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Chirped Pulse Amplification – Reaching Ultra High Intensities

Progress in creating high intensity beams:



Research Directions:

• Laser Propagation in the Atmosphere.

• Laser Wakefield Electron acceleration.
(Guiding of 1018 W/cm2 – in plasma channels 
up to 20cm,  Electron Injection, etc…)

• Laser interaction with Solid and Cluster Targets –
ion acelleration.

• Fast Ignition

High Intensity Laser



Propagation in the Atmosphere
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• The light creates a waveguide
in the atmosphere through 
nonlinear interactions.

• This enables propagation of 
high intensities to long
distances (km’s).

• Light filament leave in their 
wake a thin ionized channel.



• Laser pulse undergoes white light generation and forms plasma and optical filaments

refractive index:
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Spectral Broadening

Laser Pulse Filamentation



Laser

low intensity 
chirped laser pulse

Longitudinal 
compression

TargetTransverse 
focusing

high intensity 
compressed pulse

z = 0 z = L

• The compressed pulse induces localized atmospheric breakdown and     
generates directed white light

spot size: R(z)
pulse duration: T(z)

Laser Pulse Compression 
and Breakdown in the Atmosphere



•Remote Sensing
-White light source for spectroscopy, 

-Air breakdown produces UV for fluorescence

-Generation of III harmonics (268nm) – excitation of organic molecules

- Powerful radiation point sources

• Countermeasures
- Direct broadband blinding of optical sensors

-Material (Sensor) Damage

- Compressed laser pulse can damage coatings, CCDs, Windows, etc.

•Induced plasma channels 
-high conductivity plasma channel can initiate breakdown- Lightning control ?

- Plasma channels can be used as reflectors. 

Potential Applications
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Long Distance Filamentation

• The collapse distance is not
easily controlled.

• The spatial pattern is random
and cannot be reproduced 
or predetermined.

Theses issues are crucial for 

applications – control?



Control of Filamentation

Single Shot Average

OPTICS LETTERS 29, p.1772 (2004)

• Development of simple methods for: 

• Control of filamentation pattern.

• Control over number of filaments

• Shot to shot stability



Control of Filamentation

OPTICS EXPRESS 14, p. 4946 (2006)

Damage pattern at 360 meters

Main Challenge – delay the collapse to km’s

II.Control of collapse distance:

• New method for the delay of collapse
(linear defocusing + nonlinear self focusing)

• Demonstrated experimentally up to
400 meters.

• Longitudinal control combined with 
transverse control.

PVC Damage

30 m 160 m 360 m

Control of collapse distance



C = 1 nF
V = 0 – 5 kV

Plasma filament - Experimental Setup
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We recorded the value of the voltage breakdown with and without the presence of filament 
between the electrodes.

The ratio is is our parameter for electron density.



I. Peak electron density ~ 5x1016 cm-3

II. Rapid electron density variation.
An order of magnitude change over a
distance of 5 cm.

III. Postionization regime –
Guided light structure supported by a 
low electron density region (ne< 1014

cm-3)

Results: Fine Structure of  a Laser-Plasma Filament

A 266 GW, 100 fsec pulse was launched to the atmosphere.
It was focused & arranged using a f = 5m lens, to our setup.

PRL 2007



Filaments generated by single short pulse laser

• Random filament formation can be simply controlled by introducing 
pulse astigmatism 

• Number of filaments can be reduced to one pulse.

• Filamentation distance can be continuously controlled with a double 
lens setup to at least length scales of hundreds of meters. 

• Electron density in plasma channel is not constant – can vary over 
three orders of magnitude.

• Filament energy ~ 1 mJ/ filament

How to produce powerful radiation source at remote location?



Generation of remote radition source

Plasma Flare:
Radiation Spectrum

Interaction with plasma:
Absorption
n(r,t), T(r,t)

Plasma Channels:
Formation
Stability

Ultrashort Pulse Laser (USPL)
10’s mJ, sub-ps, 

Propagation:
USPL
LPLLong Pulse Laser (LPL)

E < 5 J, sub-μs

In Air Labs = km’s

In plasma                          ~ 6 cm  
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LPL Absorption

Our code are predicts that hundreds of microjoules will 
be emitted by plasma flare



CO2 laser

Energy density
10’s  J/cm3

Hydrodynamic 
Expansion

Additional absorption
of CO2

Filament generated by USPL
L~1m     R~100μm

Future developmen
2D model

3 nsec 50 nsec

Energy density
0.1  J/cm3

100 nsec

Plasma evolution vs time

Time



Detailed model for plasma channel 
evolution generated by DLP

• Multiphoton and impact ionization.
• Electron Joule heating.
• Thermal conduction 
• Cooling by expansion 
• Radiation losses (LTE).
• 1D hydrodynamics – channel expansion.   
• Electron-ion and ion-ion recombination.
• Attachment.
• Detachment.
• Dissociation.
• Excitations (molecules (vibrations), atoms, ions)
• Radiation (molecules, atoms, ions)



Plasma channel emission

Time dependent plasma chemistry  model  
coupled to hydrodynamics

Time integrated net
emission coefficient - LTE

Detailed emission of molecular bands,
atomic and ion lines

Flare Radiation
Radiation output 

for energy balance



Electron and air temperatures
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Electron heating by 
absorption of laser energy

Energy transfer from
electrons to air

Cooling by
expansion

Cooling by heat conduction
at plasma boundary

Radiation losses
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Radial expansion acceleration

Electron 
pressure
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pressure

Shock pressure generated 
in ambient air



Wavelength 
(μm)

Pulse duration (s)Intensity 
(W/cm2)

0.810-138·1013Short Pulse 
Laser

10.61·10-7x·107Long Pulse 
Laser

Laser parameters for generating a light source in air

Channel initial radius 100 μm



Emission from  DLP laser generated plasma
(per single filament)

CO2 laser intensity on the plasma W/cm2 5*107 3*107 1*107

Emission by molecules
• Total Emission in 2+ band J    2.5 10-6 4.4 10-6 0.1 10-6

Emission by atoms

• Total O emission J 2.5*10-4 5.3*10-4 1 *10-4

• Total N emission J 2.6*10-4 6.5*10-5 2.1*10-5

Emission by ions

• Total O+ emission J 3*10-4 1.2*10-6 6.1*10-11

• Total N+ emission J 1*10-4 1.8*10-6   4.3*10-11



Emission from  DLP laser generated plasma
(per single filament)

Total Emission in bands:
CO2 laser intensity on the plasma W/cm2 5*107 3*107 1*107

• Range: 0.3-0.7 microns J 5*10-4 6*10-5 2.5*10- 5

• Range: 0.7-1.2 microns J 4*10-4 5*10-4 1.2*10-4

• CONCLUSION : more than 100 MICROJOULES can be 
emitted by the single filament using DLP approach



E ~ 10-9 W
T ~ 10-9 s

E ~ 10-2 W
T ~ 10-9 s

E ~ 10-9 W
T ~ 10-14 s

E ~ 10-2 W
T ~ 10-14 s

Chirped Pulse Amplification Scheme

P=105 W P=1012 W

Chirped Pulse Amplification – Reaching Ultra High Intensities

Overcoming :
• The optical threshold damage.
• Nonlinear deformations of beam.

Creating :
• Ultrashort (τ ~ 10-15 sec)
• Energetic  (E > 100 mJ)
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