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• Solar eruptions: Coronal mass ejections 
(CMEs), flares, prominence eruptions

• Canonical parameters of solar eruptions: 

– KE, photons, particles                 erg
– Mass                g
– Speed ~100 - 2000 km/s

• Space Weather: CMEs are the solar 
drivers of large geomagnetic storms

SOLAR  ERUPTIONS
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Observational challenges: 
• All remote sensing

• Different techniques observe different 
aspects/parts of an erupting structure

• 3-D geometry not directly observed

Theoretical challenges:

• An important unsolved question of 
theoretical physics

• Energy source

• Driving force (“magnetic forces”)
– Underlying magnetic structure

• Physical relationship between CMEs,  
flares, and eruptive prominences (EPs)

SCIENTIFIC  CHALLENGES
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MAGNETIC GEOMETRY UNDERLYING CMEs

Hundhausen (1999)

Pre-SOHO                                                     Post-SOHO

Chen et al. (1997)

Illing and 
Hundhausen 
(1986)
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OBSERVATIONAL  EVIDENCE

• Good quantitative agreement with a flux rope viewed end-on (Chen et al. 1997)

– No evidence of structural changes attributable to disconnection

• Other examples of flux-rope CMEs (Wood et al. 1999; Dere et al., 1999; Wu et al. 1999; 
Plunkett et al. 2000; Yurchyshyn 2000; Chen et al. 2000; Krall et al. 2001; Thernisien et al. 2006)

90θ =
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OBSERVATIONAL  EVIDENCE (cont’d)

• A flux-rope viewed from the side

• Halo CMEs are flux ropes viewed head on [Krall et al. 2005]
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THEORETICAL CONCEPTS: TWO  MODEL  GEOMETRIES

Magnetic Arcades
Magnetic Flux Ropes

Magnetic arcade-to-flux rope
– Energy release and formation of flux 

rope during eruption
(e.g., Antiochos et al. 1999; Chen and Shibata 2000; 
Linker et al. 2001; Lynch et al. 2004, 2009)

Poynting flux S = 0 through the surface

Not yet quantitative agreement with CMEs

Pre-eruption structure: flux rope with 
fixed footpoints (Sf) (Chen 1989; Wu et al.
1997; Gibson and Low 1998; Roussev et al. 2003)

through the surface (Chen 1989)0≠S

0=S

0≠S
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• “Toroidal” magnetic flux rope with fixed footpoints separated by Sf

• Major Radial Forces:  integrate                                                         
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• Initiation of eruption:
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• Minor Radial Forces: (integrated over a)                                                         

• is  a good approximation [Chen 1989]

• Key property of flux-rope Geometry: 
Constant Sf is an essential scale length 

MINOR RADIAL DYNAMICS
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STRUCTURE OF EQUATIONS OF MOTION

• Shafranov’s original work: 
– Forces in major and minor radial directions
– Axisymmetric toroidal equilibrium

• CMEs: An Extension and New Application 
– Local curvature approximation [Chen 1989; Garren and Chen 1994]

– Stationary photospheric footpoints: nonaxisymmetric            additional lengths scales Sf, af
– Dynamical expansion            time scales
– Momentum coupling to the ambient to the ambient plasma
– Sf and af are directly manifested in observed CME acceleration data [Chen et al. 2006 ]

• Comparison with other recent models invoking Shafranov
– Wu et al. [1997] – 2D axisymmetric MHD simulation with stationary footpoints
– Lin et al. [1998], Titov and Demoulin [1999], Kliem and Torok [2005] – axisymmetric with no 

footpoints, no minor radial force equation, no coupling to the ambient plasma
– Isenberg and Forbes [2007] – major radial force only, no dynamics
– Roussev et al. [2003], Torok and Kliem [2008] -- MHD simulations with fixed footpoints 

(invoking Titov and Demoulin and Kliem and Torok but scales are different)
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DIRECT COMPARISON OF THEORY AND DATA

• Previous comparison of theoretical predictions and directly observable quantities
– Good agreement with observed height and acceleration data
– Agreement of predicted Sf-scaling law and observed CME acceleration profiles (17 events) 

• A new theoretical prediction: the temporal form of                   for a CME  should be 
correlated with that of the X-ray emission profile of the associated flare

– Physics:                              = electromotive force (EMF)     electric field
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BEST-FIT SOLUTION

• Define goodness of fit with respect to height-time data: G

• Adjust                   to find theoretical solutions that best fit the observed CME 
height-time data and compare the calculated with observed GOES X-
ray data

• Results:
– The form of                  is strongly constrained by the height data with little freedom
– Agreement is good for both short- and long-duration flare events 

• Goodness of fit is determined with no regard to speed, acceleration, and X-ray 
emissions.
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THEORY-DATA COMPARISON

• Set up initial equilibrium flux rope according to available observational proxies:
e.g., Sf, footpoint separation distance, Bc(Z0).   Adjust ( ) /pd t dtΦ

Error: 2% of height

Goodness of fit: G ~ 0.5 – 1.0

G = 0.85 Sf = 4.5 x 105 km  E ~ 1 V/cm G = 0.42 Sf = 2.0 x 105 km  E ~ 15 V/cm

Chen and Kunkel (2009)
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File ID GFIT Z0 Sf ASPCT0XPPXNP0BS0 PHIA DTC DtpeakTSCL1TSCL2 Vsw TSHFT
240+0 1.03 2.0 4.5 2.5 1.0 1.0 -0.5 9.400 76.0 1.0 25.0 73.0 400 9.970
240+1 0.94 2.0 4.5 2.5 1.0 1.0 -1.5 5.300 76.0 1.0 25.0 75.0 400 9.970
240+2 1.13 2.0 4.5 2.5 1.0 1.0 -1.5 4.500 76.0 2.0 20.0 72.0 400 9.970

250 0.96 1.8 4.5 2.5 1.0 1.0 -1.0 5.850 76.8 0.0 20.0 74.6 400 9.936

1 250-1 0.85 2.0 4.5 2.5 1.0 1.0 -1.0 5.600 71.0 0.0 20.0 75.0 400 9.936
250-2 0.97 2.0 4.5 2.0 1.0 1.0 -1.0 6.400 70.0 0.0 20.0 72.5 400 9.940
250-3 0.99 1.8 4.5 2.5 1.0 1.0 -1.0 6.430 70.0 0.0 22.0 73.3 400 9.960
250-4 0.87 2.0 4.5 2.5 1.0 1.0 -1.0 6.150 70.0 0.0 22.0 73.3 400 9.960
252+5 1.18 2.0 4.5 2.0 0.5 2.0 -1.0 6.460 72.0 1.0 20.0 67.9 400 9.950
260+0 0.87 2.0 4.5 2.5 1.0 1.0 -1.0 6.700 71.0 0.0 25.0 76.7 400 9.970
260+1 1.09 2.0 4.5 2.5 1.0 1.0 -1.0 8.000 71.0 0.0 30.0 76.7 400 10.000

6 616+2 1.29 2.0 5.5 2.5 1.0 1.0 -1.0 5.600 73.0 0.0 25.0 74.5 400 9.330
0530+0 1.09 2.0 5.0 2.5 1.0 2.0 -1.5 4.500 90.0 0.0 25.0 83.0 400 9.300
0530+1 1.18 2.0 5.0 2.5 1.0 2.0 -1.0 5.530 90.0 0.0 25.0 82.0 400 9.300

3 0540+1 1.45 2.0 5.0 2.5 1.0 1.0 -1.0 5.400 130.0 0.0 35.0 89.5 400 9.400
0540+2 2.89 2.0 5.0 2.5 1.0 1.0 -1.5 5.400 110.0 0.0 15.0 30.0 400 9.400

2 0540+3 2.19 2.0 5.0 2.5 1.0 1.0 -1.0 5.900 110.0 0.0 15.0 38.0 400 9.400

4 0550+1 0.87 2.0 4.5 2.5 1.0 1.0 -1.0 5.590 70.7 0.0 20.0 78.2 300 9.941
0550+2 0.88 2.0 4.5 2.5 1.0 1.0 -1.0 5.590 70.7 0.0 20.0 79.7 250 9.944

5 0550+3 0.84 2.0 4.5 2.5 1.0 1.0 -1.0 5.580 71.5 0.0 20.0 70.1 600 9.940

PARAMETER STUDY

• For each set of parameters, adjust                  to obtain the best-fit solutione
– All “best-fit” solutions (G ~ 0.85–1.2 for this case) have similar FWHM durations
– For LASCO heights, the fit is sensitive to the duration but not to Vsw

NRL Plasma Physics Division

( ) /pd t dtΦ

Form of ( ) /pd t dtΦ
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THEORY-DATA COMPARISON

• Consistent with observational studies of temporal relationship between acceleration and 
derivative of soft X-ray: Zhang et al. (2001), Maricic et al. (2007), Temmer et al. (2008)

Emax ~ 12 V/cm E ~ 5 V/cm E ~ 2 V/cm
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PHYSICAL INTERPRETATION OF  

• In the toroidal flux rope model,                   is a prescribed mathematical function  
– A direct proxy for electric field (super Dreicer) for DC acceleration: E ~ 0.4–15 V cm-1

– Agreement with form of observed X-ray emission profiles is evidence of physical 
connection linking                  , CME acceleration, and flare soft X-rays

• Physical interpretation of                  :
– (1) Subphotospheric origin via poloidal flux transport from deep source
– (2) Coronal origin via macroscopic reconnection [Antiochos et al. 1999; Amari et al. 2000]

– Neither has been theoretically or observationally verified

• Comparison with arcade-based coronal storage scenario:
– 2-D MHD simulation with J-dependent resistivity [Cheng et al. 2003]: temporal relation 

between flux-rope acceleration and inferred energy release with E ~ 10 V cm-1

– Estimates of reconnected flux based on photospheric magnetograms: 

-90 V cm-1 [Qiu et al., 2002]

-0.2–5 V cm-1 with reconnected flux of ~ 0.5 –10 x 1018 Mx s-1 [Jing et al. 2005; Qiu et 
al. 2007]
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( ) /pd t dtΦ



NRL Plasma Physics Division

PROPAGATION OF CMEs

• Model the dynamics of a CME (2007 Dec 24) from initiation to 1 AU (STEREO A 
data).  Predict magnetic field at 1 AU and compare with data (STEREO B data).  
[Kunkel and Chen, in preparation, 2009]

• Two situations:

– Source region can be observed—obtain proxies for Sf, Z0, etc.

– Source region not observed—adjust Sf, Z0, and fit model solutions to HI1/HI2 height-
time data           predict B field at 1 AU

– For both situations,                   is an adjustable parameter that can be validated using 
GOES X-ray data

( ) /pd t dtΦ
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24 DEC 2007 CME

B

Separation angle Stereo A and B is 44 degree

Stereo A / Hi 2
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CME TRAJECTORY: NEAR SUN

Inclusion of drag in the force equation is 
essential for the long-time propagation



NRL Plasma Physics Division

PREDICTED MAGNETIC FIELD AT 1 AU

Calculated magnetic field at 1 AU
– Comparison with IMPACT/PLASTIC data

Magnetic Cloud [Burlaga et al. 1981]
Dec 30
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THEORY SUCCESSES

• CME dynamics are described by a set of two ODEs
– Calculated dynamics have been compared with LASCO and STEREO data
– Both major radial and minor radial expansion is correctly described by the theory
– The main acceleration and the subsequent propagation to 1 AU are correctly captured

– Drag coupling between CMEs and the ambient SW is essential
– The calculated B field at 1 AU is in agreement with in situ measurement at 1 AU (1 event)
– The best-fit solution yields a temporal profile of                  in agreement with the   

observed profile of GOES soft X-ray emissions (five CME-flare events)

• Suggests a new theoretical framework of understanding CME dynamics and flare 
energy release

– An initial flux rope is set into motion by injection of poloidal flux, which generates an EMF 
and attendant electric field to accelerate particles to X-ray energies

( ) /pd t dtΦ
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PHYSICS OF POLOIDAL FLUX INJECTION

• Currently,                  is a specified function of time

• Two physical interpretations are possible:
– Coronal origin: macroscopic reconnection is required.  All models use numerical and/or 

artificial dissipation.  Not yet simulated acceleration in agreement with data.
– Subphotospheric origin: Not yet observed.  Observable photospheric signatures not yet 

modeled.  Favorable if coronal reconnection is not fast enough  

• is a point of overlap between the two basic  paradigms (arcade v. flux rope) 
[Chen 1996; Chen and Krall 2003]

( ) /pd t dtΦ
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Lynch et al. (2004)

Jt

Lynch et al. (2004)

Breakout 
model 
simulation

2D

3D
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OPEN ISSUES

• Both arcade models and erupting flux-rope model with poloidal flux injection 
require further work

• Major Physics Issues

• Arcade models:
– Physical reconnection on macroscopic scales
– Demonstration of specific realistic photospheric motion for observed eruptions
– Calculation of acceleration and speed in agreement with observed CMEs

• Poloidal flux injection model:
– Demonstration of photospheric signatures in agreement with well-resolved

observation
– Simulation of subphotospheric plasma dynamics
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END
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3-D  GEOMETRY  OF  CMEs

• “Coronal transients” (1970’s: OSO-7, Skylab)

• “Thin” flux tubes
(Mouschovias and Poland 1978; Anzer 1978)

• Halo CMEs (Solwind) (Howard et al. 1982)

– Fully 3-D in extent

• CME morphology (SMM):
(Illing and Hundhausen 1986)

– A CME consists of 3-parts: a bright 
frontal rim, cavity, and a core

– Conceptual structure: rotational 
symmetry (e.g., ice cream cone, light 
bulb) (Hundhausen 1999)

• SOHO data: 3-D flux ropes (Chen et al. 1997)

– 3-part morphology is only part of a CME

FOV:  1.7 – 6 Rs

SMM (1980-1981; 1984-1989)

(Illing and Hundhausen (1986)
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SOLAR ERUPTIONS:  PHENOMENOLOGY

• Sporadic eruptions

– Solar flares seen in X-rays, EUV, 
H   , etc.

– Filament/prominence eruptions 
seen in H    or white light

– CMEs in white light

– All can be accompanied by   
solar energetic particles (SEPs)

• Solar flares are usually identified by 
the disk-integrated X-ray emissions 
detected by GOES satellites

• Stellar flares are recognized by 
similar X-ray light curves

α

α
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