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The Problem Formulation

1. Solar EUV flux 1onizing F2-region varies by
1.9-2.9 time 1n solar cycle, while daytime mid-
latitude NmF2 varies by 5-6 times in Winter
and by 2-2.5 times in Summer.

2. Practically linear NmF2 increase in Winter,
but a saturation effect in Summer

This 1s a well-known feature of the F2-layer
Solar Cycle variations



Winter and Summer median NmF2 Solar Cycle Variations
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To understand the reason of these variations
accurate 1onospheric observations should be used
and main Aeronomic Parameters:

1. Ionizing Solar EUV radiation

2. Neutral composition ([O],[O,],[N,]) and
temperature T(h)

3. Vertical plasma drift

should be specified for the conditions
In question



Only Incoherent Scatter Observations can be used
for such analysis
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A comparison of EUV models with SOHO observations
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INPUT
Routine ISR
Observations

N(h)
Te(h)
Ti(h)
Vi(h)

F2-layer
Theoretical
Model

QUTPUT
A Self-Consistent Set of
Thermosphere Parameters
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Calculated and Model Thermospheric Parameters at 300 km

1600 | 7.6
i Summer 4
1400 o 7.2 L
g Summer
N 1200 © .
z;ﬁ |
~ 1000 -
800 - i
600 6.0
S 90 - |
= o T 86 -
o 88 - o
= — 8.2 -
O, 86 - Z
en o) |
S 84 - & e
8.2 - . 74 *
8.0 T \ \ \ I I \ 7.0 T I \ \ I I I
60 100 140 180 220 60 100 140 180 220
(Fios + FA)2 (Fio7 + FA)2

NRLMSISE-00 model by Picone et al.



The retrieved aeronomic parameters

approaches




For mid-latitude daytime F2-layer the well-known
expressions by Rishbeth and Barron (1960) can be used.

NmF2=0.75q,./8,  fB.,=0.6D_sin’l/H?>

where all parameters are given at the hmF2 height
q,, — O" 10on production rate

D, — ambipolar diffusion coefficient

B, — linear loss coefficient for O™ ions

H — atomic oxygen scale height

[ — magnetic inclination

In fact the above expression for NmF2 and hmF2 reflect the idea of
1sobaric F2-layer by Rishbeth and Edwards (1989) — the F2-layer
follows the level of P=const in its variations



Calculated aeronomic parameters at the hmF2 height for
Winter and Summer days under

1gN1’IlF2 Tex 1g[o]m 1g[02]m 1g[N2]m Y1 Y2 dm Bm qm/ Bm
Date hmF?2, K cm™ cm™ cm x108 | x10712 x10? x10* | x10° ms’!
km ecm’s! | em’s! | em?s! ! cm™
09.01.97 5.616 787 9.001 7.490 8.695 5411 9.528 3.358 5.625 0.597 -6.7
238
14.01.90 6.315 1086 9.063 6.975 8.338 6.699 7.627 7.688 2.178 3.530 -8.2
289
09.08.94 5.509 907 8.694 7.300 &.570 5.851 8.708 1.882 3911 0.481 +7.1
252
05.06.89 5.876 1444 8.803 7.003 8.511 10.09 6.222 4.954 3.895 1.272 -9.2
328

acronomic parameters enables us to make
all quantitative estimates




Seasonal/Solar Cycle Variations of q,/B,,, ~NmF2

The q,./B,, variations are: 5.91 time for Winter

and 2.64 times for Summer.

Ion production rate (], , increases:

by 2.29 times in Winter

and by 2.63 times in Summer

Loss coefficient |3 decreases:
by 2.58 times in Winter




That is loss coefficient B does not

In Winter the contributions of g, and [}, to
the NmFK2 increase are comparable.



Under APm = 1 the leading role in forming the Summer
Saturation Effect belongs to [O] , variations as

NmF2 ~q, /
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Notice - there is no saturation effect
in EUV variations with solar activity
as it 1s widely accepted to think.
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Why APm 1s small in Summer ?
Winter Summer

[N,] decrease at hmF?2 height by

2.27 times 1.15 times
y (O + N,) increase at hmF?2 height by
1.08 times 1.72 times

That 1s in summer the y (O™ + N,) increase

overcompensates the [N,] decrease

While in Winter the situation is quite different



The main difference between Summer and Winter 1s 1n
Temperature variation range when we pass from
Solar Minimum to Solar Maximum
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Seasonal Thermosphere Circulation
Leading to the [O]/[N,] Summer Decrease

This 1s the first step in the chain of processes leading
to the Summer NmF?2 saturation effect

Solar +Auroral Heating driven
Seasonal (Summer-to-Winter) Vnx

—_—_— " <<}——

zone
[e1oIny




The Chain of Processes Leading to the Summer Saturation Effect

O/N, summer decrease due to Tn increase, upwelling with summer-

1 to-winter hemisphere transfer

NmF2 decrease as NmF2 ~ q,./B,,

Te increase due to a decrease of electrons cooling mm) Tn increase

Tv erease But this an avalanche type.process stops 1n
some steps at Te = 2600K 1n the F2-layer

1 under solar maximum due to:

v (O*+N,) increase Confined solar EUV energy;

1 Confined plasmaspheric energy reservoir;
Cooling effect of winter hemisphere;

B increase Thermal conductivity

1 Cooling in collisions with 1ons and neutrals

NmE2 decrease as NmF2 ~q_/B..
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Conclusions

1. The observed NmF?2 increase 1n Solar cycle 1s due to

two reasons: one 1s EUV increase by a factor of 2, the

other reason 1s due to [O] and [3 variations at the hmF2

2. The difference between Winter and Summer 1n the
course of Solar cycle 1s 1n temperature: T< 1200 K
in Winter and T >1200 K 1n Summer. This results 1n
different y,(O™+N,) and larger hmF2 in Summer.



Conclusions

3. Summer decrease in [O] and small variation in
B =v,[N,]*+v,[O,] at hmF2 under high solar activity

results in the saturation effect in NmF2 under solar

maximum.

4. The Summer saturation effect in NmF2 results from a
long chain of non-linear processes:

0 => O/N, 1—>NmF21—>TeI—> (Tn, TV = Vif =
—> BI —> NmF21 == O/N 21 due to upwelling

and so on.
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