Control of High Intensity Laser Propagation in the Atmosphere

Arie Zigler Hebrew University, Jerusalem and BAEsystems Washington DC

In collaboration :
S. Eisenmann, Y.Katzir, T.Palhan, *Hebrew University, Jerusalem*,
D. Papadopoulos *U. Maryland* and BAEsystems Washington DC
J. Penano, P. Sprangle Nav. Res. Lab. Washington, DC

Chirped Pulse Amplification – Reaching Ultra High Intensities

High Intensity Laser

Research Directions:

- Laser Propagation in the Atmosphere.
- Laser Wakefield Electron acceleration.
 (Guiding of 10¹⁸ W/cm² in plasma channels up to 20cm, Electron Injection, etc...)
- Laser interaction with Solid and Cluster Targets ion acelleration.

• Fast Ignition

Propagation in the Atmosphere

- The light creates a waveguide in the atmosphere through nonlinear interactions.
- This enables propagation of high intensities to long distances (km's).
- Light filament leave in their wake a thin ionized channel.

collapse stable linear divergence $P > P_{cr}$ filament

 $\lambda = 0.8 \,\mu m, P = 2.2 \, TW, E = 240 \, mJ, \tau = 110 \, f \, \text{sec}$ 10 Hz rep - rate, $L_{peak} = 2 \, km, L_{max} = 12 \, km, \eta = 40 \, \%$

Stages in propagation of a high intensity beam

Laser Pulse Filamentation

• Laser pulse undergoes white light generation and forms plasma and optical filaments

Laser Pulse Compression and Breakdown in the Atmosphere

• The compressed pulse induces localized atmospheric breakdown and generates directed white light

Potential Applications

•Remote Sensing

- -White light source for spectroscopy,
- -Air breakdown produces UV for fluorescence
- -Generation of III harmonics (268nm) excitation of organic molecules
- Powerful radiation point sources

• Countermeasures

- Direct broadband blinding of optical sensors
- -Material (Sensor) Damage
- Compressed laser pulse can damage coatings, CCDs, Windows, etc.

•Induced plasma channels

-high conductivity plasma channel can initiate breakdown- Lightning control ?

- Plasma channels can be used as reflectors.

Long Distance Filamentation

Stages in propagation of a high intensity beam

- The collapse distance is not easily controlled.
- The spatial pattern is random and cannot be reproduced or predetermined.
- \rightarrow Theses issues are crucial for applications control?

Control of Filamentation

- Development of simple methods for:
 - Control of filamentation pattern.
 - Control over number of filaments
 - Shot to shot stability

OPTICS LETTERS 29, p.1772 (2004)

Control of Filamentation

Main Challenge – delay the collapse to km's

II.Control of collapse distance:

- New method for the delay of collapse (linear defocusing + nonlinear self focusing)
- Demonstrated experimentally up to 400 meters.
- Longitudinal control combined with transverse control.

Plasma filament - Experimental Setup

We recorded the value of the voltage breakdown with and without the presence of filament between the electrodes.

The ratio is
$$h = \frac{V_{fil}}{V_0}$$
 is our parameter for electron density.

Results: Fine Structure of a Laser-Plasma Filament

A 266 GW, 100 fsec pulse was launched to the atmosphere. It was focused & arranged using a f = 5m lens, to our setup.

I. Peak electron density ~ $5 \times 10^{16} \text{ cm}^{-3}$

II. Rapid electron density variation. An order of magnitude change over a distance of 5 cm.

III. Postionization regime – Guided light structure supported by a low electron density region ($n_e < 10^{14}$ cm⁻³)

Filaments generated by single short pulse laser

 Random filament formation can be simply controlled by introducing pulse astigmatism

• Number of filaments can be reduced to one pulse.

• Filamentation distance can be continuously controlled with a double lens setup to at least length scales of hundreds of meters.

• Electron density in plasma channel is not constant – can vary over three orders of magnitude.

• Filament energy ~ 1 mJ/ filament

How to produce powerful radiation source at remote location?

Generation of remote radition source

Our code are predicts that **hundreds** of microjoules will be emitted by plasma flare

Plasma evolution vs time

Detailed model for plasma channel evolution generated by DLP

- Multiphoton and impact ionization.
- Electron Joule heating.
- Thermal conduction
- Cooling by expansion
- Radiation losses (LTE).
- 1D hydrodynamics channel expansion.
- Electron-ion and ion-ion recombination.
- Attachment.
- Detachment.
- Dissociation.
- Excitations (molecules (vibrations), atoms, ions)
- Radiation (molecules, atoms, ions)

Electron and air temperatures

Laser parameters for generating a light source in air

	Intensity (W/cm ²)	Pulse duration (s)	Wavelength (µm)
Short Pulse Laser	8·10 ¹³	10-13	0.8
Long Pulse Laser	x•10 ⁷	1.10-7	10.6

Channel initial radius 100 μm

Emission from DLP laser generated plasma (per single filament)

CO ₂ laser intensity on the plasma	W/cm ²	5*10 ⁷	3*10 ⁷	1*10 ⁷
 Emission by molecules Total Emission in 2⁺ band 	J	2.5 10 ⁻⁶	4.4 10 ⁻⁶	0.1 10 ⁻⁶
Emission by atoms				
Total O emissionTotal N emission	J J	2.5*10 ⁻⁴ 2.6*10 ⁻⁴	5.3*10 ⁻⁴ 6.5*10 ⁻⁵	1 *10 ⁻⁴ 2.1*10 ⁻⁵
Emission by ions				
Total O+ emissionTotal N+ emission	J J	3*10 ⁻⁴ 1*10 ⁻⁴	1.2*10 ⁻⁶ 1.8*10 ⁻⁶	6.1*10 ⁻¹¹ 4.3*10 ⁻¹¹

Emission from DLP laser generated plasma (per single filament)

Total Emission in bands:

CO ₂ laser intensity on the plasma		W/cm ²	5*10 ⁷	3*10 ⁷	1*10 ⁷
•	Range: 0.3-0.7 microns	J	5*10 -4	6*10 ⁻⁵	2.5*10 ^{- 5}
•	Range: 0.7-1.2 microns	J	4*10 -4	5*10-4	1.2*10 ⁻⁴

 CONCLUSION : more than 100 MICROJOULES can be emitted by the single filament using DLP approach

Overcoming :

- The optical threshold damage.
- Nonlinear deformations of beam.

Creating :

- Ultrashort ($\tau \sim 10^{-15}$ sec)
- Energetic (E > 100 mJ)