— time scales

— Momentum coupling to the ambient to the ambient plasma

— S¢ and a5 are directly manifested in observed CME acceleration data [Chen et al. 2006 ]

» Comparison with other recent models invoking Shafranov

— Wu et al. [1997] — 2D axisymmetric MHD simulation with stationary footpoints

— Lin et al. [1998], Titov and Demoulin [1999], Kliem and Torok [2005] — axisymmetric with no
footpoints, no minor radial force equation, no coupling to the ambient plasma

— Isenberg and Forbes [2007] — major radial force only, no dynamics

— Roussev et al. [2003], Torok and Kliem [2008] -- MHD simulations with fixed footpoints
(invoking Titov and Demoulin and Kliem and Torok but scales are different)



DIRECT COMPARISON OF THEORY AND DATA

NRL Plasma Physics Division

* Previous comparison of theoretical predictions and directly observable quantities

— Good agreement with observed height and acceleration data
— Agreement of predicted Sf-scaling law and observed CME acceleration profiles (17 events)

* A new theoretical prediction: the temporal form of do,(t)/dt fora CME should be
correlated with that of the X-ray emission profile of the associated flare

— Physics: —(1/ c)dcbp(t) / dt = electromotive force (EMF) o electric field

27 Dt B? -
l\/Id Z_ 2% In(SRJ+£,Bp—E—tqLZ(BJ&—lJré +Fg +Fg
dt? c*?R| \a /) 2'7 2BZ \a/B, = 2

do
EMF()=— 72




BEST-FIT SOLUTION

NRL Plasma Physics Division

» Define goodness of fit with respect to height-time data: G

G = 1% | Zgata (i) — Zin () |5ti
T3 AZ(t;)
* Adjust do(t)/dt to find theoretical solutions that best fit the observed CME
height-time data and compare the calculated d (t) / dt with observed GOES X-

ray data

* Results:
— The form of dd(t)/dt IS strongly constrained by the height data with little freedom
— Agreement is good for both short- and long-duration flare events

» Goodness of fit is determined with no regard to speed, acceleration, and X-ray
emissions.



THEORY-DATA COMPARISON

NRL Plasma Physics Division

» Set up initial equilibrium flux rope according to available observational proxies:
e.g., S¢, footpoint separation distance, B.(Zg). Adjust dd(t)/ dt

2008 April 26 Chen and Kunkel (2009)

2000 September 12
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PARAMETER STUDY

NRL Plasma Physics Division

« For each set of parameters, adjust d@(t)/ dt to obtain the best-fit solution

— All “best-fit” solutions (G ~ 0.85-1.2 for this case) have similar FWHM durations
— For LASCO heights, the fit is sensitive to the duration but not to Vg,

Form ofgg)p(t)/dt

- I
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THEORY-DATA COMPARISON

NRL Plasma Physics Division
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» Consistent with observational studies of temporal relationship between acceleration and
derivative of soft X-ray: Zhang et al. (2001), Maricic et al. (2007), Temmer et al. (2008)
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NRL Plasma Physics Division

* In the toroidal flux rope model, d®(t)/dt is a prescribed mathematical function

— A direct proxy for electric field (super Dreicer) for DC acceleration: E ~ 0.4-15V cm-1

— Agreement with form of observed X-ray emission profiles is evidence of physical
connection linking d® , (t) / dt, CME acceleration, and flare soft X-rays

* Physical interpretation of d®,(t)/dt:

— (1) Subphotospheric origin via poloidal flux transport from deep source
— (2) Coronal origin via macroscopic reconnection [Antiochos et al. 1999; Amari et al. 2000]
— Neither has been theoretically or observationally verified

» Comparison with arcade-based coronal storage scenario:

— 2-D MHD simulation with J-dependent resistivity [Cheng et al. 2003]: temporal relation
between flux-rope acceleration and inferred energy release with E ~ 10 V cm-1

— Estimates of reconnected flux based on photospheric magnetograms:
-90 V cm1 [Qiu et al., 2002]

-0.2-5 V cm1 with reconnected flux of ~ 0.5 —10 x 1018 Mx s1 [Jing et al. 2005; Qiu et
al. 2007]



PROPAGATION OF CMEs

NRL Plasma Physics Division

* Model the dynamics of a CME (2007 Dec 24) from initiation to 1 AU (STEREO A
data). Predict magnetic field at 1 AU and compare with data (STEREO B data).
[Kunkel and Chen, in preparation, 2009]

« Two situations:
— Source region can be observed—obtain proxies for Sy, Z, etc.

— Source region not observed—adjust Sy, Z,, and fit model solutions to HI1/HI2 height-
time data — predict B field at 1 AU

— For both situations, dd,(t)/dt is an adjustable parameter that can be validated using
GOES X-ray data
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CME TRAJECTORY: NEAR SUN

NRL Plasma Physics Division

2007 December 24
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Inclusion of drag in the force equation is
essential for the long-time propagation




PREDICTED MAGNETIC FIELD AT 1 AU

Calculated magnetic field at 1 AU

— Comparison with IMPACT/PLASTIC data
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THEORY SUCCESSES

NRL Plasma Physics Division

« CME dynamics are described by a set of two ODEs

— Calculated dynamics have been compared with LASCO and STEREO data
— Both major radial and minor radial expansion is correctly described by the theory
— The main acceleration and the subsequent propagation to 1 AU are correctly captured
— Drag coupling between CMEs and the ambient SW is essential
— The calculated B field at 1 AU is in agreement with in situ measurement at 1 AU (1 event)
— The best-fit solution yields a temporal profile of dd,(t)/ dt in agreement with the

observed profile of GOES soft X-ray emissions (five CME-flare events)

« Suggests a new theoretical framework of understanding CME dynamics and flare
energy release

— An initial flux rope is set into motion by injection of poloidal flux, which generates an EMF
and attendant electric field to accelerate particles to X-ray energies



PHYSICS OF POLOIDAL FLUX INJECTION

NRL Plasma Physics Division

* Currently, da(t)/dts a specified function of time

« Two physical interpretations are possible:
— Coronal origin: macroscopic reconnection is required. All models use numerical and/or
artificial dissipation. Not yet simulated acceleration in agreement with data.
— Subphotospheric origin: Not yet observed. Observable photospheric signatures not yet
modeled. Favorable if coronal reconnection is not fast enough

* ddp(t)/dt IS a point of overlap between the two basic paradigms (arcade v. flux rope)
[Chen 1996; Chen and Krall 2003]
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OPEN ISSUES

NRL Plasma Physics Division

Both arcade models and erupting flux-rope model with poloidal flux injection
require further work

Major Physics Issues

Arcade models:

— Physical reconnection on macroscopic scales
— Demonstration of specific realistic photospheric motion for observed eruptions
— Calculation of acceleration and speed in agreement with observed CMEs

Poloidal flux injection model:

— Demonstration of photospheric signatures in agreement with well-resolved
observation

— Simulation of subphotospheric plasma dynamics



NRL Plasma Physics Division

END



3-D GEOMETRY OF CMEs

NRL Plasma Physics Division

“Coronal transients” (1970's: OSO-7, Skylab)

“Thin” flux tubes FOV: 1.7 -6 Rg
(Mouschovias and Poland 1978; Anzer 1978) 18 Aug 1980: White Light _

Halo CMEs (Solwind) (Howard et al. 1982)
—Fully 3-D in extent |

|11:54

CME morphology (SMM):
(llling and Hundhausen 1986) i

— A CME consists of 3-parts: a bright ‘

frontal rim, cavity, and a core | *_/
- Conceptual StrUCtu re: rOtational J‘o!lj:::ﬁi.igh Altitude (‘rhsorvmory_-'.‘io'.ar]i;\l:::'num Mission Archives - HAG A-013
symmetry (e.g., ice cream cone, light (lling and Hundhausen (1986)

bulb) (Hundhausen 1999) SMM (1980-1981; 1984-1989)

SOHO data: 3-D flux ropes (Chen et al. 1997)
— 3-part morphology is only part of a CME



SOLAR ERUPTIONS: PHENOMENOLOGY

NRL Plasma Physics Division

» Sporadic eruptions

GOES Xray Flux (5 minute data)

— Solar flares seen in X-rays, EUV, B Solar Flares
He , etc.

— Filament/prominence eruptions
seen in Hy or white light

— CMEs in white light

— All can be accompanied by

detected by GOES satellites

. ] Jul 12 T T VT
solar energetic particles (SEPS) Jpdated 2000 Jul 14 19:0603 - NOAA/SEC Boulder, CO USA
» Solar flares are usually identified by : " 3 3 A
the disk-integrated X-ray emissions ¥ R I P

« Stellar flares are recognized by
similar X-ray light curves

.......
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